中国农业科学 ›› 2022, Vol. 55 ›› Issue (15): 2911-2926.doi: 10.3864/j.issn.0578-1752.2022.15.004
原程1(),张玉先1(
),王孟雪1,黄炳林1,辛明强2,尹小刚3,胡国华1,张明聪1(
)
收稿日期:
2021-10-26
接受日期:
2021-12-27
出版日期:
2022-08-01
发布日期:
2022-08-02
联系方式:
原程,E-mail: 1290900842@qq.com。
基金资助:
YUAN Cheng1(),ZHANG MingCong1(
),WANG MengXue1,HUANG BingLin1,XIN MingQiang2,YIN XiaoGang3,HU GuoHua1,ZHANG YuXian1(
)
Received:
2021-10-26
Accepted:
2021-12-27
Published:
2022-08-01
Online:
2022-08-02
摘要:
【目的】针对东北北部地区大豆主产区早春低温、保墒能力差,导致单产水平较低等问题,探究玉米大豆轮作模式下不同中耕时间和深度对大豆田土壤温湿度、大豆光合特性指标和产量的影响,为大豆产量稳定提升提供有力支撑。【方法】试验于2019—2020年在黑龙江省鹤山农场进行,采用田间小区试验方法,以当地主栽品种黑河43为试验材料,设置4种不同的中耕处理:常规培土(T1)、提前培土(T2)、常规深松(T3)和提前深松(T4),研究中耕时间和深度对土壤温湿度、大豆叶面积指数、株高、气体交换参数、光合产物积累与分配和产量的影响。【结果】(1)在相同中耕深度的基础上,提前培土处理(T2)较常规培土处理(T1),盛花期(R2期)土壤温度和湿度分别提高5.88%—6.54%、3.57%—4.03%(P<0.05),鼓粒期(R6期)叶面积指数、株高和SPAD值分别提高9.48%—16.86%、5.40%—10.57%、2.39%—6.81%(P<0.05);与常规深松处理(T3)相比,提前深松处理(T4)显著提高R6期叶面积指数、株高、净光合速率(Pn)籽粒干物质积累量及大豆产量。(2)在相同中耕时间的条件下,与T1处理相比,T3处理R2期土壤温度、湿度和R6期株高分别提高4.14%—6.42%、10.08%—13.19%和7.43%—8.29%(P<0.05),R5期后干物质积累量和同化贡献率分别提高49.75%和32.95%(P<0.05);与T2处理相比,T4处理各时期土壤温度、R6期叶面积指数、净光合速率(Pn)、结荚期(R5期)后干物质积累量、同化贡献率和产量均显著增加,其中产量增幅度达5.03%—6.02%(P<0.05)。(3)比较不同中耕措施,与T1处理相比,T4处理R2期土壤温度和湿度分别提高11.68%—17.15%和4.70%—8.66%(P<0.05),R6期叶面积指数、株高、SPAD分别提高12.64%—27.42%、11.67%—13.50%、5.43%—6.87%(P<0.05);T2、T3、T4处理提高R6期气体交换参数和大豆产量,其中T4处理净光合速率(Pn)提高14.25%—29.68%(P<0.05)、产量增幅达10.69%—18.71%(P<0.05)。【结论】提前深松处理(T4)能够改善土壤温度和湿度,提高气体交换参数,促进植株净光合产物积累,延缓叶片衰老,提高大豆产量,适宜于东北北部旱作农业区推广应用。
原程, 张玉先, 王孟雪, 黄炳林, 辛明强, 尹小刚, 胡国华, 张明聪. 中耕时间和深度对大豆光合特性及产量形成的影响[J]. 中国农业科学, 2022, 55(15): 2911-2926.
YUAN Cheng, ZHANG MingCong, WANG MengXue, HUANG BingLin, XIN MingQiang, YIN XiaoGang, HU GuoHua, ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean[J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
表1
试验处理"
中耕处理 Intertillage treatment | 时期 Stage | |||
---|---|---|---|---|
播后4—5 d 4-5 days after the broadcast | V2—V3 | V4—V5 | V6—V7 | |
T1 | 小培土 Little quantity of earthing-up | 中培土 Medium quantity of earthing-up | 大培土 Considerable quantity of earthing-up | |
T2 | 小培土 Little quantity of earthing-up | 中培土 Medium quantity of earthing-up | 大培土 Considerable quantity of earthing-up | |
T3 | 深松25-30 cm Subsoiling 25-30 cm | 深松30-35cm+中培土 Subsoiling 30-35 cm and medium quantity of earthing-up | 大培土 Considerable quantity of earthing-up | |
T4 | 深松25-30cm Subsoiling 25-30 cm | 深松30-35cm+中培土 Subsoiling 30-35 cm and medium quantity of earthing-up | 大培土 Considerable quantity of earthing-up |
表2
中耕时间和深度对大豆干物质积累的影响"
生育期 Growth stage | 年份 Year | 处理 Treatment | 叶干重 Dry weight of leaves (kg·hm-2) | 茎干重 Dry weight of stem (kg·hm-2) | 荚皮干重 Dry weight of pod (kg·hm-2) | 籽粒干重 Dry weight of seed (kg·hm-2) |
---|---|---|---|---|---|---|
R2 | 2019 | T1 | 841.6±28.4b | 595.1±20.2d | ||
T2 | 998.3±45.3a | 799.1±28.2c | ||||
T3 | 909.5±43.3a | 1126.4±22.7a | ||||
T4 | 1036.9±26.6a | 997.7±21.3b | ||||
2020 | T1 | 1128.9±30.2a | 944.6±24.4b | |||
T2 | 936.8±34.3b | 808.5±38.8c | ||||
T3 | 1009.5±25.4a | 1020.1±24.2b | ||||
T4 | 983.1±16.8ab | 1335.8±29.0a | ||||
R4 | 2019 | T1 | 1905.4±23.6c | 1300.5±23.5c | 1140.5±25.6c | |
T2 | 2051.8±20.0b | 1662.8±11.3a | 1276.3±18.7a | |||
T3 | 1993.6±21.3b | 1469.2±12.0b | 1224.5±22.5b | |||
T4 | 2275.4±18.2a | 1647.4±18.6a | 1453.1±28.8a | |||
2020 | T1 | 2326.2±54.5c | 1629.5±40.9b | 384.1±17.2b | ||
T2 | 2609.1±49.6b | 1397.9±56.8b | 528.4±27.1b | |||
T3 | 2586.7±47.6bc | 1793.2±50.3b | 406.6±20.1b | |||
T4 | 2967.5±33.4a | 2581.9±56.6a | 714.5±22.5a | |||
R6 | 2019 | T1 | 1767.8±43.5b | 1318.9±38.3c | 1243.0±14.8c | 2225.3±14.8b |
T2 | 1973.2±39.6a | 1645.6±11.2a | 1348.6±8.3b | 2908.4±19.3a | ||
T3 | 1886.4±16.7b | 1523.5±14.1b | 1318.9±28.8bc | 2824.8±24.9b | ||
T4 | 2054.9±19.1a | 1656.6±40.3a | 1496.0±11.5a | 2982.1±24.3a | ||
2020 | T1 | 2068.0±18.3b | 2240.7±20.9b | 1650.0±14.9b | 1128.6±15.7b | |
T2 | 2518.6±31.4a | 3960.0±28.9a | 3872.9±33.4a | 2539.7±41.7a | ||
T3 | 2419.5±17.2b | 2569.4±36.3b | 1770.1±24.6b | 1306.1±17.6b | ||
T4 | 2724.8±26.8a | 3986.4±34.2a | 2405.7±29.6b | 1822.9±21.0ab | ||
R8 | 2019 | T1 | 1087.9±53.3d | 1162.1±19.6c | 2592.1±54.3c | |
T2 | 1346.4±24.0b | 941.1±65.5b | 3072.3±77.6a | |||
T3 | 1183.1±36.7c | 1269.4±33.9b | 2858.3±43.0b | |||
T4 | 1529.0±58.8a | 1438.8±12.8a | 3106.9±40.8a | |||
2020 | T1 | 1275.8±11.4a | 1334.4±13.4b | 2777.4±10.4b | ||
T2 | 1374.8±20.5a | 2147.5±19.3a | 2709.4±20.3b | |||
T3 | 1652.6±13.7a | 1988.5±14.9a | 2779.4±18.9b | |||
T4 | 1531.9±15.6a | 2174.6±27.0a | 2963.2±20.0a |
表3
中耕时间和深度对大豆干物质分配的影响"
生育期 Growth stage | 年份 Year | 处理 Treatment | 叶 Leaves (%) | 茎 Stem (%) | 荚皮 Pod (%) | 籽粒 Seed (%) |
---|---|---|---|---|---|---|
R2 | 2019 | T1 | 62.92±0.35a | 37.07±0.35b | ||
T2 | 64.07±0.81a | 35.93±0.81b | ||||
T3 | 58.62±0.71b | 41.37±0.71a | ||||
T4 | 63.18±1.03a | 36.81±1.03b | ||||
2020 | T1 | 52.15±0.24b | 47.84±0.24a | |||
T2 | 53.39±0.43a | 46.61±0.43b | ||||
T3 | 52.57±0.41b | 47.43±0.41a | ||||
T4 | 53.79±0.27a | 46.21±0.27b | ||||
R4 | 2019 | T1 | 47.21±1.82a | 28.71±1.54b | 24.07±0.35b | |
T2 | 45.06±0.74a | 30.57±0.94ab | 24.36±0.23b | |||
T3 | 39.51±1.33b | 32.89±1.49a | 27.60±0.25a | |||
T4 | 39.59±0.73b | 32.16±0.81a | 28.25±0.63a | |||
2020 | T1 | 47.30±0.32a | 42.41±0.84b | 10.29±0.52c | ||
T2 | 42.34±0.18b | 41.35±0.48c | 16.31±0.36a | |||
T3 | 42.58±0.42b | 46.20±0.36a | 11.22±0.62c | |||
T4 | 41.67±0.23c | 45.63±0.45a | 12.70±0.61b | |||
R6 | 2019 | T1 | 31.39±0.39a | 18.73±0.21c | 17.46±0.35b | 32.42±0.71c |
T2 | 27.18±0.77b | 19.76±0.39b | 16.50±0.46c | 36.56±0.90b | ||
T3 | 22.42±0.27c | 20.49±0.41a | 18.11±0.06a | 38.96±0.17a | ||
T4 | 23.09±0.13c | 20.45±0.26a | 18.51±0.16a | 37.93±0.47a | ||
2020 | T1 | 26.56±0.31b | 32.64±0.19a | 24.41±0.46a | 16.38±0.10c | |
T2 | 28.25±0.12a | 30.60±0.38b | 21.05±0.62b | 20.10±0.28b | ||
T3 | 28.49±0.17a | 30.49±0.36b | 21.27±0.18b | 19.75±0.34b | ||
T4 | 25.65±0.18c | 30.52±0.37b | 21.25±0.22b | 22.57±0.11a | ||
R8 | 2019 | T1 | 22.52±0.46a | 24.39±0.38a | 53.08±0.39c | |
T2 | 21.36±0.34b | 23.59±0.26b | 55.05±0.31b | |||
T3 | 22.35±0.27a | 23.72±0.31b | 53.92±0.56c | |||
T4 | 21.40±0.21b | 21.65±0.15c | 56.94±0.27a | |||
2020 | T1 | 26.55±0.16a | 26.48±0.36c | 46.97±0.41c | ||
T2 | 22.32±0.32c | 29.62±0.28a | 48.06±0.60b | |||
T3 | 25.51±0.17b | 26.51±0.38c | 47.97±0.40b | |||
T4 | 23.28±0.44d | 27.62±0.11b | 49.09±0.37a |
表5
中耕时间和深度对大豆转运贡献率与同化贡献率的影响(2020年)"
处理 Treatment | R5期前积累量 PEA (t·hm-2) | R5期后积累量 POA (t·hm-2) | 转运贡献率 CTA (%) | 同化贡献率 CPA (%) |
---|---|---|---|---|
T1 | 6.69±0.34b | 1.11±0.16b | 72.86±0.03a | 27.14±1.45b |
T2 | 7.23±0.21b | 1.21±0.28b | 69.50±0.05b | 30.50±1.47b |
T3 | 8.41±0.28a | 1.47±0.33a | 59.52±0.03a | 40.48±2.52a |
T4 | 8.57±0.44a | 1.86±0.35a | 58.23±0.02b | 41.77±2.30a |
表6
中耕时间和深度对大豆产量及产量构成的影响"
年份 Year | 处理 Treatment | 单株荚数 Pod number | 单株粒数 Seed number | 百粒重 100-seed weight | 产量 Yield (kg·hm-2) |
---|---|---|---|---|---|
2019 | T1 | 16.22± 0.84bc | 40.48± 0.83c | 21.24± 0.38a | 2384.83 ±63.51b |
T2 | 21.07± 0.31a | 51.73± 1.97a | 20.43± 0.37abc | 2481.05 ±102.85b | |
T3 | 15.34± 0.94d | 41.50± 0.32c | 20.94± 0.19ab | 2570.51 ±59.29a | |
T4 | 16.94± 0.26 bc | 45.31± 0.50b | 20.08± 0.13cde | 2639.84 ±57.56a | |
2020 | T1 | 27.56±1.07b | 59.04±1.64b | 18.43±0.27b | 3472.94±124.09b |
T2 | 30.67±0.64ab | 66.93±1.00a | 18.40±0.17b | 3915.32±163.53b | |
T3 | 33.24±0.49a | 69.77±2.14a | 18.45±0.23ab | 3994.85±136.64a | |
T4 | 32.11±0.30ab | 69.37±1.30a | 18.64±0.19a | 4122.69±143.34a |
表7
年份、中耕时间和深度及其互作对试验相关指标的方差分析"
因素 Element | ST | SH | LAI | PH | SPAD | PP | DM | Yield |
---|---|---|---|---|---|---|---|---|
年份Year | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.033 | <0.001 |
中耕时间 Intertillage time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
中耕深度 Intertillage depth | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.005 | <0.001 |
年份×中耕时间 Years×Intertillage time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
年份×中耕深度 Years×Intertillage depth | <0.001 | <0.001 | <0.001 | <0.001 | 0.012 | <0.001 | <0.001 | <0.001 |
中耕时间×中耕深度 Intertillage time×Intertillage depth | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
年份×中耕时间×中耕深度 Years×Intertillage time×Intertillage depth | <0.001 | 0.447 | 0.100 | 0.703 | 0.537 | <0.001 | <0.001 | <0.001 |
[1] | 李官沫, 张文菊, 曲潇琳, 乔磊, 黄亚萍, 徐虎, 徐明岗. 旱作种植条件下基础地力贡献率演变特征及影响因素分析. 中国农业科学, 2021, 54(19): 4132-4142. |
LI G M, ZHANG W J, QU X L, QIAO L, HUANG Y P, XU H, XU M G. Evolution characteristics and influencing factors on inherent soil productivity across dryland. Scientia Agricultura Sinica, 2021, 54(19): 4132-4142. (in Chinese) | |
[2] | 杨京. 2019年中国大豆市场分析. 粮油市场报, 2020-02-25(B03). |
YANG J. Analysis of soybean market in China in 2019. Cereals and Oils Market Report, 2020-02-25(B03). (in Chinese) | |
[3] | 张明聪. 启动氮加追氮对不同密度大豆光合生产能力的影响[D]. 哈尔滨: 东北农业大学, 2013. |
ZHANG M C. Effects of starting nitrogen plus topdressing nitrogen on photosynthetic productivity of soybean at different densities[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese) | |
[4] | GUO J H, LIU X J, ZHANG Y. Significant acidification in major Chinese croplands. Science, 2010, 327: 10081010. |
[5] | 靳海洋, 谢迎新, 李梦达, 刘宇娟, 贺德先, 冯伟, 王晨阳, 郭天财. 连续周年耕作对砂姜黑土农田蓄水保墒及作物产量的影响. 中国农业科学, 2016, 49(16): 3239-3250. |
JIN H Y, XIE Y X, LI M D, LIU Y J, HE D X, FENG W, WANG C Y, GUO T C. Effects of annual continuous tillage on soil water conservation and crop yield in lime concretion black soil farmland. Scientia Agricultura Sinica, 2016, 49(16): 3239-3250. (in Chinese) | |
[6] |
FENG X, HAO Y, LATIFMANESH H. Effects of subsoiling tillage on soil properties, maize root distribution, and grain yield on mollisols of Northeastern China. Agronomy Journal, 2018, 110(4): 1607-1615.
doi: 10.2134/agronj2018.01.0027 |
[7] | 赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 张谋彪, 王群, 李潮海. 深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响. 中国农业科学, 2018, 51(13): 2489-2503. |
ZHAO Y L, LIU W L, CHENG S X, ZHOU Y N, ZHOU J L, WANG X L, ZHANG M B, WANG Q, LI C H. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Scientia Agricultura Sinica, 2018, 51(13): 2489-2503. (in Chinese) | |
[8] |
LI H Y, ZHANG Y H, ZHANG Q, AHMAD N, LIU P Z, WANG R, LI J, WANG X L. Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the loess plateau, China. Agricultural Water Management, 2021, 256:107062.
doi: 10.1016/j.agwat.2021.107062 |
[9] | 曾芳荣, 殷文, 张小红. 不同覆膜方式对旱地大豆农田土壤水热特征及产量的影响. 西北农业学报, 2017, 26(7): 1090-1098. |
ZENG F R, YIN W, ZHANG X H. Effects of different film mulching methods on soil hydrothermal characteristics and yield of soybean farmland in dryland. Journal of Northwest Agriculture, 2017, 26(7): 1090-1098. (in Chinese) | |
[10] |
SI H, NV N. Influence of cover crop, tillage, and crop rotation management on soil nutrients. Agriculture, 2020, 10(6): 225.
doi: 10.3390/agriculture10060225 |
[11] | 张喜亭. 黑土容重及耕层深度对大豆生长和产量影响的研究[D]. 哈尔滨: 东北农业大学, 2017. |
ZHANG X T. Effects of black soil bulk density and topsoil depth on growth and yield of soybean[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese) | |
[12] |
MUHAMMAD A R, LING Y F. Maize leaf-removal: A new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercropping system. Scientific Reports, 2019, 9(1): 1-13.
doi: 10.1038/s41598-018-37186-2 |
[13] |
MONZON J P, CAFARO N, CERRUDO A, CANEPA M, RATTALINO E I, SPECHT J, ANDRADE F H, GRASSINI P. Critical period for seed number determination in soybean as determined by crop growth rate, duration, and dry matter accumulation. Field Crops Research, 2021, 261: 108016.
doi: 10.1016/j.fcr.2020.108016 |
[14] | 张玉先, 罗奥, 祁倩倩, 姜玉美, 崔洪秋. 不同耕作措施对大豆光合特性和产量影响. 土壤通报, 2010, 41(3): 672-677. |
ZHANG Y X, LUO A, QI Q Q, JIANG Y M, CUI H Q. Effects of different tillage practices on photosynthetic characteristics and yield of soybean. Chinese Journal of Soil Science, 2010, 41(3): 672-677. (in Chinese) | |
[15] | 李盛蓝, 谭婷婷, 范元芳, 杨文钰, 杨峰. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响. 中国农业科学, 2019, 52(21): 3782-3793. |
LI S L, TAN T T, FAN F Y, YANG W Y, YANG F. Effects of maize shading on photosynthetic characteristics, vein and stomatal characteristics of soybean. Scientia Agricultura Sinica, 2019, 52(21): 3782-3793. (in Chinese) | |
[16] |
SOMASUNDARAM J, SINHA N K, MOHANTY M, CHAUDHARY R S, SINGH R K, BISWAS A K, SHUKLA A K, DALAL R, PATRA A K. Soil hydro-thermal regimes as affected by different tillage and cropping systems in a rainfed vertisol. Journal of the Indian Society of Soil Science, 2018, 66(4): 362-369.
doi: 10.5958/0974-0228.2018.00045.2 |
[17] | 李刘龙, 库旭灿, 李赟, 王小燕. 花后弱光对江汉平原稻茬小麦的产量及碳、氮分配效应的影响. 麦类作物学报, 2020, 40(11): 1364-1374. |
LI L L, KU X C, LI Y, WANG X Y. Effects of post-flowering low light on yield and carbon and nitrogen allocation of rice-stubble wheat in Jianghan plain. Journal of Triticeae Crops, 2020, 40(11): 1364-1374. (in Chinese) | |
[18] | 曹玉军, 吴杨, 刘志铭, 崔红, 吕艳杰, 姚凡云, 魏雯雯, 王永军. 减源对不同密度春玉米开花后干物质及氮、磷、钾积累转运的影响. 中国农业科学, 2019, 52(20): 3536-3545. |
CAO Y J, WU Y, LIU Z M, CUI H, LÜ Y J, YAO F Y, WEI W W, WANG Y J. Effects of source reduction on dry matter and accumulation and transport of N, P and K after flowering of spring maize with different densities. Scientia Agricultura Sinica, 2019, 52(20): 3536-3545. (in Chinese) | |
[19] | 罗盛国, 王欢, 刘元英, 王丽娟, 赵广欣. 优化施肥对五优稻4号氮素吸收及转运影响. 东北农业大学学报, 2016, 47(7): 9-15. |
LUO S G, WANG H, LIU Y Y, WANG L J, ZHAO G X. Effect of optimized fertilization on N uptake, transportation of rice cultivar Wuyoudao4. Journal of Northeast Agricultural Unicersity, 2016, 47(7): 9-15. (in Chinese) | |
[20] |
LILIAN W M, VERONICA A, JENNIFER D. Long term tillage, cover crop, and fertilization effects on microbial commicrobial community structure, activity: Implications for soil quality. Soil Biology and Biochemistry, 2015, 89: 24-34.
doi: 10.1016/j.soilbio.2015.06.016 |
[21] | 张博文, 杨彦明, 李金龙, 陈新宇, 张兴隆, 徐忠山, 刘景辉. 连续深松对黑土水热酶特性及细菌群落的影响. 生态学杂志, 2018, 37(11): 3323-3332. |
ZHANG B W, YANG Y M, LI J L, CHEN X Y, ZHANG X L, XU Z S, LIU J H. Effects of continuous subsoiling on temperature, water content, enzyme activity and bacterial community in black soil. Chinese Journal of Ecology, 2018, 37(11): 3323-3332. (in Chinese) | |
[22] |
CASARETTO E, SIGNORELLI S, GALLINO P, VIDAL S, BORSANI O. Endogenous NO accumulation in soybean is associated with initial stomatal response to water deficit. Physiologia Plantarum, 2021, 172(2): 564-576.
doi: 10.1111/ppl.13259 |
[23] | 尤明东, 李海波, 葛敏, 臧淑英. 黑龙江省冻土活动层厚度年际变化影响因素分析. 冰川冻土, 2018, 40(3): 480-491. |
YOU M D, LI H B, GE M, ZANG S Y. The influence factors of permafrost active layer depth and their annual change in Heilongjiang province. Journal of Glaciology and Geocryology, 2018, 40(3): 480-491. (in Chinese) | |
[24] | 王俊霞, 潘耀忠, 朱秀芳, 孙章丽. 土壤水分反演特征变量研究综述. 土壤学报, 2019, 56(1): 23-35. |
WANG J X, PAN Y Z, ZHU X F, SUN Z L. A review of researches on inversion of eigenvariance of soil water. Chinese Journal of Soil Science, 2019, 56(1): 23-35. (in Chinese) | |
[25] | 周亚, 高晓清, 李振朝, 杨丽薇, 惠小英. 青藏高原深层土壤热扩散率的时空分布特征. 土壤学报, 2018, 55(2): 351-359. |
ZHOU Y, GAO X Q, LI Z C, YANG L W, HUI X Y. Spatio-temporal distribution of thermal diffusivity in deep soil in Qinghai Tibetan plateau. Acta Pedologica Sinica, 2018, 55(2): 351-359. (in Chinese) | |
[26] | 董建新, 宋文静, 丛萍, 李玉义, 逄焕成, 郑学博, 王毅, 王婧, 况帅, 徐艳丽. 旋耕配合秸秆颗粒还田对土壤物理特性的影响. 中国农业科学, 2021, 54(13): 2789-2803. |
DONG J X, SONG W J, CONG P, LI Y Y, PANG H C, ZHENG X B, WANG Y, WANG J, KUANG S, XU Y L. Improving farmland soil physical properties by rotary tillage combined with high amount of granulated straw. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803. (in Chinese) | |
[27] | BHARAT S A, SYAM D, LEWIS A G, MURALI D, JIM J W, SEEMA S, HARI B. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. Soil & Tillage Research, 2019, 195: 104430 |
[28] |
WEN B X, SAJAD H, YANG J Y, WANG S, ZHANG Y, QIN S S, XU M, YANG W Y, LIU W G. Rejuvenating soybean (Glycine max L.) growth and development through slight shading stress. Journal of Integrative Agriculture, 2020, 19(10): 2439-2450.
doi: 10.1016/S2095-3119(20)63159-8 |
[29] | 程亚娇, 谌俊旭, 王仲林, 范元芳, 陈思宇, 李泽林, 刘沁林, 李中川, 杨峰, 杨文钰. 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018, 51(14): 2655-2663. |
CHENG Y J, CHEN J X, WANG Z L, FAN Y F, CHEN S Y, LI Z L, LIU Q L, LI Z C, YANG F, YANG W Y. Effects of light intensity and light quality on mrphological and photosynthetic characteristics of soybean seedlings. Scientia Agricultura Sinica, 2018, 51(14): 2655-2663. (in Chinese) | |
[30] | 罗奥. 不同耕作措施对土壤理化生物性状和大豆产量的影响[D]. 大庆: 黑龙江八一农垦大学, 2009. |
LUO A. Effect of different tillage on soil physical chemistry and biology character & yield of soybean[D]. Daqing: Heilongjiang Bayi Agricultural University, 2009. (in Chinese) | |
[31] |
KUKAL M S, IRMAK S. Comparative canopy growth dynamics in four row crops and their relationships with allometric and environmental determinants. Agronomy Journal, 2019, 111(4): 1799-1816.
doi: 10.2134/agronj2019.01.0017 |
[32] | 王诗雅, 冯乃杰, 项洪涛, 冯胜杰, 郑殿峰. 水分胁迫对大豆生长与产量的影响及应对措施. 中国农学通报, 2020, 36(27): 41-45. |
WANG S Y, FENG N J, XIANG H T, FENG S J, ZHENG D F. Water stress: Effects on growth and yield of soybean and the countermeasures. Chinese Agricultural Science Bulletin, 2020, 36(27): 41-45. (in Chinese) | |
[33] |
SILVA, ALEXANDRE J, MAGALHÃES S Y, JOSÉ R, SALES G, CRISTINA G P, REGINA C M, MACHADO E C, Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit. Bragantia, 2018, 77(1): 23-35.
doi: 10.1590/1678-4499.2017010 |
[34] |
MERIEM T, BELIGH D, SALWA L, BADREDDINE C, DALENDA B, MOHAMED H. Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality. Agricultural Water Management, 2016, 178: 180-188.
doi: 10.1016/j.agwat.2016.09.023 |
[35] | JARET1I W, BOBRETLA D, Influence of seed inoculation with commercial bacterial in oculants (Bradyrhizobium Japonicum) on growth and yield of soybean. Legume Research - An International Journal, 2019, 42(5): 688-693. |
[36] |
KANCHAN J, VIRENDER S B. Influence of different light intensities on specific leaf weight, stomatal density photosynthesis and seed yield in soybean. Plant Physiology Reports, 2020, 25(2): 277-283.
doi: 10.1007/s40502-020-00508-6 |
[37] |
JIAN N H, SHI Y, ZHAO J Y, ZHANG Y. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling. The Crop Journal, 2020, 8(2): 327-340.
doi: 10.1016/j.cj.2019.08.007 |
[38] | 唐江华, 苏丽丽, 李亚杰, 徐文修, 彭姜龙. 不同耕作方式对复播大豆光合特性、干物质生产及经济效益的影响. 应用生态学报, 2016, 27(1): 182-190. |
TANG J H, SU L L, LI Y J, XU W X, PENG J L. Effects of different tillage methods on photosynthric characteristics, dry matter production and economic benefit of double cropping soybean. Chinese Journal of Applied Ecology, 2016, 27(1): 182-190. (in Chinese) | |
[39] | 谢燕, 陈曦, 胡正华, 陈书涛, 张寒, 凌慧, 申双和. 短期保护性耕作措施对大豆-冬小麦轮作系统温室气体排放的影响. 环境科学, 2016, 37(4): 1499-1506. |
XIE Y, CHEN X, HU Z H, CHEN S T, ZHANG H, LING H, SHEN S H. Effects of short-time conservation tillage managements on greenhouse gases emissions from soybean-winter wheat rotation system. Environmental Science, 2016, 37(4): 1499-1506. (in Chinese) | |
[40] |
何建宁, 于振文, 石玉, 赵俊晔, 张永丽. 长期耕作方式对小麦光合特性和产量的影响. 应用生态学报, 2017, 28(4): 1204-1210.
doi: 10.13287/j.1001-9332.201704.028 |
HE J N, YU Z W, SHI Y, ZHAO J Y, ZHANG Y L. Effects of long-term tillage practices on photosynthetic characteristics and grain yield of wheat. Chinese Journal of Applied Ecology, 2017, 28(4): 1204-1210. (in Chinese)
doi: 10.13287/j.1001-9332.201704.028 |
|
[41] |
RAZA M H, YANG F, AHMED M, YANG W Y. Growth rate, dry matter accumulation, and partitioning in soyean (Glycine max L.) in response to defoliation under high-rainfall conditions. Plants, 2021, 10(8): 1497.
doi: 10.3390/plants10081497 |
[42] | 周宝元, 孙雪芳, 丁在松, 马玮, 赵明. 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响. 中国农业科学, 2017, 50(11): 2129-2140. |
ZHOU B Y, SUN X F, DING Z S, MA W, ZHAO M. Effect of tillage practice and fertilization on dry matter accumulation and grain yield of summer maize (Zea Mays L.). Scientia Agricultura Sinica, 2017, 50(11): 2129-2140. (in Chinese) | |
[43] | 李念念, 孙敏, 高志强, 张娟, 张慧芋, 梁艳妃, 杨清山, 杨珍平, 邓妍. 极端年型旱地麦田深松和覆盖播种水分消耗与植株氮素吸收、利用关系的研究. 中国农业科学, 2018, 51(18): 3455-3469. |
LI N N, SUN M, GAO Z Q, ZHANG J, ZHANG H Y, LIANG Y F, YANG Q S, YANG Z P, DENG Y. A study on the relationship between water consumption and nitrogen absorption, utilization under sub-soiling during the fallow period plus mulched-sowing in humid and dry years of dryland wheat. Scientia Agricultura Sinica, 2018, 51(18): 3455-3469. (in Chinese) | |
[44] |
王海月, 蒋明金, 孙永健, 郭长春, 殷尧翥, 何艳, 严田蓉, 杨志远, 徐徽, 马均. 常规氮肥与缓释氮肥配施对不同株距机插杂交稻磷素吸收、转运及分配特征的影响. 作物学报, 2018, 44(1): 115-125.
doi: 10.3724/SP.J.1006.2018.00115 |
WANG H Y, JIANG M J, SUN Y J, GUO C C, YIN Y Z, HE Y, YAN T R, YANG Z Y, XU H, MA J. Effects of conventional urea combined with slow-release urea application on phosphorus uptake, translocation and distribution in mechanically trans-planted rice with different plant spacings. Acta Agronomica Sinica, 2018, 44(1): 115-125. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00115 |
|
[45] | PAUL J. What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience? Journal of Plant Physiology, 2021, 266: 153537. |
[46] | 鲁伟林, 余新春, 严德远, 李彦婷, 扶定, 徐士库, 沈光辉. 不同基蘖穗肥配比对水稻氮素吸收及利用的影响. 中国农学通报, 2017, 33(1): 1-5. |
LU W L, YU X C, YAN D Y, LI Y T, FU D, XU S K, SHEN G H. Effects of different ratios of base-tiller-ear fertilizer on nitrogen absorption and utilization of rice. Chinese Agricultural Science Bulletin, 2017, 33(1): 1-5. (in Chinese) | |
[47] | 张明聪, 何松榆, 侯宇佳, 金喜军, 张玉先, 胡国华, 滕占林. 增加密度减量施氮和接种根瘤菌对红小豆氮素吸收及产量的影响. 中国土壤与肥料, 2020(2): 133-139, 165. |
ZHANG M C, HE S Y, HOU Y J, JIN X J, ZHANG Y X, HU G H, TENG Z L. Effects of increasing planting density with reduced application nitrogen and rhizobium inoculation methods on N absorption and yield of adzuki bean plants. Soil and Fertilizer Sciences in China, 2020(2): 133-139, 165. (in Chinese) | |
[48] |
AO X, GUO X H, ZHU Q, ZHANG H J, WANG H Y, MA Z H, HAN X R, ZHAO M H, XIE F T. Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies. Journal of Integrative Agriculture, 2014, 13(2): 326-334.
doi: 10.1016/S2095-3119(13)60390-1 |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[3] | 刘梦洁, 梁飞, 李全胜, 田宇欣, 王国栋, 贾宏涛. 膜下滴灌与细流沟灌对玉米生长及产量的影响[J]. 中国农业科学, 2023, 56(8): 1515-1530. |
[4] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[5] | 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响[J]. 中国农业科学, 2023, 56(7): 1283-1294. |
[6] | 谷闻东, 刘春娟, 李邦, 刘畅, 周宇飞. 外源色氨酸对低氮胁迫下高粱苗期叶片碳氮平衡和衰老特性的影响[J]. 中国农业科学, 2023, 56(7): 1295-1310. |
[7] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[8] | 贺江, 丁颖, 娄向弟, 姬东玲, 张向向, 王永慧, 张伟杨, 王志琴, 王伟露, 杨建昌. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6): 1045-1060. |
[9] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[10] | 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 胡文诗, 杨璐, 廖星, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响[J]. 中国农业科学, 2023, 56(6): 1074-1085. |
[11] | 贾晓昀, 王士杰, 朱继杰, 赵红霞, 李妙, 王国印. 陆地棉高密度遗传图谱的构建及产量相关性状的QTL定位[J]. 中国农业科学, 2023, 56(4): 587-598. |
[12] | 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学, 2023, 56(4): 635-648. |
[13] | 刘丹, 安雨丽, 陶笑笑, 王孝忠, 吕典秋, 郭彦军, 陈新平, 张务帅. 西北地区制种玉米产量及氮素吸收对供氮水平的响应[J]. 中国农业科学, 2023, 56(3): 441-452. |
[14] | 赵建涛, 杨开鑫, 王旭哲, 马春晖, 张前兵. 施磷对苜蓿叶片生理参数及抗氧化能力的影响[J]. 中国农业科学, 2023, 56(3): 453-465. |
[15] | 刘明慧, 田虹雨, 刘之广, 巩彪. 减磷条件下含褪黑素的尿素缓释功能肥对番茄生长、产量、品质和磷素利用效率的影响[J]. 中国农业科学, 2023, 56(3): 519-528. |
|