中国农业科学 ›› 2021, Vol. 54 ›› Issue (8): 1684-1701.doi: 10.3864/j.issn.0578-1752.2021.08.009
张锦源1,2(),李彦生1,于镇华1,谢志煌1,2,刘俊杰1,王光华1,刘晓冰1,吴俊江3,Stephen J Herbert4,金剑1(
)
收稿日期:
2020-06-24
接受日期:
2020-07-29
出版日期:
2021-04-16
发布日期:
2021-04-25
通讯作者:
金剑
作者简介:
张锦源,E-mail: 基金资助:
ZHANG JinYuan1,2(),LI YanSheng1,YU ZhenHua1,XIE ZhiHuang1,2,LIU JunJie1,WANG GuangHua1,LIU XiaoBing1,WU JunJiang3,Stephen J HERBERT4,JIN Jian1(
)
Received:
2020-06-24
Accepted:
2020-07-29
Online:
2021-04-16
Published:
2021-04-25
Contact:
Jian JIN
摘要:
在地球化学元素循环中,氮素是最重要、最活跃的营养元素之一。农田生态系统中的氮素很大程度上决定农作物的产量和品质。然而,在全球气候变化背景下,随着大气CO2浓度和温度升高,作物-土壤氮循环的变化可能显著影响农田生态系统中的作物生产。因此,研究作物-土壤氮循环对大气CO2浓度和温度升高的响应,能够为科学合理地预测未来气候条件下,农田生态系统中作物的氮素需求,以及保障农作物产量的稳定供应提供理论依据,对于全面认识全球气候变化背景下的农田生态系统氮素循环过程及土壤可持续利用具有重要意义。本文综述了大气CO2和温度升高对作物氮素吸收和分配,以及与氮有效性密切相关的土壤氮转化的影响,并系统总结了二者对作物-土壤氮循环过程产生的交互作用。总结以往研究发现,在大气CO2浓度升高条件下,作物的蒸腾作用减弱,但光合作用增强,生物量加大,根系分支和根表面积增加,豆科作物的根瘤固氮能力提高,因此整体上促进作物对氮的吸收,并且增加作物向籽粒中分配氮的比例,但作物的平均氮浓度降低。此外,高CO2浓度提高了土壤酶活性,增强了土壤有机氮矿化作用、硝化及反硝化作用,加速了土壤氮转化。升温和CO2浓度升高对作物-土壤氮循环产生正向或负向的交互作用,主要表现在:高温和高CO2浓度对作物的生物量、光合作用、地下部氮分配、根系分支以及根表面积具有协同促进作用,升高温度减轻了高CO2浓度对作物蒸腾作用和作物氮浓度的抑制作用。然而,升温抑制了高CO2浓度对作物向籽粒中氮分配、氮吸收以及产量的促进作用;升温虽然能进一步增强高CO2浓度对土壤酶活性和有机氮矿化的促进作用,但是对于土壤硝化和反硝化作用,二者的交互作用以及相关的分子机制尚不明确。大气CO2升高和温度升高对土壤微生物,以及微生物与作物之间的耦合关系的研究比较薄弱,特别是由微生物主导的氮循环过程及其对全球气候变化的反馈机制是未来研究的重点。本文提出利用16S rRNA、DGGE、T-RFLP、qPCR、RT-PCR技术、蛋白组学以及稳定性同位素探针原位研究技术,可以将复杂环境中微生物物种组成及其生理功能进行耦合分析,揭示大气CO2浓度与温度对作物-土壤氮循环过程的交互作用机理,增强对气候变化下农田生态系统氮素循环响应的预测能力,为农田生态系统有效地适应气候变化提供科学的理论依据。
张锦源,李彦生,于镇华,谢志煌,刘俊杰,王光华,刘晓冰,吴俊江,Stephen J Herbert,金剑. 作物-土壤氮循环对大气CO2浓度和温度升高响应的研究进展[J]. 中国农业科学, 2021, 54(8): 1684-1701.
ZHANG JinYuan,LI YanSheng,YU ZhenHua,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,WU JunJiang,Stephen J HERBERT,JIN Jian. Nitrogen Cycling in the Crop-Soil Continuum in Response to Elevated Atmospheric CO2 Concentration and Temperature -A Review[J]. Scientia Agricultura Sinica, 2021, 54(8): 1684-1701.
表1
大气CO2浓度与温度升高下作物氮浓度、氮吸收及生物量变化"
作物类型 Crop species | CO2浓度/温度处理 CO2 concentration/temperature | 氮浓度 N concentration | 氮吸收 N uptake | 生物量 Biomass | 文献 Reference |
---|---|---|---|---|---|
大豆Soybean | 390/550 μmol·mol-1 | ↓ | ↑ | ↑ | [ |
大豆Soybean | 390/550 μmol·mol-1 | ↓ | [ | ||
大豆Soybean | 415/550 μmol·mol-1 | ↓ | ↑ | ↑ | [ |
水稻Rice | 380/680 μmol·mol-1 | ↓ | ↑ | ↑ | [ |
水稻Rice | 500 μmol·mol-1 | ↓ | ↑ | ↓ | [ |
水稻Rice | 390/550 μmol·mol-1 | ↓ | ↑ | ↑ | [ |
水稻Rice | 370/550 μmol·mol-1 | ↓ | ↑ | [ | |
水稻Rice | +200 μmol·mol-1 | ↓ | ↑ | [ | |
小麦Wheat | 390/550 μmol·mol-1 | — | ↑ | [ | |
小麦Wheat | 360/550 μmol·mol-1 | ↓ | [ | ||
水稻Rice | 500 μmol·mol-1;+2℃ | ↑ | ↓ | ↓ | [ |
水稻Rice | 380/680 μmol·mol-1;22/32℃ | — | ↑ | ↑ | [ |
水稻Rice | +60 μmol·mol-1;+2℃ | ↑ | ↓ | [ | |
水稻Rice | +60 μmol·mol-1;+2℃ | ↑ | ↑ | [ | |
水稻Rice | 390/550 μmol·mol-1;+2℃ | ↓ | ↑ | ↑ | [ |
水稻Rice | +200 μmol·mol-1;+1℃ | ↓ | ↓ | [ |
图1
大气CO2浓度升高与温度升高对作物-土壤氮循环的交互影响 图中实线箭头表示现有结果较为一致;虚线箭头表示现有研究结果不一致;CO2×T表示CO2浓度和温度互作,问号表示互作影响未知 Arrows with solid and dot line indicate consistent and inconsistent results from published data; CO2×T indicates the interaction between CO2 and temperature, question mark means the interaction is unknown 分别表示单独CO2浓度升高条件下的负效应和正效应 The downward and upward arrows mean negative and positive impacts by elevated CO2, respectively. 分别表示升温对CO2浓度升高效应的抑制和促进作用 The downward and upward box arrows mean inhibitive and promotive feedback of elevated temperature on the effect of elevated CO2. 表示作物氮吸收相关指标对CO2及温度升高的响应 Pink indicates the response of properties relevant to nitrogen uptake under elevated CO2 concentration and temperature. 表示作物氮浓度对CO2及温度升高的响应 Green indicates the response of crop nitrogen concentration to elevated CO2 concentration and temperature. 表示作物产量及氮分配对CO2及温度升高的响应 Purple indicates the response of crop yield and nitrogen allocation to elevated CO2 concentration and temperature. 表示土壤氮转化相关过程对CO2及温度升高的响应 Blue indicates the response of soil nitrogen transformation to elevated CO2 concentration and temperature T: Temperature; Photosyn: Photosynthesis; Bio.: Biomass; Transpi.: Transpiration; [N]: N concentration; Grain N alloca.: Grain N allocation; NG N alloca.: Underground N allocation; Root morpho.: Root morphology; Enzyme acti.: Enzyme activity; Immobili.: Immobilization; Minerali.: Mineralization; Nitri.: Nitrification; Denitri.: Denitrification"
[1] |
URBAN M C. Accelerating extinction risk from climate change. Science, 2015,348:571-573.
doi: 10.1126/science.aaa4984 pmid: 25931559 |
[2] | IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013: 159-218. |
[3] |
WHITE P J, BROWN P H. Plant nutrition for sustainable development and global health. Annals of Botany, 2010,105:1073-1080.
doi: 10.1093/aob/mcq085 pmid: 20430785 |
[4] | 陆景陵. 植物营养学. 北京: 中国农业大学出版社, 2003: 23. |
LU J L. Plant Nutrition. Beijing: China Agricultural University Press, 2003: 23. (in Chinese) | |
[5] | NOYCE G L, KIRWAN M L, RICH R L, MEGONIGAL J P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proceedings of the National Academy of Sciences, 2019,116:21623-21628. |
[6] |
BISHOP K A, BETZELBERGER A M, LONG S P, AINSWORTH E A. Is there potential to adapt soybean (Glycine max Merr.) to future CO2? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell and Environment, 2015,38:1765-1774.
doi: 10.1111/pce.2015.38.issue-9 |
[7] |
李伏生, 康绍忠, 张富仓. 大气CO2浓度和温度升高对作物生理生态的影响. 应用生态学报, 2002,13(9):1169-1173.
pmid: 12561186 |
LI F S, KANG S Z, ZHANG F C. Effect of atmospheric CO2 and temperature increment on crop physiology and ecology. Chinese Journal of Applied Ecology, 2002,13(9):1169-1173. (in Chinese)
pmid: 12561186 |
|
[8] |
HAO X Y, LI P, HAN X, NORTON R M, LAM S K, ZONG Y Z, SUN M, LIN E D, GAO Z Q. Effects of free-air CO2 enrichment (FACE) on N, P and K uptake of soybean in northern China. Agricultural and Forest Meteorology, 2016,218/219:261-266.
doi: 10.1016/j.agrformet.2015.12.061 |
[9] |
YANG L, HUANG J Y, YANG H J, DONG G C, LIU G, ZHU J G, WANG Y L. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research, 2006,98(1):1-19.
doi: 10.1016/j.fcr.2005.09.015 |
[10] |
REDDY V R, REDDY K R, HODGES H F. Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 1995,41(1):13-23.
doi: 10.1016/0378-4290(94)00104-K |
[11] |
LI C H, ZHU J G, SHA L N, ZHANG J S, ZENG Q, LIU G. Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO2 concentration and air temperature. Ecological Research, 2017,32:405-411.
doi: 10.1007/s11284-017-1450-7 |
[12] | 张立极, 潘根兴, 张旭辉, 李恋卿, 郑经伟, 郑聚峰, 俞欣妍, 王家芳. 大气CO2浓度和温度升高对水稻植株碳氮吸收及分配的影响. 土壤, 2015,47(1):26-32. |
ZHANG L J, PAN G X, ZHANG X H, LI L Q, ZHENG J W, ZHENG J F, YU X Y, WANG J F. Effect of experimental CO2 enrichment and warming on uptake and distribution of C and N in rice plant. Soils, 2015,47(1):26-32. (in Chinese) | |
[13] |
CHENG W G, SAKAI H, YAGI K, HASEGAWA T. Combined effects of elevated CO2 and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2010,150:1174-1181.
doi: 10.1016/j.agrformet.2010.05.001 |
[14] |
WOLFE K S, HE J S, BAZZAZ F A. Level physiology, biomass, and reproduction of Phytolacca americana under conditions of elevated carbon dioxide and increased nocturnal temperature. International Journal of Plant Sciences, 2006,167(5):1011-1020.
doi: 10.1086/506154 |
[15] |
DRAKE B G. More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 1997,48(4):609-639.
doi: 10.1146/annurev.arplant.48.1.609 |
[16] |
BHATTACHARYYA P, ROY K S, DASH P K, NEOGI S, SHAHID M, NAYAK A K, RAJA R, KARTHIKEYAN S, BALACHANDAR D, RAO K S. Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). European Journal of Agronomy, 2014,53:28-37.
doi: 10.1016/j.eja.2013.10.008 |
[17] | 陈坤. 植物氮素高效吸收研究进展. 安徽农业科学, 2018,46(26):31-33. |
CHEN K. Research advances on nitrogen uptake in plant. Journal Anhui Agricultural Sciences, 2018,46(26):31-33. (in Chinese) | |
[18] |
黄高宝, 张恩和, 胡恒觉. 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001,7(3):293-297.
doi: 10.11674/zwyf.2001.0308 |
HUANG G B, ZHANG E H, HU H J. Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. Plant Nutrition and Fertilizer Science, 2001,7(3):293-297. (in Chinese)
doi: 10.11674/zwyf.2001.0308 |
|
[19] |
霍常富, 孙海龙, 范志强, 王政权. 根系氮吸收过程及其主要调节因子. 应用生态学报, 2007,18(6):1356-1364.
pmid: 17763743 |
HUO C F, SUN H L, FAN Z Q, WANG Z Q. Physiological processes and major regulating factors of nitrogen uptake by plant root. Chinese Journal of Applied Ecology, 2007,18(6):1356-1364. (in Chinese)
pmid: 17763743 |
|
[20] |
DAEPP M, SUTER D, ALMEIDA J P F, ISOPP H, HARTWIG UA, FREHNER M, BLUM H, NOSBERGER J, LUSCHER A. Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biology, 2000,6:805-816.
doi: 10.1046/j.1365-2486.2000.00359.x |
[21] |
KORNER C, ARNONE J A. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science, 1992,257:1672-1675.
doi: 10.1126/science.257.5077.1672 pmid: 17841166 |
[22] | 陈改苹, 朱建国, 谢祖彬, 朱春梧, 程磊, 曾青, 庞静. 开放式空气 CO2浓度升高对水稻根系形态的影响. 生态环境, 2005,14(4):503-507. |
CHEN G P, ZHU J G, XIE Z B, ZHU C W, CHENG L, ZENG Q, PANG J. Effects of free-air CO2 enrichment on root morphology of rice. Ecology and Environment, 2005,14(4):503-507. (in Chinese) | |
[23] |
PRITCHARD S G, ROGERS H H. Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytologist, 2000,147:55-71.
doi: 10.1046/j.1469-8137.2000.00678.x |
[24] |
STUEFER J F, DEKROON H, DURING H J. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Functional Ecology, 1996,10:328-334.
doi: 10.2307/2390280 |
[25] |
WANG Y, DU S T, LI L L, HUANG L D, FANG P, LIN X Y, ZHANG Y S, WANG H L. Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings. Pedosphere, 2009,19(5):570-576.
doi: 10.1016/S1002-0160(09)60151-X |
[26] |
WEI W, FAROOQ S, ROBERT W D, BAO L M. Grain yield, root growth habit and lodging of eight oilseed rape genotypes in response to a short period of heat stress during flowering. Agricultural and Forest Meteorology, 2020,287:107954.
doi: 10.1016/j.agrformet.2020.107954 |
[27] |
IGNATIOUS M, ANTHONY V G, CRAMER M D. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. Journal of Experimental Botany, 2014,65(1):159-168.
doi: 10.1093/jxb/ert367 |
[28] |
BUNCE J A. Direct and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Global Change Biology, 2010,7(3):323-331.
doi: 10.1046/j.1365-2486.2001.00406.x |
[29] |
KANG S Z, ZHANG F C, HU X T, ZHANG J H. Benefits of CO2 enrichment on crop plants are modified by soil water status. Plant and Soil, 2002,238(1):69-77.
doi: 10.1023/A:1014244413067 |
[30] | 赵鸿, 王润元, 尚艳, 王鹤龄, 张凯, 赵福年, 齐月, 陈斐. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望. 干旱气象, 2016,34(1):1-12. |
ZHAO H, WANG R Y, SHANG Y, WANG H L, ZHANG K, ZHAO F N, QI Y, CHEN F. Progress and perspectives in studies on responses and thresholds of major food crops to high temperature and drought stress. Journal of Arid Meteorology, 2016,34(1):1-12. (in Chinese) | |
[31] |
ROGERS A, AINSWORTH E A, LEAKEY A D. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 2009,151:1009-1016.
doi: 10.1104/pp.109.144113 pmid: 19755541 |
[32] |
BUTTERLY C R, ARMSTRONG R, CHEN D L, TANG C X. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum. Annals of Botany, 2016,117:177-185.
doi: 10.1093/aob/mcv140 pmid: 26346721 |
[33] |
LI Y S, YU Z H, LIU X B, MATHESIUS U, WANG G H, TANG C X, WU J J, LIU J D, ZHANG S Q, JIN J. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Frontiers in Plant Science, 2017,8:1546.
doi: 10.3389/fpls.2017.01546 pmid: 28959266 |
[34] |
NARENDR K L, SANGEETA L, PRABHAKAR M, NIHARIKA S, SANJEEV K, SATISH B A, DHARMENDRA S Y. The fate of 15N labeled urea in a soybean-wheat cropping sequence under elevated CO2 and/or temperature. Agriculture, Ecosystems and Environment, 2019,282:23-29.
doi: 10.1016/j.agee.2019.04.033 |
[35] | 蔡威威, 艾天成, 万运帆, 李健陵, 郭晨. 环境温度和CO2浓度升高对湖北早稻氮素含量及产量的影响. 中国农业气象, 2016,37(2):231-237. |
CAI W W, AI T C, WAN Y F, LI J L, GUO C. Influence of elevated atmospheric temperature and CO2 concentration on plant and soil N concentration and yield of early rice in Hubei. Chinese Journal of Agrometeorology, 2016,37(2):231-237. (in Chinese) | |
[36] |
PORTEAUS F, HILL J, BALL A S, PINTER P J, KIMBALL B A, WALL G W, ADAMSEN F J, HUNSAKER D J, LAMORTE R L, LEAVITT S W, THOMPSON T L, MATTHIAS A D, BROOKS T J, MORRIS C F. Effect of Free Air Carbon dioxide Enrichment (FACE) on the chemical composition and nutritive value of wheat grain and straw. Animal Feed Science and Technology, 2009,149:322-332.
doi: 10.1016/j.anifeedsci.2008.07.003 |
[37] |
王斌, 万运帆, 郭晨, 李玉娥, 游松财, 秦晓波, 陈汇林. 模拟大气温度和CO2浓度升高对双季稻氮素利用的影响. 作物学报, 2015,41(8):1295-1303.
doi: 10.3724/SP.J.1006.2015.01295 |
WANG B, WAN Y F, GUO C, LI Y E, YOU S C, QIN X B, CHEN H L. Effects of elevated air temperature and carbon dioxide concentration on nitrogen use of double rice (Oryza sativa L.) in open-top chambers. Acta Agronomica Sinica, 2015,41(8):1295-1303. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01295 |
|
[38] |
SAKAI H, HASEGAWA T, KOBAYASHI K. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration. New Phytologist, 2006,170:321-332.
doi: 10.1111/nph.2006.170.issue-2 |
[39] |
YANG L X, HUANG J Y, YANG H J, DONG G C, LIU H J, LIU G, ZHU J G, WANG Y L. Seasonal changes in the effects of free-air CO2 enrichment (FACE) ion nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Research, 2007,100:189-199.
doi: 10.1016/j.fcr.2006.07.003 |
[40] |
SINCLAIR T R, PINTER P J, KIMBALL B A, ADAMSEN F J, LAMORTE R L, WALL G W, HUNSAKER D J, ADAM N, BROOKS T J, GARCIA R L, THOMPSON T, LEAVITT S, MATTHIAS A. Leaf nitrogen concentration of wheat subjected to elevated CO2 and either water or N deficits. Agriculture Ecosystems and Environment, 2000,79:53-60.
doi: 10.1016/S0167-8809(99)00146-2 |
[41] | LI Y S, YU Z H, YANG S C, WANG G H, LIU X B, WANG C Y, XIE Z H, JIN J. Impact of elevated CO2 on C: N: P ratio among soybean cultivars. Science of the Total Environment, 2019,694:1-7. |
[42] |
COTRUFO M F, INESON P, SCOTT A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 1998,4:43-54.
doi: 10.1046/j.1365-2486.1998.00101.x |
[43] |
REICH P B, HUNGATE B A, LUO Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology Evolution and Systematics, 2006,37:611-636.
doi: 10.1146/annurev.ecolsys.37.091305.110039 |
[44] |
FENG Z Z, RUETTING T, PLEIJEL H, WALLIN G, REICH P B, KAMMANN C I, NEWTON P C D, KOBAYASHI K, LUO Y J, UDDLING J. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Global Change Biology, 2015,21:3152-3168.
doi: 10.1111/gcb.12938 pmid: 25846203 |
[45] |
ALEJANDRO D P, PILAR P, DIEGO G, AITOR A, ROSA M, RAFAEL M C. Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany, 2006,59(3):371-380.
doi: 10.1016/j.envexpbot.2006.04.009 |
[46] | HOCKING P J, MEYER C P. Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry-matter and nitrogen in wheat and maize. Australian Journal of Plant Physiology, 1991,18:339-356. |
[47] | MAITY P P, CHAKRABARTI B, BHATIA A, PURAKAYASTHA T J, SAHA N D, JATAV R S, SHARMA A, BHOWMIK A, KUMAR V, CHAKRABORTY D. Effect of Elevated CO2 and Temperature on Growth of Rice Crop. International Journal of Current Microbiology and Applied Sciences, 2019,8:1906-1911. |
[48] | TIAN Y, ZHENG C, CHEN J, CHEN C Q, DENG A X, SONG Z W, ZHANG B M, ZHANG W J. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China. Plos One, 2014,9(4):0095108. |
[49] |
TAHIR I S A, NAKATA N. Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. Journal of Agronomy and Crop Science, 2010,191(2):106-115.
doi: 10.1111/jac.2005.191.issue-2 |
[50] | AN Y A, WAN S Q, ZHOU X H, SUBEDAR A A, WALLACE L L, LUO Y Q. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 2005,11:1733-1744. |
[51] | ROY K S, BHATTACHARYYA P, NEOGI S, RAO K S, ADHYA T K. Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L.). Field Crops Research, 2012,139:71-79. |
[52] | WANG J Q, LIU X Y, ZHANG X H, SMITH P, LI L Q, FILLEY T R, CHENG K, SHEN M X, HE Y B, PAN G X. Size and variability of crop productivity both impacted by CO2 enrichment and warming-A case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems and Environment, 2016,221:40-49. |
[53] | MACABUHAY A, HOUSHMANDFAR A, NUTTALL J, FITZGERALD G J, TAUSZ M, TAUSZ-POSCH S. Can elevated CO2 buffer the effects of heat waves on wheat in a dryland cropping system? Environmental and Experimental Botany, 2018,155:578-588. |
[54] | WANG W L, CAI C, HE J, GU J F, ZHU G L, ZHANG W Y, ZHU J G, LIU G. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research, 2020,248:107605. |
[55] | 赵满兴, 周建斌, 杨绒, 郑险峰, 翟丙年, 李生秀. 不同施氮量对旱地不同品种冬小麦氮素累积、运输和分配的影响. 植物营养与肥料学报, 2006,12(2):143-149. |
ZHAO M X, ZHOU J B, YANG R, ZHENG X F, ZHAI B N, LI S X. Characteristics of nitrogen accumulation, distribution and translocation in winter wheat on dryland. Plant Nutrition and Fertilizer Science, 2006,12(2):143-149. (in Chinese) | |
[56] | 史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣. 植物叶片氮分配及其影响因子研究进展. 生态学报, 2015,35(18):5909-5919. |
SHI Z M, TANG J C, CHENG R M, LUO D, LIU S R. A review of nitrogen allocation in leaves and factors in its effects. Chinese Journal of Applied Ecology, 2015,35(18):5909-5919. (in Chinese) | |
[57] | 庞静, 朱建国, 谢祖彬, 陈改苹, 刘刚, 张雅丽. 自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响. 中国水稻科学, 2005,19(4):350-354. |
PANG J, ZHU J G, XIE Z B, CHEN G P, LIU G, ZHANG Y L. Effects of elevated CO2 on nutrient uptake by rice and nutrient contents in rice grain. Chinese Journal of Rice Science, 2005,19(4):350-354. (in Chinese) | |
[58] | HAN X, HAO X Y, LAM S K, WANG H R, LI Y C, WHEELER T, JU H, LIN E. Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experiment. Agriculture, Ecosystems and Environment, 2015,209:132-137. |
[59] | 马红亮, 朱建国, 谢祖彬, 曾青, 刘钢. CO2浓度升高对水稻生物量及C、N吸收分配的影响. 中国生态农业学报, 2005,13(3):38-41. |
MA H L, ZHU J G, XIE Z B, ZENG Q, LIU G. Effects of CO2 enrichment on the allocation of biomass and C, N uptake in rice organs. Chinese Journal of Eco-Agriculture, 2005,13(3):38-41. (in Chinese) | |
[60] | 王品, 魏星, 张朝, 陈一, 宋骁, 史培军, 陶福禄. 气候变暖背景下水稻低温冷害和高温热害的研究进展. 资源科学, 2014,36(11):2316-2326. |
WANG P, WEI X, ZHANG C, CHEN Y, SONG X, SHI P J, TAO F L. A review of cold injury and heat damage to rice growth under global warming. Resources Science, 2014,36(11):2316-2326. (in Chinese) | |
[61] | KIM H Y, LIM S S, KWAK J H, LEE D S, LEE S M, RO H M, CHOI W J. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant and Soil, 2011,342:59-71. |
[62] | JAUREGUI I, AROCA R, GARNICA M, ZAMARRENO A M, GARCIA-MINA J M, SERRET M D, PARRY M, IRIGOYEN J J, ARANJUELO I. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated CO2 and temperature. Plant Physiology, 2015,155:338-354. |
[63] | 孟红娜, 王开运, 邹春静, 张远彬. 复合群落土壤微生物和酶活性对大气CO2浓度和温度升高的响应. 广西植物, 2007,27(6):861-866. |
MENG H N, WANG K Y, ZOU C J, ZHANG Y B. Responses of soil microbes and enzyme of compound community to elevated atmospheric CO2 concentration and temperature. Guihala, 2007,27(6):861-866. (in Chinese) | |
[64] | GROVER M, MAHESWARI M, DESAI S, GOPINATH K A, VENKATESWARLU B. Elevated CO2: Plant associated microorganisms and carbon sequestration. Applied Soil Ecology, 2015,95:73-85. |
[65] | BARNARD R, LEADLEY P W, HUNGATE B A. Global change, nitrification, and denitrification: A review. Global Biogeochemical Cycles, 2005,19:1-13. |
[66] |
HU S J, TU C, CHEN X, GRUVER J B. Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant and Soil, 2006,289:47-58.
doi: 10.1007/s11104-006-9093-4 |
[67] |
RUSTAD L E, CAMPBELL J L, MARION G M, NORBY R J, MITCHELL M J, HARTLEY A E, CORNELISSEN J H C, GUREVITCH J. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001,126:543-562.
doi: 10.1007/s004420000544 pmid: 28547240 |
[68] | BARNARD R, BARTHES L, LEADLEY P W. Short-term uptake of 15N by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant and Soil, 2006,280:91-99. |
[69] | 张彭良. 模拟增温对春小麦生长发育、根区土壤呼吸速率及酶活性的影响. 河南农业科学, 2016,45(10):55-59. |
ZHANG P L. Effects of simulated enhancement of temperature on growth and root soil respiration rate and enzyme activity of spring wheat. Journal of Henan Agricultural Sciences, 2016,45(10):55-59. (in Chinese) | |
[70] | WEI L, RAZAVI B S, WANG W, ZHU Z K, LIU S L, WU J S, KUZYAKOV Y, GE T D. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biology and Biochemistry, 2019,135:134-143. |
[71] | 刘远, 王光利, 李恋卿, 潘根兴. 土壤硝化和反硝化微生物群落及活性对大气CO2浓度和温度升高的响应. 环境科学, 2017,38(3):1245-1252. |
LIU Y, WANG G L, LI L Q, PAN G X. Response of soil nitrifier and denitrifier community and activity to elevated atmospheric CO2 concentration and temperature. Environment Science, 2017,38(3):1245-1252. (in Chinese) | |
[72] | 周娅. 旱作玉米农田土壤酶活性及微生物量碳氮对施氮、覆膜与大气CO2浓度升高的响应[D]. 杨凌: 西北农林科技大学, 2019. |
ZHOU Y. Effects of nitrogen fertilization, film mulching and elevated CO2 on soil enzyme activities and microbial biomass carbon and nitrogen in a spring maize field, loess plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2019. (in Chinese) | |
[73] | 王大力, 林伟宏. CO2 浓度升高对水稻根系分泌物的影响—总有机碳、甲酸和乙酸含量变化. 生态学报, 1999,19(4):570-572. |
WANG D L, LIN W H. Effects of CO2 elevation on root exudates in rice. Acta Ecologica Sinica, 1999,19(4):570-572. (in Chinese) | |
[74] | 杨菲, 郭嘉, 户其亮, 朱建国, 张卫建. 稻田水体可溶性有机碳与可溶性氮对大气CO2浓度增高的响应. 环境科学学报, 2009,29(7):1542-1548. |
YANG F, GUO J, HU Q L, ZHU J G, ZHANG W J. Responses of dissolved organic C and N in paddy field water to elevated atmospheric CO2. Acta Scientiae Circumstantia, 2009,29(7):1542-1548. (in Chinese) | |
[75] | MONTEALEGRE C M, VAN KESSEL C, RUSSELLE M P, SADOWSKY M J. Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant and Soil, 2002,243:197-207. |
[76] | MOORHEAD D L, LINKINS A E. Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant and Soil, 1997,189:321-329. |
[77] | SCHNEIDER M K, LUSCHER A, RICHTER M, AESCHLIMANN U, HARTWIG U A, BLUM H, FROSSARD E, NOSBERGER J. Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biology, 2004,10:1377-1388. |
[78] | BARRETT J E, BURKE I C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biology and Biochemistry, 2000,32:1707-1716. |
[79] | THORNLEY J H M, CANNELL M G R. Dynamics of mineral N availability in grassland ecosystems under increased CO2: hypotheses evaluated using the Hurley Pasture Model. Plant and Soil, 2000,224:153-170. |
[80] | LUO Y Q, SU B, WILLIAM S C, CURRIE W S, DUKES J S, FINZI A C, HARTWIG U, HUNGATE B, MCMURTRIE R E, OREN R, PARTON W J, PATAKI D E, SHAW M R, ZAK D R, FIELD C B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 2004,54:731-739. |
[81] | TORBERT H A, PRIOR S A, ROGERS H H, WOOD C W. Review of elevated atmospheric CO2 effects on agroecosystems: residue decomposition processes and soil C storage. Plant and Soil, 2000,224:59-73. |
[82] | COOKSON W R, OSMAN M, MARSCHNER P, ABAYE D A, CLARK I, MURPHY D V, STOCKDALE E A, WATSON C A. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry, 2007,39:744-756. |
[83] | PENDALL E, BRIDGHAM S, HANSON P J, HUNGATE B, KICKLIGHTER D W, JOHNSON D W, LAW B E, LUO Y Q, MEGONIGAL J P, OLSRUD M, RYAN M G, WAN S Q. Below- ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 2004,162:311-322. |
[84] | BAI E, LI S L, XU W H, LI W, DAI W W, JIANG P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013,199:441-451. |
[85] | HAGHNIA G H, LAKZIAN A, HALAJNIA A, RAMEZANIAN A, GILKES R J, PRAKONGKEP N. Changes of nitrogen forms in a calcareous soil exposed to elevated CO2 with two atmospheric temperature levels. World Congress of Soil Science: Soil Solutions for A Changing World. Brisbane: DVD, 2010. |
[86] |
DAI Z M, YU M J, CHEN H H, ZHAO H C, HUANG Y L, SU W Q, XIA F, CHANG S X, BROOKES P C, DAHLGREN R A, XU J M. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 2020,26(9), 5267-5276.
doi: 10.1111/gcb.15211 pmid: 32614503 |
[87] | 石玉杰. 土壤氮循环主要微生物对全球环境变化及火灾干扰的响应[D]. 哈尔滨: 东北师范大学, 2019. |
SHI Y J. Response of soil nitrogen cycling related microbial groups to global environmental change and fire disturbance[D]. Harbin: Northeast Normal University, 2019. (in Chinese) | |
[88] | HORZ H P, BARBROOK A, FIELD C B, BOHANNAN B J M. Ammonia-oxidizing bacteria respond to multifactorial global change. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(42):15136-15141. |
[89] | BRADY N C, WEIL R R. The nature and properties of soils. Journal of Range Management, 2002,5(6):333. |
[90] | 张树兰, 杨学云, 吕殿青, 同延安. 温度、水分及不同氮源对土壤硝化作用的影响. 生态学报, 2002,22(12):2147-2153. |
ZHANG S L, YANG X Y, LÜ D Q, TONG Y A. Effect of soil moisture, temperature and different nitrogen fertilizers on nitrification. Acta Agronomica Sinica, 2002,22(12):2147-2153. (in Chinese) | |
[91] | MAHENDRAPPA M K, SMITH R L, CHRISTIANSEN A T. Nitrifying organisms affected by climatic region in western united states. Soil Science Society of America Journal, 1966,30(1):60. |
[92] | LIU Y, LI M, ZHENG J W, LI L Q, ZHANG X H, ZHENG J F, PAN G X, YU X Y, WANG J F. Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a Chinese paddy field. Soil Biology and Biochemistry, 2014,77:58-68. |
[93] | NGUYEN L T T, BROUGHTON K, OSANAI Y, ANDERSON I C, BANGE M P, TISSUE D T, SINGH B K. Effects of elevated temperature and elevated CO2 on soil nitrification and ammonia- oxidizing microbial communities in field-grown crop. Science of the Total Environment, 2019,675:81-89. |
[94] | INESON P, COWARD P A, HARTWIG U A. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant and Soil, 1998,198:89-95. |
[95] | CHENG Y, ZHANG J B, ZHU J G, LIU G, ZHU C W, WANG S Q. Ten years of elevated atmospheric CO2 doesn't alter soil nitrogen availability in a rice paddy. Soil Biology and Biochemistry, 2016,98:99-108. |
[96] | 王海涛, 郑天凌, 杨小茹. 土壤反硝化的分子生态学研究进展及其影响因素. 农业环境科学学报, 2013,32(10):1915-1924. |
WANG H T, ZHENG T L, YANG X R. Molecular ecology research progress for soil denitrification and research status for its influencing factors. Journal of Agro-Environment Science, 2013,32(10):1915-1924. (in Chinese) | |
[97] |
LI L F, ZHENG Z Z, WANG W J, BIEDERMAN J A, XU X L, RAN Q W, QIAN R Y, XU C, ZHANG B, WANG F, ZHOU S T, CUI L Z, CHE R X, HAO Y B, CUI X Y, XU Z H, WANG Y F. Terrestrial N2O emissions and related functional genes under climate change: A global meta-analysis. Global Change Biology, 2019,26(2):931-943.
pmid: 31554024 |
[98] | SMITH K A, BALL T, CONEN F, DOBBIE K E, MASSHEDER J, REY A. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 2018,69:10-20. |
[99] | RAKSHIT R, PATRA A K, PAL D, KUMAR M, SINGH R. Effect of elevated CO2 and temperature on nitrogen dynamics and microbial activity during wheat (Triticum aestivum L.) growth on a subtropical inceptisol in India. Journal of Agronomy and Crop Science, 2012,198:452-465. |
[100] |
GANS J, WOLINSKY M, DUNBAR J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005,309:1387-1390.
pmid: 16123304 |
[101] |
LU Y H, CONRAD R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005,309:1088-1090.
doi: 10.1126/science.1113435 pmid: 16099988 |
[102] | DENEF V J, KALNEJAIS L H, MUELLER R S, WILMES P, BAKER B J, THOMAS B C, VERBERKMOES N C, HETTICH R L, BANFIELD J F. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proceedings of the National Academy of Sciences, 107:2383-2390. |
[103] |
BENNDORF D, VOGT C, JEHMLICH N, SCHMIDT Y, THOMAS H, WOFFENDIN G, SHEVCHENKO A, RICHNOW H H, VON B M. Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments. Biodegradation, 2009,20(6):737-750.
doi: 10.1007/s10532-009-9261-3 pmid: 19381451 |
[1] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[2] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[3] | 孔凡林,李媛,付彤,刁其玉,屠焰. 蛋氨酸羟基异丙酯对母犊牛瘤胃发酵和微生物区系的影响[J]. 中国农业科学, 2022, 55(4): 796-806. |
[4] | 刘振蓉,赵武奇,胡新中,贺刘成,陈月圆. 燕麦挂面制作过程中干燥工艺优化研究[J]. 中国农业科学, 2022, 55(24): 4927-4942. |
[5] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[6] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[7] | 王雪洁,邢爽,赵少猛,周莹,厉秀梅,柳清秀,马丹丹,张敏红,冯京海. 热应激对肉鸡回肠菌群的影响因素研究[J]. 中国农业科学, 2022, 55(17): 3450-3460. |
[8] | 邓富丽,申丹,钟儒清,张顺芬,李滔,孙曙东,陈亮,张宏福. 体外法优化玉米—杂粕型饲粮的非淀粉多糖酶谱及其对育肥猪肠道微生物的影响[J]. 中国农业科学, 2022, 55(16): 3242-3255. |
[9] | 龚小雅,石记博,方凌,方亚鹏,吴凤芝. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响[J]. 中国农业科学, 2022, 55(12): 2472-2484. |
[10] | 冯晨,黄波,冯良山,郑家明,白伟,杜桂娟,向午燕,蔡倩,张哲,孙占祥. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61-73. |
[11] | 李帅帅, 郭俊杰, 刘文波, 韩春龙, 贾海飞, 凌宁, 郭世伟. 不同施肥模式下轮作制度引起的土壤磷素有效性变化及其影响因素[J]. 中国农业科学, 2022, 55(1): 96-110. |
[12] | 黄秀,叶昌,燕金香,李福明,褚光,徐春梅,陈松,章秀福,王丹英. 不同氮吸收效率水稻品种的苗期铵吸收特性及生长差异分析[J]. 中国农业科学, 2021, 54(7): 1455-1468. |
[13] | 曹小闯,吴龙龙,朱春权,朱练峰,孔亚丽,陆若辉,孔海民,胡兆平,戴锋,张均华,金千瑜. 不同灌溉和施肥模式对水稻产量、氮利用和稻田氮转化特征的影响[J]. 中国农业科学, 2021, 54(7): 1482-1498. |
[14] | 郑海霞,高玉林,张方梅,杨超霞,蒋健,朱勋,张云慧,李祥瑞. 马铃薯甲虫热激蛋白基因Ld-hsp70的克隆及温度胁迫下的表达特性[J]. 中国农业科学, 2021, 54(6): 1163-1175. |
[15] | 刘彦伶,李渝,张艳,张雅蓉,黄兴成,张萌,张文安,蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征[J]. 中国农业科学, 2021, 54(6): 1188-1198. |
|