中国农业科学 ›› 2021, Vol. 54 ›› Issue (5): 921-932.doi: 10.3864/j.issn.0578-1752.2021.05.005
收稿日期:
2020-05-15
接受日期:
2020-07-29
出版日期:
2021-03-01
发布日期:
2021-03-09
通讯作者:
王靖
作者简介:
唐建昭,E-mail:基金资助:
JianZhao TANG1,2(),Jing WANG1(),DengPan XIAO2,XueBiao PAN1
Received:
2020-05-15
Accepted:
2020-07-29
Online:
2021-03-01
Published:
2021-03-09
Contact:
Jing WANG
摘要:
马铃薯是继玉米、小麦和水稻之后的第四大主粮作物,其生产对保障粮食安全具有重要意义。马铃薯生长模型广泛用于指导马铃薯产量差缩减、水肥利用效率提升、栽培管理措施优化以及气候变化适应等方面,本文系统综述了马铃薯生长模型的发展历程、应用领域及发展前景。马铃薯生长模型的研究始于20世纪80年代,将马铃薯生长发育过程表达为数学模型,主要包括生育期和干物质积累模块,该时期马铃薯生长模型多用于马铃薯生产潜力的评价;20世纪90年代为马铃薯生长模型发展和完善阶段,土壤水氮模块逐步加入马铃薯生长模型,该时期马铃薯生长模型开始应用到农业生产系统分析中,具备了优化马铃薯水氮管理措施的性能;21世纪后马铃薯生长模型在第二代模型的基础上,从农业生产系统的角度出发,考虑了气候变化的影响,将马铃薯生长对CO2的响应模块加入到生长模型中,其机理性进一步加强。此后,马铃薯生长模型的应用更加深入,包括马铃薯产量差解析和缩差措施的提出、品种和播期等栽培管理措施优化以及气候变化影响评估和适应等。尽管马铃薯生长模型得到了广泛应用,但其在胁迫条件下的模拟精度需进一步评价。其次,马铃薯生长模型不能有效模拟马铃薯的大小薯比例,而商品薯的多少显著影响马铃薯的生产价值。此外,当前的马铃薯生长模型普遍缺乏对马铃薯生产有显著影响的病虫害模块。未来,应基于全球大数据、田间和控制试验,进一步提高马铃薯生长模型的机理性,同时加强马铃薯生长模型在育种、管理和环境耦合分析中的应用,并结合遥感数据和功能结构模型,发展新一代马铃薯生长模型,实现马铃薯生产智慧型管理。
唐建昭,王靖,肖登攀,潘学标. 马铃薯生长模型的研究进展及发展前景[J]. 中国农业科学, 2021, 54(5): 921-932.
JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model[J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
表1
国际上主要马铃薯生长模型的应用领域"
模型 Model | 生产力评价 Assessment of potato productivity | 水分管理 Water management | 氮肥管理 Nitrogen management | 气候变化影响评估 Assessment of climate change impact |
---|---|---|---|---|
APSIM-Potato | * | ** | ** | ** |
AquaCrop | * | ** | - | - |
CROPSYST | — | * | * | ** |
CROPSYSTVB-CSPOTATO | — | — | * | — |
DAISY | — | ** | * | — |
DANUBIA | — | — | * | — |
Expert-N-SPASS | — | * | ** | — |
INFOCROP-POTATO | * | — | * | — |
Johnson- model | * | — | — | — |
LINTUL-NPOTATO | * | — | ** | — |
LINTUL-POTATO | * | * | * | ** |
Potato Calculator | * | — | * | — |
PotatoSoilWat | * | — | — | — |
Sands-model | * | — | — | — |
SIMPOTATO | — | * | ** | — |
POMOD | * | — | — | — |
HPOTATC | * | * | — | * |
SUBSTOR-Potato | * | ** | ** | ** |
[1] | FAO. Data of FAOSTAT. http://www.fao.org/faostat/en/#data/QC. |
[2] | HAVERKORT A J, STRUIK P C. Yield levels of potato crops: Recent achievements and future prospects. Field Crops Research, 2015,182:76-85. |
[3] | KOOMAN P L, HAVERKORT A J. Modeling development and growth of the potato crop influenced by temperature and daylenght: LINTUL-POTATO//HAVERKORT A J, MACKERRON D K L. Potato Ecology and Modeling Crops Under Conditions Limiting Growth. Kluwer Academic Publisher, Wageningen, The Netherlands, 1995: 41-59. |
[4] | BENOIT G R, GRANT W J. Excess and deficient water stress effects on 30 years of Aroostook County potato yields. American Potato Journal, 1985,62:49-55. |
[5] | EPSTEIN E, GRANT W J. Water stress relations of the potato plant under field conditions. Agronomy Journal, 1973,65:400-404. |
[6] | HAVERKORT A J. The canon of potato: 36, potato ontology. Potato Research, 2007,50:357-361. |
[7] | YUAN F M, BLAND W L. Comparison of light and temperature- based index models for potato growth and development. American Journal of Potato Research, 2005,82:345-352. |
[8] |
TANG J Z, WANG J, FANG Q X, WANG E L, YIN H, PAN X B. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 2018,98:82-94.
doi: 10.1016/j.eja.2018.05.008 |
[9] | TANG J Z, WANG J, FANG Q X, DAYANANDA B, YU Q, ZHAO P Y, YIN H, , PAN X B. Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 2019,272/273:91-101. |
[10] | 梁淑敏, 张磊, 和生鼎, 杨群擎, 李燕山, 和平根, 王绍林, 王颖, 杨琼芬, 隋启君. 滇西北马铃薯不同栽培模式下产量及经济效益分析. 作物杂志, 2017(6):79-83. |
LIANG S M, ZHANG L, HE S D, YANG Q Q, LI Y S, HE P G, WANG S L, WANG Y, YANG Q F, SUI Q J. Yield and economic benefit of potato under the different cultivation patterns in Northwest Yunnan. Crops, 2017(6):79-83. (in Chinese) | |
[11] | 秦舒浩, 张俊莲, 王蒂, 刘震, 申鹏. 半干旱区雨养农业区补灌对马铃薯田水分运移的影响. 水土保持学报, 2011,25(4):179-182. |
QIN S H, ZHANG J L, WANG D, LIU Z, SHEN P. Effects of supplemental irrigation using catchment rainfall on water movement of potato field in semi-arid rainfed areas. Journal of Soil and Water Conservation, 2011,25(4):179-182. (in Chinese) | |
[12] | 周应友, 付梅. 不同起垄栽培方式对早熟马铃薯产量及经济性状的影响. 耕作与栽培, 2016(4):35-37. |
ZHOU Y Y, FU M. Influence of different ridging manners on yield and economic traits of early mature potato. Tillage and Cultivation, 2016(4):35-37. (in Chinese) | |
[13] | 朱江洪. 不同起垄方式对马铃薯生长的影响. 耕作与栽培, 2015(3):47-49. |
ZHU J H. Study on different ridge methods on growth of potato. Tillage and Cultivation, 2015(3):47-49. (in Chinese) | |
[14] | 冯志文, 康跃虎, 万书勤, 刘士平. 滴灌施肥对内蒙古沙地马铃薯生长和水肥利用的影响. 干旱地区农业研究, 2017,35(5):242-249. |
FENG Z W, KANG Y H, WAN S Q, LIU S P. Effects of drip fertigation levels on potato growth and the water and fertilizer efficiency on sandy soil in Inner Mongolia. Agricultural Research in the Arid Areas, 2017,35(5):242-249. (in Chinese) | |
[15] | 宋娜, 王凤新, 杨晨飞, 杨开静. 水氮耦合对膜下滴灌马铃薯产量、品质及水分利用的影响. 农业工程学报, 2013,29(13):98-105. |
SONG N, WANG F X, YANG C F, YANG K J. Coupling effects of water and nitrogen on yield, quality and water use of potato with drip irrigation under plastic film mulch. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(13):98-105. (in Chinese) | |
[16] | JONES J W, HOOGENBOOM G, PORTER C H. The DSSAT cropping system model. European Journal of Agronomy, 2003,18:235-265. |
[17] | BROWN H E, HUTH N, HOLZWORTH D. A potato model built using the APSIM Plant. NET framework//19th International Congress on Modeling and Simulation. Perth, Australia, 2011, 961-967. |
[18] | LISSON S N, COTCHING W E. Modeling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania, Australia. Agricultural Systems, 2011,104:600-608. |
[19] | TANG J Z, WANG J, WANG E L, YU Q, YIN H, HE D, PAN X B. Identifying key meteorological factors of yield variation of potato and the optimal planting date in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 2018,256/257:283-291. |
[20] | 李亚杰, 石强, 何建强, 张俊莲, 白江平, 王蒂. 马铃薯生长模型研究进展及其应用. 干旱地区农业研究, 2014,32(2):126-136. |
LI Y J, SHI Q, HE J Q, ZHANG J L, BAI J P, WANG D. Development and application of potato growth models. Agricultural Research in the Arid Areas, 2014,32(2):126-136. (in Chinese) | |
[21] | SANDS P J, HACKEET C, NIX H A. Model of the development and bulking of potatoes. 1. Derivation from well-managed field crops. Field Crops Research, 1979,2:309-331. |
[22] | NG E, LOOMIS R S. Simulations of Growth and Yield of the Potato Crop. Centre for Agricultural Publishing and Documentation. Wageningen, the Netherlands. 1984: 1-100. |
[23] | MACKERRON D K L. Advances in modeling the potato crop: Sufficiency and accuracy considering uses and users, data, and errors. Potato Research, 2008,51:411-427. |
[24] | 黄冲平. 马铃薯生长发育的动态模拟研究[D]. 杭州: 浙江大学, 2003. |
HUANG C P. Studies on the system simulation for potato growth and development[D]. Hangzhou: Zhejiang University, 2003. (in Chinese) | |
[25] | HAVERKORT A J, KOOMAN P. The use of systems analysis and modeling of growth and development in potato ideotyping under conditions affecting yields. Journal of Environment Quality, 1997,24:772-777. |
[26] | JAMIESON P D, ZYSKOWSKI R F, SINTON M, BROWN H E, BUTLER R C. The potato calculator: A tool for scheduling nitrogen fertilizer application//Proceedings of the Thirty-sixth Annual Conference, Agronomy Society of New Zealand. Atlantic City, New Jersey, 2006,36:49-53. |
[27] | VAN DELDEN A, SCHRODEER J J, KROPFF M I, GRASHOFF C, BOOIJ R. Simulated potato yield, and crop and soil nitrogen dynamics under different organic nitrogen management strategies in the Netherlands. Agriculture, Ecosystem & Environment, 2003,96:77-95. |
[28] | VAN ITTERSUM M, LEFFELAAR H, KROPFF M J, BASTIAANS L, GOUDRIAAN J. On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 2003,18:201-234. |
[29] | LENZ-WIEDEMANN V I S, KLAR C W, SCHNEIDER K. Development and test of a crop growth model for application within a global change decision support system. Ecological Modelling, 2010,221:314-329. |
[30] | FLEISHER D H, TOMLIN D J, YANG Y, REDDY V R. Simulation of potato gas exchange rate using SPUDSIM. Agricultural and Forest Meteorology, 2010,150:432-442. |
[31] | MACKEERON D K L, WAISTER P D. A simple-model of potato growth and yield. 1. Model development and sensitivity analysis. Agricultural and Forest Meteorology, 1985,34:241-252. |
[32] | FISHMAN S, TALPAZ H, WINOGRD R, DINAR M, ARAZI Y, ROSEMAN Y, VARSHAVSKI S. A model for simulation of potato growth on the plant community level. Agricultural Systems, 1985,18:115-128. |
[33] |
JACKSON S D. Multiple signaling pathways control tuber induction in potato. Plant Physiology, 1999,119:1-8.
pmid: 9880339 |
[34] | HAVERKORT A J, FRANKE A C, STEYN J M, PRONK A A, CALDIZ D O, KOOMAN P L. A robust potato model: LINTUL- POTATO-DSS. Potato Research, 2015,58:313-327. |
[35] | MCMASTER G S, WILHELM W W. Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 1997,87:291-300. |
[36] | GRIFFIN T S, BRADLEY S J, RITCHIE J T. A simulation model for potato growth and development: SUBSTOR-Potato version 2.0. IBSNAT Research Report Series, 1993,93(500):1-32. |
[37] | RAYMUNDO R, ASSENG S, CAMMARANO D, QUIROZ R. Potato, sweet potato, and yam models for climate change: A review. Field Crops Research, 2014,166:173-185. |
[38] |
VAN DER VEEKEN A J H, LOMMEN W J M. How planting density affects number and yield of potato minitubers in a commercial glasshouse production system. Potato Research, 2009,52:105-119.
doi: 10.1007/s11540-008-9124-z |
[39] | EWING E E, STRUIK P C. Tuber formation in potato: Induction, initiation, and growth. Horticultural Reviews, 1992,14:89-198. |
[40] | MASARIRAMBI M T, MANDISODZA F C, MASHINGAIDZE A B, BHEBHE E. Influence of plant population and tuber size on growth and yield components of potato. International Journal of Agriculture & Biology, 2012,14:545-549. |
[41] | JAMIESON P D, ZYSKOWSKI R F, LI F Y, SEMENOV M A. Water and nitrogen uptake and response in models of wheat, potato, and maize//MA L W, AHUJA L R, BRUULSEMA T. Quantifying and Understanding Plant Nitrogen Uptake for Systems Modeling. CRC Press, Taylor & Francis Group, America. 2009: 127-145. |
[42] | KIM Y U, SEO B S, CHOI D H, BAN H Y, LEE B W. Impacts of high temperature on the marketable tuber yield and related traits of potato. European Journal of Agronomy, 2017,89:46-52. |
[43] | GAYLER S, WANG E, PRIESACK E, SCHAAF T, MAIDL F X. Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma, 2002,105:367-383. |
[44] | SIBMA L. Maximization of arable crop yield in Netherlands. Netherlands Journal of Agricultural Science, 1977,25(4):278-287. |
[45] | 郑剑非, 周白, 陆龙泉, 杜尧东. 内蒙古武川县农业生产力探讨. 干旱地区农业研究, 1990,4:79-85. |
ZHENG J F, ZHOU B, LU L Q, DU Y D. A discussion on agricultural productivity in Wuchuan county of Inner Mongolia. Agricultural Research in the Arid Areas, 1990,4:79-85. (in Chinese) | |
[46] | TANG J Z, WANG J, HE D, HUANG M X, PAN Z H, PAN X B. Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China. Journal of Meteorological Research, 2016,30(6):983-997. |
[47] | GARCIA-VILA M, FERERES E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 2012,36:21-31. |
[48] | VASHISHT B B, TIGON T, MULLA D J, ROSEN C, XU H, TWEINE, T, JALOTA S K. Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minneasota: Field and simulation study. Agricultural Water Management, 2015,152:198-206. |
[49] | FEDDES R A. Modelling soil water dynamics in the unsaturated zone-state of the art. Journal of Hydrology, 1988,100(1/3):69-111. |
[50] | SPITTERS C J T, SCHAPENDONK A H C M. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant and Soil, 1990,123:193-203. |
[51] | 张永成, 谢连美. 马铃薯丰产栽培综合农业措施数学模型的研究. 马铃薯杂志, 1989,3(2):79-87. |
ZHANG Y C, XIE L M. A study on the mathematical model of potato cultural practices for high tuber yield. Chinese Potato Journal, 1989,3(2):79-87. (in Chinese) | |
[52] | 陈俊珊, 徐福祥, 桑德福. 干旱阴湿地区渭薯1号综合农业措施数学模型及其优化方案的研究与应用. 马铃薯杂志, 1998,8(1):36-40. |
CHEN J S, XU F X, SANG D F. The research and application of comprehensive agricultural mathematical model and its optimum scheme for Weishu Ⅰ in dry and shady wet land area. Chinese Potato Journal, 1998,8(1):36-40. (in Chinese) | |
[53] | 龚学臣, 杨立廷, 牛瑞明, 高占旺. 冀西北旱地马铃薯肥料效应数学模型的研究. 马铃薯杂志, 1998,12(1):3-6. |
GONG X C, YANG L T, NIU R M, GAO Z W. Studies of the mathematics model of fertilizer effects on potato in Northwest Hebei. Chinese Potato Journal, 1998,12(1):3-6. (in Chinese) | |
[54] | HIJMANS R J. The effects of climate change on global potato production. American Journal of Potato Research, 2003,80:271-279. |
[55] |
FLEISHER D H, CONDORI B, QUIROZ R, ALVA A, ASSENG S, BARREDA C, BINDI M, BOOTE K J, FERRISE R, FRANKE A C, GOVINDAKRISHNAN P M, HARAHAGAZWE D, HOOGENBOOM G, KUMAR S N, MERANTE P, NENDEL C, OLESEN J E, PARKER P S, RAES D, RAYMUNDO R, RUANE A C, STOCKLE C, SUPIT I, VANUYTRECHT E, WOLF J, WOLI P. A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 2017,23:1258-1281.
pmid: 27387228 |
[56] | 李剑萍, 杨侃, 曹宁, 韩颖娟, 张学艺. 气候变化情景下宁夏马铃薯单产变化模拟. 中国农业气象, 2009,30(3):407-412. |
LI J P, YANG K, CAO N, HAN Y J, ZHANG X Y. Simulation of changes of potato yields under different climate change scenarios in Ningxia. Chinese Journal of Agrometeorology, 2009,30(3):407-412. (in Chinese) | |
[57] | 孙芳, 林而达, 李剑萍, 熊伟. 基于DSSAT模型的宁夏马铃薯生产的适应对策. 中国农业气象, 2008,29(2):127-129. |
SUN F, LIN E D, LI J P, XIONG W. Study on adaptation measures of potato production by using DSSAT crop model. Chinese Journal of Agrometeorology, 2008,29(2):127-129. (in Chinese) | |
[58] | GOMEZ D, SALVADOR P, SANZ J, CASANOVA J L. Potato yield prediction using machine learning techniques and sentinel 2 data. Remote Sensing, 2019,11:1-17. |
[59] | KHAN M S, YIN X Y, VAN DER PUTTEN P E L, JANSEN H J, VAN ECK H J, VAN EEUWIJK F A, STRUIK P C. A model-based approach to analyze genetic variation in potato using standard cultivars and a segregating population. Ⅱ. Tuber bulking and resource use efficiency. Field Crops Research, 2019,242:1-15. |
[60] | MACHAKAIRE A T B, STEYN J M, CALDIZ D O, HAVERKORT A J. Forecasting yield and tuber size of processing potatoes in South Africa using the LINTUL-Potato-DSS model. Potato Research, 2016,59:195-206. |
[61] | RAYMUNDO R, ASSENG S, PRASSAD R, KLEINWECHTER U, CONCHA J, CONDORI B, BOWEN W, WOLF J, OLESEN J E, DONG Q X, ZOTARELL L, GASTELO M, ALVA A, TRAVASSO M, QUIROZ R, ARORA V, GRAHAM W, PORTER C. Performance of the SUBSTOR-Potato model across contrasting growing conditions. Field Crops Research, 2017,202:57-76. |
[62] |
CHEN C T, SETTER T L. Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environmental and Experimental Botany, 2012,80:27-34.
doi: 10.1016/j.envexpbot.2012.02.003 |
[63] |
SPARKS A H, FORBES G A, HIJMANS R J, GARRETT K A. Climate change may have limited effects on global risk of potato late blight. Global Change Biology, 2014,20:3621-3631.
doi: 10.1111/gcb.12587 pmid: 24687916 |
[64] |
ANDRADE P J L, HIJMANS R J, FORBES G A, FRY W E, NELSON R J. Simulation of potato late blight in the Andes. Ⅰ. Modification and parameterization of the LATEBLIGHT model. Phytopathology, 2005,95:1191-1199.
doi: 10.1094/PHYTO-95-1191 pmid: 18943472 |
[65] | HUANG J X, GOMEZ-DANS J L, HUANG H, MA H Y, WU Q L, LEWIS P E, LIANG S L, CHEN Z X, XUE J H, WI Y T, ZHAO F, WANG J, XIE X H Assimilation of remote sensing into crop growth models: current status and perspectives. Agricultural and Forest Meteorology, 2019,276/277:1-16. |
[66] |
YIN X Y, VAN DER LINDEN C G, STRUIK P G. Bringing genetics and biochemistry to crop modeling, and vice versa. European Journal of Agronomy, 2018,100:132-140.
doi: 10.1016/j.eja.2018.02.005 |
[67] |
IP R H L, ANG L M, SENG K P, BROSTER J C, PRATLEY J E. Big data and machine learning for crop protection. Computers and Electronics in Agriculture, 2018,151:376-383.
doi: 10.1016/j.compag.2018.06.008 |
[1] | 林萍, 王开良, 姚小华, 任华东. 基于转录组SNP构建油茶主要品种资源的分子身份证[J]. 中国农业科学, 2023, 56(2): 217-235. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[4] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[5] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[6] | 范延艮,王域,刘富浩,赵秀秀,向勤锃,张丽霞. 茶树CsHIPP26.1互作蛋白的筛选与验证[J]. 中国农业科学, 2022, 55(8): 1630-1641. |
[7] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[8] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[9] | 任义方,杨章平,零丰华,肖良文. 江苏奶牛热应激风险区划及其受气候变化的影响[J]. 中国农业科学, 2022, 55(22): 4513-4525. |
[10] | 相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117. |
[11] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[12] | 路粉,孟润杰,吴杰,赵建江,李洋,毕秋艳,韩秀英,李敬华,王文桥. 马铃薯晚疫病菌对霜脲氰抗性动态监测及药效验证[J]. 中国农业科学, 2022, 55(18): 3556-3564. |
[13] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[14] | 张晓萍,撒世娟,伍涵宇,乔丽媛,郑蕊,姚新灵. 马铃薯叶片气孔的开张与关闭同步伴随果胶的降解与合成[J]. 中国农业科学, 2022, 55(17): 3278-3288. |
[15] | 韩守威,司纪升,余维宝,孔令安,张宾,王法宏,张海林,赵鑫,李华伟,孟鈺. 山东省冬小麦产量差与氮肥利用效率差形成机理解析[J]. 中国农业科学, 2022, 55(16): 3110-3122. |
|