中国农业科学 ›› 2022, Vol. 55 ›› Issue (11): 2202-2213.doi: 10.3864/j.issn.0578-1752.2022.11.010
李昂(),苗玉乐,孟君仁,牛良,潘磊,鲁振华,崔国朝,王志强(
),曾文芳(
)
收稿日期:
2021-09-29
接受日期:
2022-01-12
出版日期:
2022-06-01
发布日期:
2022-06-16
通讯作者:
王志强,曾文芳
作者简介:
李昂,E-mail: 基金资助:
LI Ang(),MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang(
),ZENG WenFang(
)
Received:
2021-09-29
Accepted:
2022-01-12
Online:
2022-06-01
Published:
2022-06-16
Contact:
ZhiQiang WANG,WenFang ZENG
摘要:
【目的】 比较溶质型和硬质型桃在果实成熟过程中肽段和前体蛋白的差异,为挖掘决定或调控成熟过程的关键多肽提供理论依据。【方法】 通过多肽组学的方法,对溶质型(‘CN13’)和硬质型(‘CN16’)桃内源性多肽特征以及前体蛋白功能进行分析,对比两种肉质桃果实在成熟衰老过程中前体蛋白和多肽的相对含量,并对差异肽段前体蛋白进行富集分析。【结果】 本研究分别提取了‘CN13’和‘CN16’两个时期(S3和S4III)的内源性肽样品进行质谱检测,共鉴定到473个前体蛋白,包含特异性肽段序列2 580条。对肽段的分子量、等电点以及剪切位点进行归纳整理,并对内源性肽段所对应的高丰度前体蛋白进行COG功能注释和pathway富集分析,结果显示前体蛋白主要参与一般功能预测、翻译后修饰、蛋白质转换、能量产生和转换以及碳水化合物运输与代谢等过程。差异肽段前体蛋白的富集分析表明,‘CN13’在成熟过程中差异肽段前体蛋白与氧化还原、活性氧代谢和电子传递链等生物学过程相关,主要参与糖酵解/糖异生、磷酸戊糖途径和RNA转运等途径;而‘CN16’差异肽段前体蛋白是与金属离子反应、无机物反应和镉离子反应等生物学过程相关,主要参与多种环境下微生物新陈代谢、剪接体和RNA转运等途径;同处在S4III时期的‘CN16’和‘CN13’差异肽段前体蛋白与基因表达、翻译和细胞大分子生物学过程相关,主要参与RNA降解、RNA转运和剪接体等途径。【结论】 ‘CN13’和‘CN16’果实在成熟过程中多肽差异显著,差异肽段前体蛋白主要涉及淀粉/蔗糖代谢、糖酵解和核糖体合成等途径,暗示这些代谢途径与桃果实成熟衰老关系密切,为进一步挖掘调控桃果实成熟衰老过程的关键多肽提供了理论参考。
李昂,苗玉乐,孟君仁,牛良,潘磊,鲁振华,崔国朝,王志强,曾文芳. 溶质和硬质型桃果实成熟过程果肉多肽组学分析[J]. 中国农业科学, 2022, 55(11): 2202-2213.
LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening[J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
表4
CN13_S4III vs CN13_S3的差异蛋白富集代谢通路"
通路 Map name | Uniprot号 Uniprot ID | 蛋白描述 Protein description | 差异倍数 Fold change |
---|---|---|---|
淀粉和蔗糖代谢 Starch and sucrose metabolism | A0A251R9S2 | 葡萄糖-6-磷酸异构酶Glucose-6-phosphate isomerase | 2.76 |
M4QFX1 | UDP-葡萄糖6-脱氢酶UDP-glucose 6-dehydrogenase | 2.14 | |
M5XDI1 | 磷酸葡萄糖变位酶Phosphoglucomutase | 0.21 | |
糖酵解/糖异生 Glycolysis/Gluconeogenesis | A0A251MRE3 | 含有ADH_zinc_N结构域的蛋白ADH_zinc_N domain-containing protein | 2.19 |
M5VPR4 | 磷酸丙酮酸水合酶Phosphopyruvate hydratase | 3.12 | |
M5XFH2 | 果糖二磷酸醛缩酶Fructose-bisphosphate aldolase | 2.97 | |
核糖体 Ribosome | A0A251NA79 | 未表征蛋白Uncharacterized protein | 0.47 |
M5WAA2 | 含有RRM结构域的蛋白RRM domain-containing protein | 0.20 | |
M5WJM0 | 40S核糖体蛋白S25 40S ribosomal protein S25 | 2.38 |
表5
CN16_S4III vs CN16_S3的差异蛋白富集代谢通路"
通路 Map name | Uniprot号 Uniprot ID | 蛋白描述 Protein description | 差异倍数 Fold change |
---|---|---|---|
淀粉和蔗糖代谢Starch and sucrose metabolism | M5XH82 | 葡萄糖-6-磷酸异构酶Glucose-6-phosphate isomerase | 0.39 |
糖酵解/糖异生Glycolysis/Gluconeogenesis | A0A251PJZ3 | 磷酸甘油酸激酶Phosphoglycerate kinase | 0.44 |
M5XQ59 | 甘油醛-3-磷酸脱氢酶Glyceraldehyde-3-phosphate dehydrogenase | 0.19 | |
核糖体Ribosome | A0A251NA79 | 为表征蛋白Uncharacterized protein | 0.26 |
M5WAA2 | 含有RRM结构域的蛋白RRM domain-containing protein | 0.14 | |
A0A251MVP0 | 含有RRM结构域的蛋白RRM domain-containing protein | 2.51 |
表6
CN16_S4III vs CN13_S4III的差异蛋白富集代谢通路"
通路 Map name | Uniprot号 Uniprot ID | 蛋白描述 Protein description | 差异倍数 Fold change |
---|---|---|---|
淀粉和蔗糖代谢Starch and sucrose metabolism | M5XH82 | 葡萄糖-6-磷酸异构酶Glucose-6-phosphate isomerase | 0.35 |
糖酵解/糖异生Glycolysis/Gluconeogenesis | A0A251PJZ3 | 磷酸甘油酸激酶Phosphoglycerate kinase | 0.44 |
M5VPR4 | 磷酸丙酮酸水合酶Phosphopyruvate hydratase | 0.44 | |
核糖体Ribosome | A0A251NA79 | 未表征蛋白Uncharacterized protein | 0.34 |
M5WAA2 | 含有RRM结构域的蛋白RRM domain-containing protein | 0.36 | |
M5WJM0 | 40S核糖体蛋白S2540S ribosomal protein S25 | 0.34 |
[1] |
曾文芳, 王志强, 牛良, 潘磊, 丁义峰, 鲁振华, 崔国朝. 桃果实肉质研究进展. 果树学报, 2017, 34(11): 1475-1482. doi: 10.13925/j.cnki.gsxb.20170142.
doi: 10.13925/j.cnki.gsxb.20170142 |
ZENG W F, WANG Z Q, NIU L, PAN L, DING Y F, LU Z H, CUI G C. Research process on peach fruit flesh texture. Journal of Fruit Science, 2017, 34(11): 1475-1482. doi: 10.13925/j.cnki.gsxb.20170142. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20170142 |
|
[2] |
孙平平, 王文辉. 2017/2018年世界苹果、梨、葡萄、桃及樱桃产量、市场与贸易情况. 中国果树, 2018(2): 99-108. doi: 10.16626/j.cnki.issn1000-8047.2018.02.029.
doi: 10.16626/j.cnki.issn1000-8047.2018.02.029 |
SUN P P, WANG W H. Situation of world apple, pear, grape, peach and cherry production, market and trade. China Fruits, 2018(2): 99-108. doi: 10.16626/j.cnki.issn1000-8047.2018.02.029. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2018.02.029 |
|
[3] |
王雁, 王小贝, 邓丽, 牛良, 潘磊, 鲁振华, 崔国朝, 曾文芳, 王志强. 1-MCP处理采后不同成熟度桃果实生理效应及转录组分析. 果树学报, 2020, 37(12): 1798-1810. doi: 10.13925/j.cnki.gsxb.20190207.
doi: 10.13925/j.cnki.gsxb.20190207 |
WANG Y, WANG X B, DENG L, NIU L, PAN L, LU Z H, CUI G C, ZENG W F, WANG Z Q. Physiological effects and transcriptome analysis of peach fruit with different maturity after 1-MCP treatment. Journal of Fruit Science, 2020, 37(12): 1798-1810. doi: 10.13925/j.cnki.gsxb.20190207. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20190207 |
|
[4] |
孙婷婷, 张乐乐, 王倩, 李纯, 程备久, 张欣. 基于Nano LC-MS/MS的水稻多肽组学研究. 植物生理学报, 2015, 51(7): 1173-1178. doi: 10.13592/j.cnki.ppj.2015.0004.
doi: 10.13592/j.cnki.ppj.2015.0004 |
SUN T T, ZHANG L L, WANG Q, LI C, CHENG B J, ZHANG X. Rice peptidomics based on nano LC-MS/MS analysis. Plant Physiology Journal, 2015, 51(7): 1173-1178. doi: 10.13592/j.cnki.ppj.2015.0004. (in Chinese)
doi: 10.13592/j.cnki.ppj.2015.0004 |
|
[5] |
曾文芳, 王小贝, 潘磊, 牛良, 鲁振华, 崔国朝, 王志强. 桃Aux/IAA家族基因鉴定及在果实成熟过程中的表达分析. 园艺学报, 2017, 44(2): 233-244. doi: 10.16420/j.issn.0513-353x.2016-0388.
doi: 10.16420/j.issn.0513-353x.2016-0388 |
ZENG W F, WANG X B, PAN L, NIU L, LU Z H, CUI G C, WANG Z Q. Identification and expression profiling of Aux/IAA family gene during peach fruit ripening. Acta Horticulturae Sinica, 2017, 44(2): 233-244. doi: 10.16420/j.issn.0513-353x.2016-0388. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0388 |
|
[6] |
ZENG W F, PAN L, LIU H, NIU L, LU Z H, CUI G C, WANG Z Q. Characterization of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes during nectarine fruit development and ripening. Tree Genetics & Genomes, 2015, 11(2): 1-10. doi: 10.1007/s11295-015-0833-6.
doi: 10.1007/s11295-015-0833-6 |
[7] |
CHAI T T, EE K Y, KUMAR D T, MANAN F A, WONG F C. Plant bioactive peptides: Current status and prospects towards use on human health. Protein and Peptide Letters, 2021, 28(6): 623-642. doi: 10.2174/0929866527999201211195936.
doi: 10.2174/0929866527999201211195936 |
[8] |
MATSUBAYASHI Y, SAKAGAMI Y. Peptide hormones in plants. Annual Review of Plant Biology, 2006, 57: 649-674.
doi: 10.1146/annurev.arplant.56.032604.144204 |
[9] |
DJORDJEVIC M A, MOHD-RADZMAN N A, IMIN N. Small- peptide signals that control root nodule number, development, and symbiosis. Journal of Experimental Botany, 2015, 66(17): 5171-5181. doi: 10.1093/jxb/erv357.
doi: 10.1093/jxb/erv357 |
[10] |
PATEL N, MOHD-RADZMAN N A, CORCILIUS L, CROSSETT B, CONNOLLY A, CORDWELL S J, IVANOVICI A, TAYLOR K, WILLIAMS J, BINOS S, MARIANI M, PAYNE R J, DJORDJEVIC M A. Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome. Molecular & Cellular Proteomics, 2018, 17(1): 160-174. doi: 10.1074/mcp.RA117.000168.
doi: 10.1074/mcp.RA117.000168 |
[11] |
HIGASHIYAMA T, TAKEUCHI H. The mechanism and key molecules involved in pollen tube guidance. Annual Review of Plant Biology, 2015, 66: 393-413. doi: 10.1146/annurev-arplant-043014-115635.
doi: 10.1146/annurev-arplant-043014-115635 |
[12] |
QU X Y, CAO B, KANG J K, WANG X N, HAN X Y, JIANG W Q, SHI X, ZHANG L S, CUI L J, HU Z B, ZHANG Y H, WANG G D. Fine-tuning stomatal movement through small signaling peptides. Frontiers in Plant Science, 2019, 10: 69. doi: 10.3389/fpls.2019.00069.
doi: 10.3389/fpls.2019.00069 |
[13] |
TALESKI M, IMIN N, DJORDJEVIC M A. CEP peptide hormones: Key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. Journal of Experimental Botany, 2018, 69(8): 1829-1836. doi: 10.1093/jxb/ery037.
doi: 10.1093/jxb/ery037 |
[14] |
ZIEMANN S, VAN DER LINDE K, LAHRMANN U, ACAR B, KASCHANI F, COLBY T, KAISER M, DING Y Z, SCHMELZ E, HUFFAKER A, HOLTON N, ZIPFEL C, DOEHLEMANN G. An apoplastic peptide activates salicylic acid signalling in maize. Nature Plants, 2018, 4(3): 172-180. doi: 10.1038/s41477-018-0116-y.
doi: 10.1038/s41477-018-0116-y |
[15] |
ZHANG J H, YUE L, WU X L, LIU H, WANG W. Function of small peptides during male-female crosstalk in plants. Frontiers in Plant Science, 2021, 12: 671196. doi: 10.3389/fpls.2021.671196.
doi: 10.3389/fpls.2021.671196 |
[16] |
KAGEYAMA Y, KONDO T, HASHIMOTO Y. Coding vs non-coding: Translatability of short ORFs found in putative non-coding transcripts. Biochimie, 2011, 93(11): 1981-1986. doi: 10.1016/j.biochi.2011.06.024.
doi: 10.1016/j.biochi.2011.06.024 |
[17] |
ANDREWS S J, ROTHNAGEL J A. Emerging evidence for functional peptides encoded by short open reading frames. Nature Reviews Genetics, 2014, 15(3): 193-204. doi: 10.1038/nrg3520.
doi: 10.1038/nrg3520 |
[18] |
PUEYO J I, MAGNY E G, COUSO J P. New peptides under the s (ORF) ace of the genome. Trends in Biochemical Sciences, 2016, 41(8): 665-678. doi: 10.1016/j.tibs.2016.05.003.
doi: 10.1016/j.tibs.2016.05.003 |
[19] |
YU Y, ZHANG Y C, CHEN X M, CHEN Y Q. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology, 2019, 35: 407-431. doi: 10.1146/annurev-cellbio-100818-125218.
doi: 10.1146/annurev-cellbio-100818-125218 |
[20] |
NIARCHOU A, ALEXANDRIDOU A, ATHANASIADIS E, SPYROU G. C-PAmP: Large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species. PLoS ONE, 2013, 8(11): e79728. doi: 10.1371/journal.pone.0079728.
doi: 10.1371/journal.pone.0079728 |
[21] | HUSSON S J, CLYNEN E, BAGGERMAN G, DE LOOF A, SCHOOFS L. Peptidomics of Caenorhabditis elegans: In search of neuropeptides. Communications in Agricultural and Applied Biological Sciences, 2005, 70(2): 153-156. |
[22] |
TINOCO A D, SAGHATELIAN A. Investigating endogenous peptides and peptidases using peptidomics. Biochemistry, 2011, 50(35): 7447-7461. doi: 10.1021/bi200417k.
doi: 10.1021/bi200417k |
[23] |
YUAN N, DAI C, LING X T, ZHANG B L, DU J C. Peptidomics- based study reveals that GAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance. Molecular Breeding, 2019, 39(10/11): 1-11. doi: 10.1007/s11032-019-1069-1.
doi: 10.1007/s11032-019-1069-1 |
[24] | LEASE K A, WALKER J C. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiology, 2006, 142(3): 831-838. |
[25] |
CHEN Y C, SIEMS W F, PEARCE G, Ryan C A. Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. Journal of Biological Chemistry, 2008, 283(17):11469-11476.
doi: 10.1074/jbc.M709002200 |
[26] |
赵楠, 程孟春, 吴玉林, 刘丹, 张晓哲. 基于超高效液相色谱-高分辨质谱的多肽组学技术用于人参不同部位多肽的差异分析. 色谱, 2019, 37(12): 1305-1313. doi: 10.3724/SP.J.1123.2019.09006.
doi: 10.3724/SP.J.1123.2019.09006 |
ZHAO N, CHENG M C, WU Y L, LIU D, ZHANG X Z. Differential analysis of peptides in Panax ginseng C. A. Meyer root by ultra-performance liquid chromatography-high resolution mass spectrometry. Chinese Journal of Chromatography, 2019, 37(12): 1305-1313. doi: 10.3724/SP.J.1123.2019.09006. (in Chinese)
doi: 10.3724/SP.J.1123.2019.09006 |
|
[27] |
WANG X B, MENG J R, DENG L, WANG Y, LIU H, YAO J L, NIEUWENHUIZEN N J, WANG Z Q, ZENG W F. Diverse functions of IAA-leucine resistant PpILR1 provide a genic basis for auxin- ethylene crosstalk during peach fruit ripening. Frontiers in Plant Science, 2021, 12: 655758. doi: 10.3389/fpls.2021.655758.
doi: 10.3389/fpls.2021.655758 |
[28] |
徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 2020, 47(8): 1595-1609. doi: 10.16420/j.issn.0513-353x.2020-0284.
doi: 10.16420/j.issn.0513-353x.2020-0284 |
XU X D, LI B Q, QIN G Z, CHEN T, ZHANG Z Q, TIAN S P. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 2020, 47(8): 1595-1609. doi: 10.16420/j.issn.0513-353x.2020-0284. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0284 |
|
[29] |
KANG R Y, ZHANG L, JIANG L, YU M L, MA R J, YU Z Y. Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Postharvest Biology and Technology, 2016, 112(7): 277-289.
doi: 10.1016/j.postharvbio.2015.08.017 |
[30] |
WANG X B, DING Y F, WANG Y, PAN L, NIU L, LU Z H, CUI G C, ZENG W F, WANG Z Q. Genes involved in ethylene signal transduction in peach (Prunus persica) and their expression profiles during fruit maturation. Scientia Horticulturae, 2017, 224: 306-316.
doi: 10.1016/j.scienta.2017.06.035 |
[31] |
XIAO Y Y, KUANG J F, QI X N, YE Y J, WU Z X, CHEN J Y, LU W J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening. Plant Biotechnology Journal, 2018, 16(1): 151-164. doi: 10.1111/pbi.12756.
doi: 10.1111/pbi.12756 |
[32] |
YU J W, WANG K Y, BECKLES D M. Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC Plant Biology, 2021, 21(1): 479. doi: 10.1186/s12870-021-03253-6.
doi: 10.1186/s12870-021-03253-6 |
[33] |
ZHANG A D, WANG W Q, TONG Y, LI M J, GRIERSON D, FERGUSON I, CHEN K S, YIN X R. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit. Plant Physiology, 2018, 178(2): 850-863. doi: 10.1104/pp.18.00427.
doi: 10.1104/pp.18.00427 |
[34] | CHO Y G, KANG K K. Functional analysis of starch metabolism in plants. PLANTS-BASEL, 2020, 9(9): 1152. |
[35] |
ZHANG S, CAO L N, SUN X, YU J J, XU X Y, CHANG R H, SUO J F, LIU G J, XU Z R, QU C P. Genome-wide analysis of UGDH genes in Populus trichocarpa and responsiveness to nitrogen treatment. 3 Biotech, 2021, 11(3): 1-13. doi: 10.1007/s13205-021-02697-9.
doi: 10.1007/s13205-021-02697-9 |
[36] |
LIN Y X, LIN Y F, CHEN Y H, WANG H, SHI J, LIN H T. Hydrogen peroxide induced changes in energy status and respiration metabolism of harvested longan fruit in relation to pericarp browning. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4627-4632. doi: 10.1021/acs.jafc.6b01430.
doi: 10.1021/acs.jafc.6b01430 |
[37] |
LI X P, ZHU X Y, WANG H L, LIN X, LIN H W, CHEN W. Postharvest application of wax controls pineapple fruit ripening and improves fruit quality. Postharvest Biology and Technology, 2018, 136: 99-110.
doi: 10.1016/j.postharvbio.2017.10.012 |
[38] |
PERVEEN S, QU M N, CHEN F M, ESSEMINE J, KHAN N, LYU M J A, CHANG T G, SONG Q F, CHEN G Y, ZHU X G. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice. Journal of Experimental Botany, 2020, 71(16): 4944-4957. doi: 10.1093/jxb/eraa248.
doi: 10.1093/jxb/eraa248 |
[1] | 刘针杉, 涂红霞, 周荆婷, 马艳, 柴久凤, 王旨意, 杨鹏飞, 杨小芹, Kumail Abbas, 王浩, 王燕, 王小蓉. 中国樱桃正反交F1代果实主要性状的遗传分析[J]. 中国农业科学, 2023, 56(2): 345-356. |
[2] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[3] | 张晋龙,赵志博,刘巍,黄丽丽. 猕猴桃细菌性溃疡病菌T3SS关键效应蛋白基因致病功能[J]. 中国农业科学, 2022, 55(3): 503-513. |
[4] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[5] | 郝艳,李晓颍,叶茂,刘亚婷,王天宇,王海静,张立彬,肖啸,武军凯. ‘21世纪’桃与‘久脆’桃及其杂交后代果实挥发性成分特征分析[J]. 中国农业科学, 2022, 55(22): 4487-4499. |
[6] | 胡光明,张琼,韩飞,李大卫,李作洲,汪志,赵婷婷,田华,刘小莉,钟彩虹. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学, 2022, 55(17): 3411-3425. |
[7] | 王璐伟,沈志军,李贺欢,潘磊,牛良,崔国朝,曾文芳,王志强,鲁振华. 基于SSR荧光标记的79份桃种质遗传多样性分析[J]. 中国农业科学, 2022, 55(15): 3002-3017. |
[8] | 沈志军, 田雨, 蔡志翔, 徐子媛, 严娟, 孙朦, 马瑞娟, 俞明亮. 基于国家果树种质南京桃资源圃的桃褐腐病抗性评价[J]. 中国农业科学, 2022, 55(15): 3018-3028. |
[9] | 谭凤玲,詹萍,王鹏,田洪磊. 基于感官评价及GC-MS结合OPLS-DA分析热杀菌对蟠桃汁呈香品质的影响[J]. 中国农业科学, 2022, 55(12): 2425-2435. |
[10] | 李少华,王云鹏,王荣成,尹萍,李向东,郑方强. 玉米田桃蛀螟幼虫的空间分布型与抽样技术[J]. 中国农业科学, 2022, 55(10): 1961-1970. |
[11] | 张圆圆,刘文敬,张斌斌,蔡志翔,宋宏峰,俞明亮,马瑞娟. 不同类型桃果实内酯芳香物质构成与重要性评价[J]. 中国农业科学, 2022, 55(10): 2026-2037. |
[12] | 刘孝贺,仇贵生,佟兆国,张怀江,闫文涛,岳强,孙丽娜. 桃小食心虫化学感受蛋白CSP16配体结合特性[J]. 中国农业科学, 2021, 54(5): 945-958. |
[13] | 孟君仁,牛良,邓丽,潘磊,鲁振华,崔国朝,王志强,曾文芳. 控制桃粘/离核PG基因的BAC克隆筛选与序列分析[J]. 中国农业科学, 2021, 54(20): 4396-4404. |
[14] | 孟君仁,曾文芳,邓丽,潘磊,鲁振华,崔国朝,王志强,牛良. 桃若干重要性状的KASP分子标记开发与应用[J]. 中国农业科学, 2021, 54(15): 3295-3307. |
[15] | 张斌斌,蔡志翔,沈志军,严娟,马瑞娟,俞明亮. 观赏桃种质资源表型性状多样性评价[J]. 中国农业科学, 2021, 54(11): 2406-2418. |
|