[1] |
ENGINEER C B, GHASSEMIAN M, ANDERSON J C, PECK S C, HU H, SCHROEDER J I. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature, 2014, 513: 246-250.
doi: 10.1038/nature13452
|
[2] |
YANG J, LI C, KONG D, GUO F, WEI H. Light-mediated signaling and metabolic changes coordinate stomatal opening and closure. Front Plant Science, 2020, 4: 11: 601478.
|
[3] |
AGURLA S, GAHIR S, MUNEMASA S, MURATA Y, RAGHAVENDRA A S. Mechanism of stomatal closure in plants exposed to drought and cold stress. Advances in Experimental Medicine and Biology, 2018, 1081: 215-232.
|
[4] |
LUO D D, WANG C K, JIN Y. Stomatal regulation of plants in response to drought stress. Ying Yong Sheng Tai Xue Bao, 2019, 30(12): 4333-4343.
|
[5] |
FANOURAKIS D, ALINIAEIFARD S, SELLIN A, GIDAY H, KORNER O, REZAEI NEJAD A, DELIS C, BOURANIS D, KOUBOURIS G, KAMBOURAKIS E, NIKOLOUDAKIS N, TSANIKLIDIS G. Stomatal behavior following mid- or long-term exposure to high relative air humidity. Plant Physiology and Biochemistry, 2020, 153: 92-105.
doi: 10.1016/j.plaphy.2020.05.024
|
[6] |
HARA K, YOKOO T, KAJITA R, ONISHI T, YAHATA S, PETERSON K M, TORII K U, KAKIMOTO T. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiology, 2009, 50: 1019-1031.
doi: 10.1093/pcp/pcp068
|
[7] |
OHKI S, TAKEUCHI M, MORI M. The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones. Nature Communication, 2011, 2: 512-512.
doi: 10.1038/ncomms1520
|
[8] |
SUGANO S S, SHIMADA T, IMAI Y, OKAWA K, TAMAI A, MORI M, HARA-NISHIMURA I. Stomagen positively regulates stomatal density in Arabidopsis. Nature, 2010, 463: 241-244.
doi: 10.1038/nature08682
|
[9] |
WANG Y L, XIE T, ZHANG C L, LI J J, WANG Z, LI H B, LIU X P, YIN L N, WANG S W, ZHANG S Q, DENG X P, KE Q B. Overexpression of the potato StEPF-2 gene confers enhanced drought tolerance in Arabidopsis. Plant Biotechnology Reports, 2020, 14(4): 479-490
doi: 10.1007/s11816-020-00627-4
|
[10] |
TPRII K U. Stomatal development in the context of epidermal tissues. Annals of Botany, 2021, 128(2): 137-148.
doi: 10.1093/aob/mcab052
|
[11] |
LIM S L, FKUTCH S, LIU J, DISTEFANO L, SANTELIA D, LIM B L. Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening. Nature Communication, 2022, 13(1): 652.
doi: 10.1038/s41467-022-28263-2
|
[12] |
HAAS K T, WIGHTMAN R, MEYEROWITZ E M, PWAUCELLE A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science, 2020, 367(6481): 1003-1007.
doi: 10.1126/science.aaz5103
|
[13] |
CHEN Y, LI W, TURNER J A, ANDERSON C T. PECTATE LYASE LIKE12 patterns the guard cell wall to coordinate turgor pressure and wall mechanics for proper stomatal function in Arabidopsis. The Plant Cell, 2021, 33(9): 3134-3150.
doi: 10.1093/plcell/koab161
|
[14] |
GOU J, MILLER L M, HOU G, YU X, CHEN X, LIU C. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. The Plant Cell, 2012, 24: 50-65.
doi: 10.1105/tpc.111.092411
|
[15] |
WOLF S, MOUILLE G, PELLOUX J. Homogalacturonan methyl- esterification and plant development. Molecular Plant, 2009, 2(5): 851-860.
doi: 10.1093/mp/ssp066
|
[16] |
SENECHAL F, WATTIER C, RUSTERUCCI C, PELLOUX J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. Journal of Experiment Botany, 2014, 65(18): 5125-5160.
doi: 10.1093/jxb/eru272
|
[17] |
KIM Y J, JEONG H Y, KANG S Y, SILVA J, KIM E J, PARK S K, JUNG K H, LEE C. Physiological importance of pectin modifying genes during rice pollen development. International Journal of Molecular Science, 2020, 21(14): 4840.
doi: 10.3390/ijms21144840
|
[18] |
PELLOUX J, RUSTERUCCI C, MELLEROWICZ E J. New insights into pectin methyl-esterase structure and function. Trends in Plant Science, 2007, 12: 267-277.
doi: 10.1016/j.tplants.2007.04.001
|
[19] |
CAMEJO D, MARTI M C, JIMENEZ A, CABRERA J C, OLMOS E, SEVILLA F. Effect of oligogalacturonides on root length, extracellular alkalinization and O-accumulation in alfalfa. Journal of Plant Physiology, 2011, 168: 566-575.
doi: 10.1016/j.jplph.2010.09.012
|
[20] |
DRAYE M, VAN CUTSEM P. Pectinmethylesterasesinduce an abrupt increase of acidic pectin during strawberry fruit ripening. Journal of Plant Physiology, 2008, 165: 1152-1160.
doi: 10.1016/j.jplph.2007.10.006
|
[21] |
LIU H, DAI T, CHEN J, LIU W, LIU C, DENG L, LIANG R. Extraction, characterization and spontaneous gelation mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds. International Journal of Biology Macromolecules, 2022, 195: 523-529.
doi: 10.1016/j.ijbiomac.2021.12.032
|
[22] |
MERCED A, RENZAGLIA K. Developmental changes in guard cell wall structure and pectin composition in the moss Funaria: Implications for function and evolution of stomata. Annals of Botany, 2014, 114(5): 1001-1010.
doi: 10.1093/aob/mcu165
|
[23] |
RUI Y, ANDERSON C T. Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis. Plant Physiology, 2016, 170(3): 1398-1419.
doi: 10.1104/pp.15.01066
|
[24] |
撒世娟, 殷倩, 伍涵宇, 席云凤, 郑蕊, 姚新灵. 过量表达线粒体膜结合蛋白编码基因St536减少普通烟草的纤维素积累. 农业生物技术学报, 2021, 29(5): 915-923.
|
|
SA S J, YIN Q, WU H Y, XI Y F, ZHENG R, YAO X L. Effects of overexpression of St536 gene on cellulose accumulation in Nicotiana tabacum. Journal of Agricultural Biotechnology, 2021, 29(5): 915-923.
|
[25] |
SPANOS C, MOORE J B. Sample preparation approaches for iTRAQ labeling and quantitative proteomic analyses in systems biology. Methods of Molecular Biology, 2016, 1394: 15-24.
|
[26] |
VAUDEL M, BURKHART J M, ZAHEDI RP, MARTENS L, SICKMANN A. iTRAQ data interpretation. Methods of Molecular Biology, 2012, 893: 501-509.
|
[27] |
HAN S K, KWAK J M, QI X. Stomatal lineage control by developmental program and environmental cues. Front in Plant Science, 2021, 12: 751852.
doi: 10.3389/fpls.2021.751852
|
[28] |
SALA K, KARCZ J, RYPIEN A, KURCZYNSKA E U. Unmethyl- esterified homogalacturonan and extensins seal Arabidopsis graft union. BMC Plant Biology, 2019, 19(1): 151.
doi: 10.1186/s12870-019-1748-4
|
[29] |
RATHINAM M, RAO U, SREEVATHSA R. Novel biotechnological strategies to combat biotic stresses: Polygalacturonase inhibitor (PGIP) proteins as a promising comprehensive option. Applied Microbiology and Biotechnology, 2020, 104(6): 2333-2342.
doi: 10.1007/s00253-020-10396-3
|
[30] |
WARREN J G, KASUN G W, LEONARD T, KIRKPATRICK B C. A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase. Molecular Plant Pathology, 2016, 17(4): 480-486.
doi: 10.1111/mpp.12293
|
[31] |
BAKSHI G, ANANTHANARAYAN L. Isolation, purification, and characterization of pectin methylesterase inhibitor and polygalacturonase inhibitor protein from Indian lemon (Citrus limon L.). Phytochemistry, 2021, 189: 112802.
doi: 10.1016/j.phytochem.2021.112802
|