中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2667-2684.doi: 10.3864/j.issn.0578-1752.2022.13.015
• 畜牧·兽医·资源昆虫 • 上一篇
王荣华(),孟丽峰,冯毛,房宇,魏俏红,马贝贝,钟未来,李建科(
)
收稿日期:
2021-12-23
接受日期:
2022-03-01
出版日期:
2022-07-01
发布日期:
2022-07-08
联系方式:
王荣华,E-mail: 82101195189@caas.cn。
基金资助:
WANG RongHua(),MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe(
)
Received:
2021-12-23
Accepted:
2022-03-01
Published:
2022-07-01
Online:
2022-07-08
摘要:
【目的】比较蜂王浆高产蜜蜂(浆蜂,Apis mellifera liguatica)和意大利蜜蜂(意蜂,Apis mellifera liguatica)哺育蜂头唾腺、胸唾腺的蛋白质组差异,揭示唾液腺调控蜂王浆生产的分子基础,为解析浆蜂蜂王浆高产机理提供依据。【方法】解剖浆蜂、意蜂哺育蜂头唾腺和胸唾腺,提取蛋白质、液内酶切并进行液相色谱与串联质谱蛋白质组分析。采用MaxQuant软件对质谱数据定量和定性分析,利用Perseus软件对结果进行生物信息学分析。使用SignalP预测分泌性蛋白。利用ClueGO软件对唾液腺蛋白质组进行生物学进程和代谢通路富集分析。【结果】浆蜂和意蜂哺育蜂唾液腺共鉴定到2 335个蛋白,其中头唾腺1 823个,胸唾腺1 922个。浆蜂、意蜂头唾腺和胸唾腺核心蛋白表达谱相似,主要参与RNA代谢、核酸代谢、ATP代谢、蛋白质的翻译、翻译调控和分解代谢,为腺体行使生物学功能提供了必要的代谢能和核酸、蛋白质等原料。浆蜂、意蜂哺育蜂头唾腺和胸唾腺主成分分析(PCA)显示二者唾液腺分子基础在选育过程中出现了一定程度的分化。意蜂、浆蜂头唾腺分别上调表达254和333个蛋白,意蜂小分子、碳水化合物代谢等通路上调,浆蜂有机氮化合物合成、细胞氧化还原稳态、氨基酸代谢、氧化还原等通路上调,证明浆蜂头唾腺细胞蛋白质合成、氨基酸代谢旺盛、供能加强。意蜂、浆蜂胸唾腺分别上调表达412和162个蛋白,意蜂氧化磷酸化、翻译调控等通路上调,浆蜂氧化磷酸化、对有毒物质的反应等通路上调,说明浆蜂胸唾腺细胞抗逆水平提高。浆蜂、意蜂唾液腺共鉴定到43个分泌性蛋白,其中有15个也在蜂王浆中得到鉴定,蜂王浆主蛋白1、2、3、4、5、7同时在头唾腺和胸唾腺中检出,表明头唾腺和胸唾腺均参与了蜂王浆主蛋白的合成;参与花蜜转化的α-葡萄糖苷酶和参与化学信息素合成与释放的气味结合蛋白3、13、17、21同时在头唾腺和胸唾腺中检出,为花蜜转化和信息素合成奠定了基础。蜂王浆主蛋白1、2、3、7,昆虫储存蛋白70a、110,气味结合蛋白3、13、17、21以及与幼虫先天免疫紧密相关的转铁蛋白、载脂蛋白III样蛋白均在浆蜂唾液腺中高表达,说明浆蜂唾液腺信息素和蜂王浆蛋白质合成较意蜂旺盛。【结论】浆蜂、意蜂唾液腺具有相似的核心蛋白质组以保证蜂王浆蛋白质、信息素和转化酶的合成与分泌。经过长期选育,浆蜂、意蜂唾液腺分子基础出现差异,浆蜂哺育蜂唾液腺较意蜂蛋白质合成、氨基酸代谢旺盛,细胞供能、抗逆性加强且分泌性蛋白普遍在浆蜂唾液腺上调表达,为浆蜂提供了更加持久和高效的蛋白质合成系统,促成了蜂王浆的高产。
王荣华,孟丽峰,冯毛,房宇,魏俏红,马贝贝,钟未来,李建科. 蜂王浆高产蜜蜂与意大利蜜蜂哺育蜂唾液腺蛋白质组分析[J]. 中国农业科学, 2022, 55(13): 2667-2684.
WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees[J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
表1
MaxQuant软件参数设置"
参数 Parameter | 项目Project | 设置Set |
---|---|---|
群组特定参数 Group specific parameter | 固定修饰Fixed modification | 脲甲基化Carbamidomethylation (C) |
可变修饰Variable modification | 乙酰化和氧化Acetylation (Protein N-term) and oxidation (M) | |
每个肽段上所具有的最大个数 Maximum number of modifications per peptide | 5 | |
最大漏切数 Maximal missed cleavages | 2 | |
全局参数 Global parameter | 蛋白相对定量算法Protein relative quantitative algorithm | LFQ |
鉴定蛋白Identification protein | Unique peptide≥1 | |
最小比率计数Label minimum ratio count | 1 | |
蛋白定量模式Protein quantitative model | Unique and razor peptides | |
肽段和蛋白鉴定最大假阳性率 Maximum false peptide and protein discovery rates | 0.01 | |
运行间的匹配Matching between runs | 0.7 min | |
时间窗口Alignment time window | 20 min | |
一级母离子First search peptide | 20 ppm | |
二级碎片离子MS/MS match tolerance | 0.5 Da |
表2
蜂王浆蛋白质的鉴定"
GI登录号 Gl number | UniProt登录号 UniProtKB | 蛋白名称 Protein name | S<BOLD>CHMITZOVÁ</BOLD> et al.<BOLD> [3</BOLD><BOLD>7</BOLD><BOLD>]</BOLD> | <BOLD>S</BOLD><BOLD>CH</BOLD><BOLD>Ö</BOLD><BOLD>NLEBEN </BOLD> et al.<BOLD>[3</BOLD><BOLD>8</BOLD><BOLD>]</BOLD> | <BOLD>FURUSAWA</BOLD> et al.<BOLD>[</BOLD><BOLD>39</BOLD><BOLD>]</BOLD> | <BOLD>HAN</BOLD> et al.<BOLD>[</BOLD><BOLD>40</BOLD><BOLD>]</BOLD> | <BOLD>FUJITA</BOLD> et al. [1] | 张兰Z<BOLD>HANG L</BOLD>an[41] | 本研究 This study |
---|---|---|---|---|---|---|---|---|---|
gi|58585144 | Q9U8X5 | Alpha-amylase | λ | λ | λ | ||||
gi|58585164 | Q17058 | Alpha-glucosidase | λ | λ | λ | λ | λ | λ | |
gi|166795901 | B0LUE8 | Apolipophorin-III-like protein | λ | λ | λ | λ | λ | λ | |
gi|254910938 | P17722 | Defensin-1 | λ | λ | λ | λ | λ | ||
gi|406117 | Q6J4Q1 | Hexamerin | λ | ||||||
gi|551648 | A7XZB1 | Hexamerin 110 | λ | ||||||
gi|409354 | A5YV87 | Hexamerin 70c | λ | ||||||
gi|406142 | Q10416 | Hymenoptaecin | λ | λ | |||||
gi|60115688 | Q5EF78 | Icarapin-like | λ | λ | λ | λ | λ | ||
gi|506614904 | R4TRB9 | Lys1 (fragment) | λ | λ | |||||
gi|58585098 | O18330 | Major royal jelly protein 1 | λ | λ | λ | λ | λ | λ | λ |
gi|58585108 | O77061 | Major royal jelly protein 2 | λ | λ | λ | λ | λ | λ | λ |
gi|406121 | Q17060 | Major royal jelly protein 3 | λ | λ | λ | ||||
gi|58585170 | Q17061 | Major royal jelly protein 4 | λ | λ | λ | λ | λ | λ | λ |
gi|66547819 | O97432 | Major royal jelly protein 5 | λ | λ | λ | λ | |||
gi|58585188 | Q6W3E3 | Major royal jelly protein 6 | λ | λ | λ | λ | λ | ||
gi|62198227 | Q6IMJ9 | Major royal jelly protein 7 | λ | λ | λ | λ | λ | ||
gi|67010041 | Q4ZJX1 | Major royal jelly protein 9 | λ | λ | λ | ||||
gi|677674 | Q1W641 | Odorant binding protein 13 | λ | ||||||
gi|94158822 | Q1W640 | Odorant binding protein 14 | λ | λ | λ | ||||
gi|66524161 | — | Ferritin heavy chain | λ | λ | |||||
gi|110772962 | — | Glucose dehydrogenase [acceptor]-like, partial | λ | λ | λ | ||||
gi|110764266 | — | Hypothetical protein | λ | ||||||
gi|48094573 | — | Hypothetical protein loc408608 | λ | λ | λ | λ | λ | ||
gi|110748686 | — | Hypothetical protein loc726446 | λ | ||||||
gi|110762641 | — | Ferritin 1 heavy chain homologue cg2216-pe, isoform e | λ | λ | λ | ||||
gi|406078 | Q86PH6 | Transferrin | λ | ||||||
gi|410337 | B2D0J4 | Venom dipeptidyl peptidase 4 | λ | λ | |||||
gi|413894 | A0EM59 | Yellow-e3 | λ | λ | |||||
gi|82527239 | A0EM58 | Yellow-h | λ | λ |
表3
浆蜂、意蜂唾液腺分泌蛋白鉴定及相对强度变化"
UniProt登录号 UniProtKB | 蛋白名称 Protein name | 头唾腺PGld | 胸唾腺ThGld | |||||
---|---|---|---|---|---|---|---|---|
意蜂 ITBs | 浆蜂 RJBs | 浆蜂相对强度 变化倍数 RJBs relative strength change | 意蜂 ITBs | 浆蜂 RJBs | 浆蜂相对强度 变化倍数 RJBs relative strength change | |||
Q17058 | Alpha-glucosidase* | 14 | 8 | 0.5 | — | — | — | |
B0LUE8 | Apolipophorin-III-like protein* | 31 | 67 | 2.1 | 145 | 267 | 1.8 | |
P17722 | Defensin-1* | 23 | 31 | 1.4 | — | — | — | |
A7XZB1 | Hexamerin 110* | 1 | 6 | 5.6 | 5 | 113 | 21.2 | |
Q10416 | Hymenoptaecin* | — | — | — | 2 | — | — | |
Q5BLY4 | Icarapin-like* | 10 | 16 | 1.6 | 34 | 32 | 0.9 | |
O18330 | Major royal jelly protein 1* | 1378 | 1820 | 1.3 | 131 | 220 | 1.7 | |
O77061 | Major royal jelly protein 2* | 366 | 589 | 1.6 | 81 | 156 | 1.9 | |
Q17060 | Major royal jelly protein 3* | 413 | 641 | 1.5 | 96 | 132 | 1.4 | |
UniProt登录号 UniProtKB | 蛋白名称 Protein name | 头唾腺PGld | 胸唾腺ThGld | |||||
意蜂 ITBs | 浆蜂 RJBs | 浆蜂相对强度 变化倍数 RJBs relative strength change | 意蜂 ITBs | 浆蜂 RJBs | 浆蜂相对强度 变化倍数 RJBs relative strength change | |||
Q17061 | Major royal jelly protein 4* | 69 | 116 | 1.7 | 10 | 10 | 1.0 | |
O97432 | Major royal jelly protein 5* | 106 | 105 | 1.0 | 10 | — | — | |
Q6W3E3 | Major royal jelly protein 6* | 10 | 5 | 0.5 | — | — | — | |
Q6IMJ9 | Major royal jelly protein 7* | 68 | 82 | 1.2 | 14 | 21 | 1.5 | |
Q1W641 | Odorant binding protein 13* | 9 | 15 | 1.6 | 15 | 41 | 2.8 | |
Q86PH6 | Transferrin* | 47 | 105 | 2.2 | 86 | 332 | 3.9 | |
Q25BT7 | Alpha-glucosidase | 6 | 13 | 2.1 | 8 | 17 | 2.0 | |
Q8I6X7 | Antennal-specific protein 3c | 200 | 158 | 0.8 | 94 | 105 | 1.1 | |
D3XL75 | APD-3-like protein | 13 | 33 | 2.5 | 5 | 12 | 2.5 | |
Q76LA5 | Carboxylic ester hydrolase | — | — | — | 8 | 17 | 2.2 | |
Q3LBA7 | Chemosensory protein 1 | 52 | 34 | 0.7 | — | — | — | |
D3XL68 | C-type lectin domain-containing protein | 21 | 27 | 1.3 | — | — | — | |
Q0GQQ4 | Cys-loop ligand-gated ion channel subunit | — | — | — | 43 | 23 | 0.5 | |
C7AHQ2 | Gram-negative bacteria-binding protein 1-2 | 4 | 3 | 0.7 | 2 | 1 | 0.5 | |
A5YVK7 | Hexamerin 70a | 9 | 34 | 3.7 | 5 | 41 | 8.7 | |
G9F9Z6 | IRP30 | 4 | 10 | 2.4 | 6 | 38 | 6.3 | |
A0A088A676 | Maxi-like antifreeze protein | 61 | 5 | 0.1 | — | — | — | |
P01501 | Melittin | — | — | — | 7 | 6 | 0.8 | |
Q1W637 | Odorant binding protein 17 | 2 | 3 | 1.5 | 4 | 10 | 2.4 | |
Q1W636 | Odorant binding protein 18 | 3 | 4 | 1.3 | — | — | — | |
Q1W633 | Odorant binding protein 21 | 9 | 10 | 1.1 | 14 | 17 | 1.2 | |
Q1W647 | Odorant binding protein 3 | 3 | 12 | 3.4 | 6 | 22 | 3.4 | |
H9KQJ7 | Omega-conotoxin-like protein 1 | 30 | 36 | 1.2 | 13 | 35 | 2.7 | |
A0A222LPT2 | Putative cyclin-dependent serine/threonine-protein kinase | — | — | — | 10 | 16 | 1.6 | |
A0A087ER55 | SBP_bac_5 domain-containing protein | 4 | 4 | 1.0 | — | — | — | |
H9KB88 | Secapin-3 | 3 | 4 | 1.7 | 5 | 6 | 1.3 | |
A5A5E4 | Structural cuticle protein | 589 | 650 | 1.1 | 326 | 254 | 0.8 | |
A0A1B1JID1 | Superoxide dismutase [Cu-Zn] | — | — | — | 12 | 6 | 0.5 | |
Q5XUU6 | Take-out-like carrier protein JHBP-1 | — | — | — | 7 | 20 | 3.0 | |
A8J4S9 | Trehalase | — | — | — | 4 | 2 | 0.4 | |
I7KJQ1 | Troponin C type iiia | 2 | 1 | 0.5 | — | — | — | |
D3XL69 | Uncharacterized protein (Fragment) | 7 | 11 | 1.6 | — | — | — | |
Q5BLY5 | Venom acid phosphatase Acph-1 | — | — | — | 2 | — | — | |
Q868N5 | Vitellogenin | 7 | 78 | 11.3 | 3 | 189 | 68.0 |
[1] |
FUJITA T, KOZUKA-HATA H, AO-KONDO H, KUNIEDA T, OYAMA M, KUBO T. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. Journal of Proteome Research, 2013, 12(1): 404-411.
doi: 10.1021/pr300700e |
[2] |
BUTTSTEDT A, MORITZ R F, ERLER S. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biological Reviews, 2014, 89(2): 255-269.
doi: 10.1111/brv.12052 |
[3] |
HUO X, WU B, FENG M, HAN B, FANG Y, HAO Y, MENG L, WUBIE A J, FAN P, HU H, QI Y, LI J K. Proteomic analysis reveals the molecular underpinnings of mandibular gland development and lipid metabolism in two lines of honeybees (Apis mellifera ligustica). Journal of Proteome Research, 2016, 15(9): 3342-3357.
doi: 10.1021/acs.jproteome.6b00526 |
[4] |
KAMAKURA M. Royalactin induces queen differentiation in honeybees. Nature, 2011, 473(7348): 478-483.
doi: 10.1038/nature10093 |
[5] |
FAN P, HAN B, HU H, WEI Q, ZHANG X, MENG L, NIE J, TANG X, TIAN X, ZHANG L, WANG L, LI J K. Proteome of thymus and spleen reveals that 10-hydroxydec-2-enoic acid could enhance immunity in mice. Expert Opinion on Therapeutic Targets, 2020, 24(3): 267-279.
doi: 10.1080/14728222.2020.1733529 |
[6] |
TOKUNAGA K H, YOSHIDA C, SUZUKI K M, MARUYAMA H, FUTAMURA Y, ARAKI Y, MISHIMA S. Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biological and Pharmaceutical Bulletin, 2004, 27(2): 189-192.
doi: 10.1248/bpb.27.189 |
[7] |
FUJIWARA S, IMAI J, FUJIWARA M, YAESHIMA T, KAWASHIMA T, KOBAYASHI K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. The Journal of Biological Chemistry, 1990, 265(19): 11333-11337.
doi: 10.1016/S0021-9258(19)38596-5 |
[8] |
MORGAN J F, TOLNAI S, TOWNSEND G F. Studies on the in vitro antitumor activity of fatty acids. II. Saturated dicarboxylic acids. Canadian Journal of Biochemistry and Physiology, 1960, 38(6): 597-603.
doi: 10.1139/o60-073 |
[9] | LI J K, WANG A P. Comprehensive technology for maximizing royal jelly production. American Bee Journal, 2005, 145(8): 661-664. |
[10] |
LI J K, WANG T, ZHANG Z, PAN Y. Proteomic analysis of royal jelly from three strains of western honeybees (Apis mellifera). Journal of Agricultural and Food Chemistry, 2007, 55(21): 8411-8422.
doi: 10.1021/jf0717440 |
[11] |
FANG Y, FENG M, LI J K. Royal jelly proteome comparison between A. mellifera ligustica and A. cerana cerana. Journal of Proteome Research, 2010, 9(5): 2207-2215.
doi: 10.1021/pr900979h |
[12] |
WYTRYCHOWSKI M, CHENAVAS S, DANIELE G, CASABIANCA H, BATTEAU M, GUIBERT S, BRION B. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. Journal of Food Composition and Analysis, 2013, 29(2): 126-133.
doi: 10.1016/j.jfca.2012.12.002 |
[13] |
KATZAV-GOZANSKY T, SOROKER V, IONESCU A, ROBINSON G E, HEFETZ A. Task-related chemical analysis of labial gland volatile secretion in worker honeybees (Apis mellifera ligustica). Journal of Chemical Ecology, 2001, 27(5): 919-926.
doi: 10.1023/A:1010330902388 |
[14] | 黄少康. 蜜蜂生理学. 北京: 中国农业出版社, 2011: 180-182. |
HUANG S K. Honeybee Physiology. Beijing: China Agriculture Press, 2011: 180-182. (in Chinese) | |
[15] | MARTIN S J, CORREIA-OLIVEIRA M E, SHEMILT S, DRIJFHOUT F P. Is the salivary gland associated with honey bee recognition compounds in worker honey bees (Apis mellifera)? Journal of Chemical Ecology, 2018, 44(7/8): 650-657. |
[16] |
POIANI S B, CRUZ-LANDIM C D. Comparison and correlation between chemical profiles of cephalic salivary glands and cuticle surface of workers of Apis mellifera (Hymenoptera, Apidae). Canadian Journal of Zoology, 2017, 95(7): 453-461.
doi: 10.1139/cjz-2016-0102 |
[17] |
FENG M, FANG Y, HAN B, ZHANG L, LU X, LI J K. Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Journal of Proteomics, 2013, 87: 1-15.
doi: 10.1016/j.jprot.2013.05.021 |
[18] |
FUJITA T, KOZUKA-HATA H, UNO Y, NISHIKORI K, MORIOKA M, OYAMA M, KUBO T. Functional analysis of the honeybee (Apis mellifera L.) salivary system using proteomics. Biochemical and Biophysical Research Communications, 2010, 397(4): 740-744.
doi: 10.1016/j.bbrc.2010.06.023 |
[19] |
SIMPSON J. The functions of the salivary glands of Apis mellifera. Journal of Insect Physiology, 1960, 4(2): 107-121.
doi: 10.1016/0022-1910(60)90073-1 |
[20] |
SVECNJAK L, PRDUN S, ROGINA J, BUBALO D, JERKOVIC I. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar- to-honey transformation pathway using FTIR-ATR spectroscopy. Food Chemistry, 2017, 232: 286-294.
doi: 10.1016/j.foodchem.2017.03.159 |
[21] |
KUBOTA M, TSUJI M, NISHIMOTO M, WONGCHAWALIT J, OKUYAMA M, MORI H, MATSUI H, SURARIT R, SVASTI J, KIMURA A, CHIBA S. Localization of alpha-glucosidases I, II, and III in organs of European honeybees, Apis mellifera L., and the origin of alpha-glucosidase in honey. Bioscience, Biotechnology, and Biochemistry, 2004, 68(11): 2346-2352.
doi: 10.1271/bbb.68.2346 |
[22] |
PONTOH J, LOW N. Purification and characterization of β- glucosidase from honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 2002, 32(6): 679-690.
doi: 10.1016/S0965-1748(01)00147-3 |
[23] |
AL-SHERIF A A, MAZEED A M, EWIS M A, NAFEA E A, HAGAG E E, KAMEL A A. Activity of salivary glands in secreting honey-elaborating enzymes in two subspecies of honeybee (Apis mellifera L). Physiological Entomology, 2017, 42(4): 397-403.
doi: 10.1111/phen.12213 |
[24] | 李建科, 陈盛禄, 钟伯雄, 苏松坤. 西方蜜蜂产浆量的动态遗传研究. 遗传学报, 2003, 30(6): 547-554. |
LI J K, CHEN S L, ZHONG B X, SU S K. Genetic analysis for developmental behavior of honeybee colony’s royal jelly production traits in western honeybees. Acta Genetica Sinica, 2003, 30(6): 547-554. (in Chinese) | |
[25] |
ALTAYE S Z, MENG L, LI J K. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee (Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie, 2019, 50(4): 436-453.
doi: 10.1007/s13592-019-00656-1 |
[26] | 李建科, 陈盛禄, 钟伯雄, 苏松坤. 西方蜜蜂咽下腺与繁殖力的发育遗传研究. 中国畜牧杂志, 2003, 39(6): 9-11. |
LI J K, CHEN S L, ZHONG B X, SU S K. Genetic analysis for developmental behavior of reproductive ability and hypopheryngeal gland in western honeybees (Apis mellifera lingistica). Chinese Journal of Animal Science, 2003, 39(6): 9-11. (in Chinese) | |
[27] |
LI J K, FENG M, BEGNA D, FANG Y, ZHENG A. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (Apis mellifera L.). Journal of Proteome Research, 2010, 9(12): 6578-6594.
doi: 10.1021/pr100768t |
[28] |
HU H, BEZABIH G, FENG M, WEI Q, ZHANG X, WU F, MENG L, FANG Y, HAN B, MA C, LI J K. In-depth proteome of the hypopharyngeal glands of honeybee workers reveals highly activated protein and energy metabolism in priming the secretion of royal jelly. Molecular and Cellular Proteomics, 2019, 18(4): 606-621.
doi: 10.1074/mcp.RA118.001257 |
[29] | 李爽, 李建科. 蜂王浆高产蜜蜂与意大利蜜蜂工蜂上颚腺磷酸化蛋白质组分析. 中国农业科学, 2017, 50(23): 4656-4670. |
LI S, LI J K. Comparative analysis of phosphoproteome between mandibular glands of high royal jelly producing bees and Italian bees. Scientia Agricultura Sinica, 2017, 50(23): 4656-4670. (in Chinese) | |
[30] |
ARARSO Z, MA C, QI Y, FENG M, HAN B, HU H, MENG L, LI J K. Proteome comparisons between hemolymph of two honeybee strains (Apis mellifera ligustica) reveal divergent molecular basis in driving hemolymph function and high royal jelly secretion. Journal of Proteome Research, 2018, 17(1): 402-419.
doi: 10.1021/acs.jproteome.7b00621 |
[31] |
HAN B, FANG Y, FENG M, HU H, HAO Y, MA C, HUO X, MENG L, ZHANG X, WU F, LI J K. Brain membrane proteome and phosphoproteome reveal molecular basis associating with nursing and foraging behaviors of honeybee workers. Journal of Proteome Research, 2017, 16(10): 3646-3663.
doi: 10.1021/acs.jproteome.7b00371 |
[32] |
ZHANG X, HU H, HAN B, WEI Q, MENG L, WU F, FANG Y, FENG M, MA C, RUEPPELL O, LI J K. The neuroproteomic basis of enhanced perception and processing of brood signals that trigger increased reproductive investment in honeybee (Apis mellifera) workers. Molecular and Cellular Proteomics, 2020, 19(10): 1632-1648.
doi: 10.1074/mcp.RA120.002123 |
[33] |
FENG M, RAMADAN H, HAN B, FANG Y, LI J K. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana). BMC Genomics, 2014, 15(1): 563.
doi: 10.1186/1471-2164-15-563 |
[34] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.
doi: 10.1016/0003-2697(76)90527-3 |
[35] |
BINDEA G, MLECNIK B, HACKL H, CHAROENTONG P, TOSOLINI M, KIRILOVSKY A, FRIDMAN W H, PAGÈS F, TRAJANOSKI Z, GALON J. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8): 1091-1093.
doi: 10.1093/bioinformatics/btp101 |
[36] |
ARMENTEROS J J A, TSIRIGOS K D, SØNDERBY C K, PETERSEN T N, WINTHER O, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 2019, 37(4): 420-423.
doi: 10.1038/s41587-019-0036-z |
[37] |
SCHMITZOVÁ J, KLAUDINY J, ALBERT Š, SCHRÖDER W, SCHRECKENGOST W, HANES J, JÚDOVA J, ŠIMÚTH J. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cellular and Molecular Life Sciences, 1998, 54(9): 1020-1030.
doi: 10.1007/s000180050229 |
[38] |
SCHÖNLEBEN S, SICKMANN A, MUELLER M J, REINDERS J. Proteome analysis of Apis mellifera royal jelly. Analytical and Bioanalytical Chemistry, 2007, 389(4): 1087-1093.
doi: 10.1007/s00216-007-1498-2 |
[39] |
FURUSAWA T, RAKWAL R, NAM H W, SHIBATO J, AGRAWAL G K, KIM Y S, OGAWA Y, YOSHIDA Y, KOUZUMA Y, MASUO Y, YONEKURA M. Comprehensive royal jelly (RJ) proteomics using one- and two-dimensional proteomics platforms reveals novel RJ proteins and potential phospho/glycoproteins. Journal of Proteome Research, 2008, 7(8): 3194-3229.
doi: 10.1021/pr800061j |
[40] |
HAN B, LI C, ZHANG L, FANG Y, FENG M, LI J K. Novel royal jelly proteins identified by gel-based and gel-free proteomics. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10346-10355.
doi: 10.1021/jf202355n |
[41] | 张兰. 蜂王浆蛋白翻译后修饰及未知蛋白探索[D]. 北京: 中国农业科学院, 2013. |
ZHANG L. Novel aspects of understanding post-translational modifications and proteins in royal jelly[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) | |
[42] |
LE CONTE Y, BECARD J M, COSTAGLIOLA G, DE VAUBLANC G, EL MAATAOUI M, CRAUSER D, PLETTNER E, SLESSOR K N. Larval salivary glands are a source of primer and releaser pheromone in honey bee (Apis mellifera L.). Naturwissenschaften, 2006, 93(5): 237-241.
doi: 10.1007/s00114-006-0089-y |
[43] |
AON M A, BERNIER M, MITCHELL S J, DI GERMANIO C, MATTISON J A, EHRLICH M R, COLMAN R J, ANDERSON R M, DE CABO R. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metabolism, 2020, 32(1): 100-116. e4.
doi: 10.1016/j.cmet.2020.04.018 |
[44] | LAYMAN D K. The role of leucine in weight loss diets and glucose homeostasis. The Journal of Nutrition, 2003, 133(1): 261S-267S. |
[45] | 谢小利, 王敏奇. 支链氨基酸在动物营养中的研究进展. 中国饲料, 2009(11): 11-14. |
XIE X L, WANG M Q. Research advance of branced-chain amino acids in animal nutrition. China Feed, 2009(11): 11-14. (in Chinese) | |
[46] |
BURMESTER T, SCHELLER K. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. Journal of Molecular Evolution, 1996, 42(6): 713-728.
doi: 10.1007/BF02338804 |
[47] | ZHOU J J. Odorant-binding proteins in insects. Vitamins and Hormones 2010, 83: 241-272. |
[48] |
LEAL W S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 2013, 58: 373-391.
doi: 10.1146/annurev-ento-120811-153635 |
[49] |
DANI F R, IOVINELLA I, FELICIOLI A, NICCOLINI A, CALVELLO M A, CARUCCI M G, QIAO H, PIERACCINI G, TURILLAZZI S, MONETI G, PELOSI P. Mapping the expression of soluble olfactory proteins in the honeybee. Journal of Proteome Research, 2010, 9(4): 1822-1833.
doi: 10.1021/pr900969k |
[50] |
IOVINELLA I, CAPPA F, CINI A, PETROCELLI I, CERVO R, TURILLAZZI S, DANI F R. Antennal protein profile in honeybees: Caste and task matter more than age. Frontiers in Physiology, 2018, 9: 748.
doi: 10.3389/fphys.2018.00748 |
[51] |
LI R, ZHANG L, FANG Y, HAN B, LU X, ZHOU T, FENG M, LI J K. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics, 2013, 14: 766.
doi: 10.1186/1471-2164-14-766 |
[52] |
TRHLIN M, RAJCHARD J. Chemical communication in the honeybee (Apis mellifera L.): A review. Veterinarni Medicina, 2011, 56(6): 265-273.
doi: 10.17221/1543-VETMED |
[53] | KUCHARSKI R, MALESZKA R. Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee, Apis mellifera. Journal of Insect Science, 2003, 3: 27. |
[54] |
ASGARI S, ZHANG G, ZAREIE R, SCHMIDT O. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochemistry and Molecular Biology, 2003, 33(10): 1017-1024.
doi: 10.1016/S0965-1748(03)00116-4 |
[55] |
ZHANG L, FANG Y, LI R, FENG M, HAN B, ZHOU T, LI J K. Towards posttranslational modification proteome of royal jelly. Journal of Proteomics, 2012, 75(17): 5327-5341.
doi: 10.1016/j.jprot.2012.06.008 |
[1] | 林蔚, 吴水金, 李跃森. 转录组和蛋白质组关联分析解析巴西蕉幼苗响应低温的分子机制[J]. 中国农业科学, 2024, 57(8): 1575-1591. |
[2] | 张慧慧, 康晗晔, 刘惠, 张金锐, 霍帆, 郭玮琦, 叶小芳, 季荣, 扈鸿霞. 基于TMT蛋白质组学技术分析蝗虫微孢子虫感染飞蝗后的差异蛋白[J]. 中国农业科学, 2024, 57(24): 4884-4893. |
[3] | 梁丽娟, 程李香, 袁剑龙, 撒刚, 张峰. 茉莉酸调控马铃薯离体块茎发育的主要代谢物变化[J]. 中国农业科学, 2024, 57(13): 2525-2538. |
[4] | 王朝,方东路,张攀容,姜雯,裴斐,胡秋辉,马宁. 基于TMT定量蛋白质组学揭示纳米包装双孢蘑菇采后冷藏生理代谢规律[J]. 中国农业科学, 2022, 55(23): 4728-4742. |
[5] | 张鑫尧,张敏,朱远芃,惠晓丽,柴如山,郜红建,罗来超. 巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响[J]. 中国农业科学, 2022, 55(19): 3791-3806. |
[6] | 周桂盈,杨晓敏,滕子文,孙丽娟,郑长英. 螺虫乙酯抑制西花蓟马卵孵化的蛋白质组学分析[J]. 中国农业科学, 2022, 55(15): 2938-2948. |
[7] | 杜宇,范小雪,蒋海宾,王杰,冯睿蓉,张文德,余岢骏,隆琦,蔡宗兵,熊翠玲,郑燕珍,陈大福,付中民,徐国钧,郭睿. 微小RNA介导意大利蜜蜂工蜂对东方蜜蜂微孢子虫的跨界调控[J]. 中国农业科学, 2021, 54(8): 1805-1820. |
[8] | 侯成立,黄彩燕,郑晓春,刘维华,杨奇,张德权. 宰后不同时间滩羊肉抗氧化活性的变化及可能机制[J]. 中国农业科学, 2021, 54(23): 5110-5124. |
[9] | 赵卫松,郭庆港,董丽红,王培培,苏振贺,张晓云,鹿秀云,李社增,马平. 枯草芽孢杆菌NCD-2对棉花根系分泌物L-脯氨酸响应的转录-蛋白质组学联合分析[J]. 中国农业科学, 2021, 54(21): 4585-4600. |
[10] | 高艳,朱雅楠,李秋方,苏松坤,聂红毅. 转录组学分析意大利蜜蜂脑部哺育行为相关基因[J]. 中国农业科学, 2020, 53(19): 4092-4102. |
[11] | 张丽翠,马川,冯毛,李建科. 基于高分辨质谱和代谢组学技术评估和优化蜂王浆代谢物提取方法[J]. 中国农业科学, 2020, 53(18): 3833-3845. |
[12] | 耿四海,石彩云,范小雪,王杰,祝智威,蒋海宾,范元婵,陈华枝,杜宇,王心蕊,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 微小RNA介导东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂的分子机制[J]. 中国农业科学, 2020, 53(15): 3187-3204. |
[13] | 王欣悦,石田培,赵志达,胡文萍,尚明玉,张莉. 基于绵羊胚胎骨骼肌蛋白质组学的PI3K-AKT信号通路分析[J]. 中国农业科学, 2020, 53(14): 2956-5963. |
[14] | 杜宇,范小雪,蒋海宾,王杰,范元婵,祝智威,周丁丁,万洁琦,卢家轩,熊翠玲,郑燕珍,陈大福,郭睿. 微小RNA及其介导的竞争性内源RNA调控网络在意大利蜜蜂工蜂中肠发育过程中的潜在作用[J]. 中国农业科学, 2020, 53(12): 2512-2526. |
[15] | 杜宇,周丁丁,万洁琦,卢家轩,范小雪,范元婵,陈恒,熊翠玲,郑燕珍,付中民,徐国钧,陈大福,郭睿. 意大利蜜蜂工蜂中肠发育过程中的差异基因 表达谱及调控网络[J]. 中国农业科学, 2020, 53(1): 201-212. |
|