中国农业科学 ›› 2018, Vol. 51 ›› Issue (21): 4087-4101.doi: 10.3864/j.issn.0578-1752.2018.21.008
收稿日期:
2018-04-02
接受日期:
2018-08-10
出版日期:
2018-11-01
发布日期:
2018-11-01
通讯作者:
黄容,高明
基金资助:
Rong HUANG(),Ming GAO(
),JiaCheng LI,GuoXin XU,FuHua WANG,Jiao LI,ShiQi CHEN
Received:
2018-04-02
Accepted:
2018-08-10
Online:
2018-11-01
Published:
2018-11-01
Contact:
Rong HUANG,Ming GAO
摘要:
【目的】在等氮施用的条件下,研究几种农业有机物料与化肥配合施用对蔬菜连作种植模式的菜地土壤氮形态及温室气体的动态变化的影响,为菜地化肥减量施用及绿色环保提供科学依据。并从温室气体减排角度,为旱地土壤的培肥提供理论参考。【方法】通过田间原位试验,设置了对照即不添加化肥和物料(CK)、常规化肥(F)、秸秆+化肥(SF)、菌渣+化肥(MF)、生物质炭+化肥(BF)、牛粪+化肥(CF)等处理,分析土壤铵态氮、硝态氮、碱解氮和全氮分布特征。同时采用静态箱-气相色谱法,对比分析在化肥减量的基础上,添加物料处理的紫色土(莴笋-卷心菜-辣椒轮作)CO2、CH4、N2O动态变化和温室效应。【结果】等养分投入的条件下,有机物料的添加改变土壤氮形态分布,SF和MF处理主要在料还田前期能增加土壤铵态氮含量,CF处理能提高莴笋和卷心菜季的土壤铵态氮含量,BF处理则提高了辣椒季硝态氮和碱解氮含量。在整个试验观测期内,N2O、CO2、CH4 3种气体的排放具有一定的季节变化规律,各气体均在夏季出现了排放高峰,且在施肥灌水后也会出现气体的排放峰。与F处理相比,试验期内BF处理的N2O平均排放量降低了7.5%,而CF处理则显著增加了233.5%。有机物料与化肥配施较CK和F处理增加了CO2排放,其中MF和CF处理最为明显,平均排放通量较F处理分别提高了35.6%和31.3%,BF处理则推迟CO2排放峰,且在高温多雨的夏季增加CO2排放量。各处理的CH4排放多为负值,表现为大气中CH4汇,且在辣椒季波动较为明显,其中BF处理在高温多水的短期内可达到CH4排放峰值(668.7 μg·m -2·h -1);SF、MF和BF较F处理的CH4平均排放通量分别显著下降了104.85%、175.2%和77.5%,其中SF和MF处理分别为-0.1和-1.3 kg·hm -2,较其他处理能促进CH4吸收,减少CH4产生和排放。但有机物料与化肥配施处理的温室气体的增温潜势较CK和F处理分别增加了26.7%—52.4%和18.1%—42.0%,其中SF处理的增温潜势最低,其次为BF处理。 【结论】不同的有机物料对土壤氮形态分布及N2O、CO2、CH4排放的影响各不相同。几种有机物料中,生物质炭、秸秆与化肥配施还田相较于其他处理能增加有效氮含量,减少温室气体的排放,而牛粪与化肥配施则会增加温室气体排放。
黄容,高明,黎嘉成,徐国鑫,王富华,李娇,陈仕奇. 有机物料等氮量施用对紫色土氮形态及温室气体排放的影响[J]. 中国农业科学, 2018, 51(21): 4087-4101.
Rong HUANG,Ming GAO,JiaCheng LI,GuoXin XU,FuHua WANG,Jiao LI,ShiQi CHEN. Effects of Combined Application of Various Organic Materials and Chemical Fertilizer on Soil Nitrogen Formation and Greenhouse Gas Emission Under Equal Nitrogen Rates from Purple Soil[J]. Scientia Agricultura Sinica, 2018, 51(21): 4087-4101.
表1
种植及施肥情况"
蔬菜 Vegetable | 常规需氮(N)量 Conventional nitrogen requirement (kg·hm-2) | 常规需磷(P2O5)量 Conventional phosphate requirement (kg·hm-2) | 常规需钾(K2O)量 Conventional potassium requirement (kg·hm-2) | 种植及施肥情况 Planting and fertilization |
---|---|---|---|---|
莴笋 Lettuce | 300 | 90 | 150 | 2016年10月20日施入有机物料并翻耕,10月27日移栽莴笋苗,10月30日施基肥(氮肥60%,磷肥和钾肥一次性施入),12月9日追肥(氮肥40%),2017年1月9日收获莴笋 Organic material was incorporated into soil and plowed on 20 October 2016. The lettuce was transplanted on 27 October 2016. A total of P and K fertilizers were applied as basis along with 60% of N fertilizer on 30 October 2016, and 40% of N fertilizer was applied on 9 December 2016. The lettuce was harvested on 9 January 2017 |
卷心菜 Cabbage | 300 | 70 | 300 | 2017年1月10日施基肥(氮肥40%,钾肥40%,磷肥一次性施入),1月11日移栽卷心菜苗,2月21日第一次追肥(氮肥30%,钾肥30%),3月27日第二次追肥(氮肥30%,钾肥30%),5月4日收获卷心菜 A total of P fertilizer, 40% of N fertilizer and 40% of K fertilizer was applied as basis on 10 January 2017. The cabbage was transplanted on 1 January 2017. The remaining N and K fertilizers were split into two parts of the same amount and top-dressed on 21 February and 27 March 2017, respectively. The cabbage was harvested on 4 May 2017 |
辣椒 Chili | 300 | 80 | 150 | 2017年5月5日施入有机物料并翻耕,5月10日施基肥(氮肥50%,钾肥50%,磷肥一次性施入),5月11日移栽辣椒苗,6月19日追肥(氮肥50%,钾肥50%),7月20日、8月18日、9月14日收获辣椒 Organic material was incorporated into soil and plowed on 5 May 2017. A total of P fertilizer, 50% of N fertilizer and 50% of K fertilizer was applied as basis on 10 May 2017. The chili was transplanted on 11 May 2017. The remaining of N and K fertilizers were applied on 19 June 2017. The chili was harvested on 20 July, 18 August and 14 September 2017, respectively |
表2
不同处理下的温室气体平均排放通量和增温潜势变化"
处理 Treatment | 平均排放通量 Mean greenhouse gas emission flux (kg·hm-2) | GWP (kg CO2-e·hm-2) | ||
---|---|---|---|---|
N2O | CO2 | CH4 | ||
CK | 3.7±0.1e | 55537±2735c | 2.0±0.21a | 56578±2704d |
F | 15.6±0.3d | 56544±1803c | 1.7±0.28b | 60716±1901d |
SF | 30.0±1.4c | 63761±3623b | -0.1±0.0d | 71697±3989c |
MF | 34.7±0.9b | 76675±1720a | -1.3±0.2e | 85828±1957a |
BF | 16.8±0.4d | 75254±867a | 0.4±0.0c | 79709±883b |
CF | 47.1±4.0a | 73665±2603a | 2.1±0.2a | 86216±3679a |
表3
温室气体排放与温度、含水量相关分析"
N2O排放量 N2O emission flux | CO2排放量 CO2 emission flux | CH4排放量 CH4 emission flux | 5 cm土温 5 cm soil temperature | 气温 Air temperature | 土壤含水量 Soil moisture content | |
---|---|---|---|---|---|---|
N2O排放量 N2O emission flux | 1 | 0.207** | 0.148** | 0.127* | 0.121* | 0.074 |
CO2排放量 CO2 emission flux | 1 | 0.020 | 0.563** | 0.609** | -0.357** | |
CH4排放量 CH4 emission flux | 1 | .075 | 0.066 | 0.111* | ||
5 cm土温 5 cm soil temperature | 1 | 0.975** | -0.637** | |||
气温 Air temperature | 1 | -0.629** | ||||
土壤含水量 Soil moisture content | 1 |
[1] |
王斌, 李玉娥, 万运帆, 秦晓波, 高清竹 . 控释肥和添加剂对双季稻温室气体排放影响和减排评价. 中国农业科学, 2014,47(2):314-323.
doi: 10.3864/j.issn.0578-1752.2014.02.011 |
WANG B, LI Y E, WAN Y F, QIN X B, GAO Q Z . Effect and assessment of controlled release fertilizer and additive treatments on greenhouse gases emission from a double rice field. Scientia Agricultura Sinica, 2014,47(2):314-323. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.02.011 |
|
[2] |
ZHENG X H, HAN S H, HUANG Y, WANG Y S, WANG M X . Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18. GB2018. doi: 10.1029/2003GB002167.
doi: 10.1029/2003GB002167 |
[3] | HUANG Y, TANG Y H . An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Global Change Biology, 2010,16(11):2958-2970. |
[4] |
ZHAO Y C, WANG M Y, HU S J, ZHANG X D, OUYANG Z, ZHANG G L, HUANG B, ZHAO S W, WU J S, XIE D T, ZHU B, YU D S, PAN G X, XU S X, SHI X Z . Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. PNAS, 2018,115:4045-4050.
doi: 10.1073/pnas.1700292114 pmid: 29666318 |
[5] |
WANG J Y, XIONG Z Q, YAN X Y . Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmospheric Environment, 2011,45:6923-6929.
doi: 10.1016/j.atmosenv.2011.09.045 |
[6] |
JAMTGARD S, NASHOLM T, HUSS-DANELL K . Nitrogen compounds in soil solutions of agricultural land. Soil Biology & Biochemistry, 2010,42(12):2325-2330.
doi: 10.1016/j.soilbio.2010.09.011 |
[7] |
李柘锦, 隋鹏, 龙攀, 严玲玲, 王彬彬, 陈源泉 . 不同有机物料还田对农田系统净温室气体排放的影响. 农业工程学报, 2016,32(S2):111-116.
doi: 10.11975/j.issn.1002-6819.2016.z2.015 |
LI Z J, SUI P, LONG P, YAN L L, WANG B B, CHEN Y Q . Effects of different organic wastes application on net greenhouse gas emission in farmland system. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(S2):111-116. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2016.z2.015 |
|
[8] | 黄容, 高明, 吕盛, 徐国鑫, 黎嘉成 . 锯木灰渣改良退化菜园紫色土壤的效果研究. 土壤学报, 2018,55(3):710-720. |
HUANG R, GAO M, LV S, XU G X, LI J C . Effect of saw dust ash ameliorating degraded vegetable garden purple soil. Acta Pedologica Sinica, 2018,55(3):710-720. (in Chinese) | |
[9] |
KEMMITT S J, LANYON C V, WAITE I S, WEN Q, ADDISCOTT T M, BIRD N R A, O’Donnell A G, BROOKES P C . Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective. Soil Biology & Biochemistry, 2008,40:61-73.
doi: 10.1016/j.soilbio.2007.06.021 |
[10] | 黄容, 高明, 黎嘉成, 徐国鑫, 吕盛, 罗梅 . 秸秆与化肥减量配施对菜地土壤温室气体排放的影响. 环境科学, 2018, 39(10): 1-17. . |
HUANG R, GAO M, LI J C, XU G X, LV S, LUO M . Effect of straw residues in combination with reducing fertilization rate on greenhouse gas emission in vegetable field. Environmental Science, 2018, 39(10): 1-17. . (in Chinese) | |
[11] | 黄容, 高明, 万毅林, 田冬, 陶睿, 王芳丽 . 秸秆还田与化肥减量配施对稻-菜轮作下土壤养分及酶活性的影响. 环境科学, 2016,37(11):4446-4456. |
HUANG R, GAO M, WAN Y L, TIAN D, TAO R, WANG F L . Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils. Environmental Science, 2016,37(11):4446-4456. (in Chinese) | |
[12] |
段鹏鹏, 丛耀辉, 徐文静, 张玉玲, 虞娜, 张玉龙 . 氮肥与有机肥配施对设施土壤可溶性氮动态变化的影响. 中国农业科学, 2015,48(23):4717-4727.
doi: 10.3864/j.issn.0578-1752.2015.23.013 |
DUAN P P, CONG Y H, XU W J, ZHANG Y L, YU N, ZHANG Y L . Effect of combined application of nitrogen fertilizer and manure on the dynamic of soil soluble N in greenhouse cultivation. Scientia Agricultura Sinica, 2015,48(23):4717-4727. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.23.013 |
|
[13] |
石生伟, 李玉娥, 李明德, 万运帆, 高清竹, 彭华, 秦晓波 . 不同施肥处理下双季稻田CH4和N2O排放的全年观测研究. 大气科学, 2011(4):707-720.
doi: 10.3878/j.issn.1006-9895.2011.04.10 |
SHI S W, LI Y E, LI M D, WAN Y F, GAO Q Z, PENG H, QIN X B . Annual CH4 and N2O emissions from double rice cropping systems under various fertilizer regimes in Hunan Province, China.Chinese Journal of Atmospheric Sciences, 2011(4):707-720. (in Chinese)
doi: 10.3878/j.issn.1006-9895.2011.04.10 |
|
[14] |
张斌, 刘晓雨, 潘根兴, 郑聚锋, 池忠志, 李恋卿, 张旭辉, 郑金伟 . 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化. 中国农业科学, 2012,45(23):4844-4853.
doi: 10.3864/j.issn.0578-1752.2012.23.011 |
ZHANG B, LIU X Y, PAN G X, ZHENG J F, CHI Z Z, LI L Q, ZHANG X H, ZHENG J W . Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles. Scientia Agricultura Sinica, 2012,45(23):4844-4853. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.23.011 |
|
[15] | 范靖尉, 白晋华, 任寰宇, 韩雪, 刁田田, 郭李萍 . 减氮和施生物炭对华北夏玉米-冬小麦田土壤CO2和N2O排放的影响. 中国农业气象, 2016,37(2):121-130. |
FAN J W, BAI J H, REN H Y, HAN X, DIAO T T, GUO L P . Effects of reducing nitrogen and biochar application on CO2 and N2O emissions from summer maize-winter wheat field in North China. Chinese Journal of Agrometeorology, 2016,37(2):121-130. (in Chinese) | |
[16] |
潘凤娥, 胡俊鹏, 索龙, 王小淇, 季雅岚, 孟磊 . 添加玉米秸秆及其生物质炭对砖红壤N2O 排放的影响. 农业环境科学学报, 2016,35(2):396-402.
doi: 10.11654/jaes.2016.02.026 |
PAN F E, HU J P, SUO L, WANG X Q, JI Y L, MENG L . Effect of corn stalk and its biochar on N2O emissions from latosol soil. Journal of Agro-Environment Science, 2016, 2016,35(2):396-402. (in Chinese)
doi: 10.11654/jaes.2016.02.026 |
|
[17] |
刘杏认, 张星, 张晴雯, 李贵春, 张庆忠 . 施用生物炭和秸秆还田对华北农田CO2、N2O 排放的影响. 生态学报, 2017,37(20):6700-6711.
doi: 10.5846/stxb201607281546 |
LIU X R, ZHANG X, ZHANG Q W, LI G C, ZHANG Q Z . Effects of biochar and straw return on CO2 and N2O emissions from farmland in the North China Plain. Acta Ecologica Sinica, 2017,37(20):6700-6711. (in Chinese)
doi: 10.5846/stxb201607281546 |
|
[18] |
张旭博, 徐明岗, 张文菊, 林昌虎, 段英华, 蔡泽江, 张崇玉 . 添加有机物料后红壤 CO2释放特征与微生物生物量动态. 中国农业科学, 2011,44(24):5013-5020.
doi: 10.3864/j.issn.0578-1752.2011.24.006 |
ZHANG X B, XU M G, ZHANG W J, LIN C H, DUAN Y H, CAI Z J, ZHANG C Y . Characteristics of CO2 emission and microbial biomass dynamics after adding various organic materials in red soil. Scientia Agricultura Sinica, 2011,44(24):5013-5020. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.24.006 |
|
[19] |
刘四义, 梁爱珍, 杨学明, 张晓平, 贾淑霞, 陈学文, 张士秀, 孙冰洁, 陈升龙 . 不同部位玉米秸秆对两种质地黑土CO2排放和微生物量的影响. 环境科学, 2015,36(7):2686-2694.
doi: 10.13227/j.hjkx.2015.07.048 |
LIU S Y, LIANG A Z, YANG X M, JIA S X, CHEN X W, ZHANG S X, SUN B J, CHEN S L . Effects of different residue part inputs of corn straws on CO2 efflux and microbial biomass in clay loam and sandy loam black soils. Environmental Science, 2015,36(7):2686-2694. (in Chinese)
doi: 10.13227/j.hjkx.2015.07.048 |
|
[20] |
KHOSA M K, SIDHU B S, BENBI D K . Effect of organic materials and rice cultivars on methane emission from rice field. Journal of Environmental Biology, 2010,31(3):281-285.
doi: 10.2112/JCOASTRES-D-09-00120.1 pmid: 21046997 |
[21] |
ZHU T B, ZHANG J B, YANG W Y, CAI Z C . Effects of organic material amendment and water content on NO, N2O, and N2 emissions in a nitrate-rich vegetable soil. Biology & Fertility of Soils, 2013,49(2):153-163.
doi: 10.1007/s00374-012-0711-4 |
[22] |
SHAN J, YAN X . Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013,71(3):170-175.
doi: 10.1016/j.atmosenv.2013.02.009 |
[23] | 张福锁, 陈新平, 陈清 . 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009. |
ZHANG F S, CHEN X P, CHEN Q. Guide to Fertilization of Major Crops in China. Beijing: China Agricultural University Press, 2009. ( in Chinese) | |
[24] |
HUTCHINSON G L, LIVINGSTON G P . Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. European Journal of Soil Science, 2001,52, 675-682.
doi: 10.1046/j.1365-2389.2001.00415.x |
[25] | IPCC. Climate Change 2013: The physical science basis[R]. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. |
[26] | 杨剑虹 . 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008. |
YANG J H. Agricultural Soil Analysis and Environmental Monitoring. Beijing: China Land Press, 2008. ( in Chinese) | |
[27] | LEMKE R, VANDEN B A, CAMPBELL C, LAFOND G, GRANT B . Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on audicboroll. Agriculture, Ecosystems & Environment, 2010,135(1):42-51. |
[28] |
CHEN Q H, FENG Y, ZHANG Y P, ZHANG Q C, SHAMSI I H, ZHANG Y S, LIN X Y . Short-term responses of nitrogen mineralization and microbial community to moisture regimes in greenhouse vegetable soils. Pedosphere, 2012,22(2):263-272.
doi: 10.1016/S1002-0160(12)60013-7 |
[29] |
HOPKINS D W, SHIEL R S . Size and activity of soil microbial communities in long-term experimental grassland plots treated with manure and inorganic fertilizers. Biology and Fertility of Soils, 1996,22(1/2):66-70.
doi: 10.1007/BF00384434 |
[30] | 祁乐, 高明, 郭晓敏, 牛海东, 李婷, 孙涛, 曹群羚, 唐镓豪 . 生物炭施用量对紫色水稻土温室气体排放的影响. 环境科学, 2018,36(5):1-11. |
QI L, GAO M, GUO X M, NIU H D, LI T, SUN T, CAO Q L, TANG J H . Effects of biochar application rates on greenhouse gas emission in the purple paddy soil. Environmental Science, 2018,36(5):1-11. (in Chinese) | |
[31] |
李燕青, 唐继伟, 车升国, 温延臣, 孙文彦, 赵秉强 . 长期施用有机肥与化肥氮对华北夏玉米N2O 和CO2排放的影响. 中国农业科学, 2015,48(21):4381-4389.
doi: 10.3864/j.issn.0578-1752.2015.21.018 |
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q . Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China Plain. Scientia Agricultura Sinica, 2015,48(21):4381-4389. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.21.018 |
|
[32] | 朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎 . 农田土壤N2O 产生的关键微生物过程及减排措施. 环境科学, 2014,35(2):792-800. |
ZHU Y G, WANG X H, YANG X R, XU H J, JIA Y . Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. Environmental Science, 2014,35(2):792-800. (in Chinese) | |
[33] |
ZHANG M Y, WANG F J, CHEN F, MALEMELA M P, ZHAN H L . Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production, 2013,54:101-107.
doi: 10.1016/j.jclepro.2013.04.033 |
[34] |
YANG H S, XU M M, KOIDE R T, LIU Q, DAI Y J, LIU L, BIAN X M . Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system. Journal of the Science of Food & Agriculture, 2015,96(4):1141-1149.
doi: 10.1002/jsfa.7196 pmid: 25847361 |
[35] |
LI H, QIU J, WANG L, TANG H, LI C, RANST E V . Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agriculture, Ecosystems and Environment, 2010,135(1):24-33.
doi: 10.1016/j.agee.2009.08.003 |
[36] |
CASE S D C, MCNAMARA N P, REAY D S, WHITAKER J . The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil-The role of soil aeration. Soil Biology and Biochemistry, 2012,51:125-134.
doi: 10.1016/j.soilbio.2012.03.017 |
[37] |
NADELHOFFER K J, EMMETT B A, GUNDERSEN P, KJøNAAS O J, KOOPMANS C J, SCHLEPPI P, WRIGHT R F . Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 1999,398(6723):145-148.
doi: 10.1038/18205 |
[38] |
BOWDEN R D, DAVIDSON E, SAVAGE K, ARABIA C, STEUDLER P . Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004,196(1):43-56.
doi: 10.1016/j.foreco.2004.03.011 |
[39] |
栗方亮, 王煌平, 张青, 王利民, 安梦鱼, 罗涛 . 室内恒温条件下稻田土壤中菌渣的分解过程及CO2释放特征. 中国生态业学报, 2017,25(2):267-275.
doi: 10.13930/j.cnki.cjea.160678 |
LI F L, WANG H P, ZHANG Q, WANG L M, AN M Y, LUO T . Decomposition process and CO2 release characteristics of spent mushroom substrate in paddy soils. Chinese Journal of Eco-Agriculture, 2017,25(2):267-275. (in Chinese)
doi: 10.13930/j.cnki.cjea.160678 |
|
[40] |
KEILUWEIT M, NICO P S, JOHNSON M G, KLEBER M . Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science &Technology, 2010,44(4):1247-1253.
doi: 10.1021/es9031419 pmid: 20099810 |
[41] |
王娟, 张丽君, 姚槐应 . 添加秸秆和黑炭对水稻土碳氮转化及土壤微生物代谢图谱的影响. 中国水稻科学, 2013,27(1):97-104.
doi: 10.3969/j.issn.10017216.2013.01.014 |
WANG J, ZHANG L J, YAO H Y . Effects of straw and black carbon addition on C-N transformation and microbial metabolism profile in paddy soil. Chinese Journal of Rice Science, 2013,27(1):97-104. (in Chinese)
doi: 10.3969/j.issn.10017216.2013.01.014 |
|
[42] | LU W W, DING W X, ZHANG J H, LI Y, LUO J F, BOLAN N, XIE Z B . Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biology & Biochemistry, 2014,76:12-21. |
[43] | CROSS A, SOHI S P . The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology & Biochemistry, 2011,43(10):2127-2134. |
[44] |
张凯莉, 郝庆菊, 冯迪, 石将来, 石孝均, 江长胜 . 地膜覆盖对蔬菜地甲烷排放的影响. 环境科学, 2017,38(8):3451-3462.
doi: 10.13227/j.hjkx.201701002 |
ZHANG K L, HAO Q J, FENG D, SHI J L, SHI X J, JIANG C S . Effect of plastic film mulching on methane emission from a vegetable field. Environmental Science, 2017,38(8):3451-3462. (in Chinese)
doi: 10.13227/j.hjkx.201701002 |
|
[45] | 韩圆圆, 曹国军, 耿玉辉, 叶青, 王振华, 黄岩 . 农业废弃物还田对黑土温室气体排放及全球增温潜势的影响. 华南农业大学学报, 2017,38(5):36-42. |
HAN Y Y, CAO G J, GENG Y H, YE Q, WANG Z H, HUANG Y . Effects of agricultural wastes on greenhouse gas emission and global warming potential in black soil. Journal of South China Agricultural University, 2017,38(5):36-42. (in Chinese) | |
[46] |
宋利娜, 张玉铭, 胡春胜, 张喜英, 董文旭, 王玉英, 秦树平 . 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应. 中国生态农业学报, 2013(3):297-307.
doi: 10.3724/SP.J.1011.2013.00297 |
SONG L N, ZHANG Y M, HU C S, ZHANG X Y, DONG W X, WANG Y Y, QIN S P . Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain.Chinese Journal of Eco-Agriculture, 2013(3):297-307. (in Chinese)
doi: 10.3724/SP.J.1011.2013.00297 |
|
[47] |
CHAN A S K, STEUDLER P A . Carbon monoxide uptake kinetics in unamended and long-term nitrogen-amended temperate forest soils. FEMS Microbiology Ecology, 2006,57(3):343-354.
doi: 10.1111/j.1574-6941.2006.00127.x pmid: 16907749 |
[48] |
LAVILLE P, LEHUGER S, LOUBET B, CHAUMARTIN F, CELLIER P . Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agricultural & Forest Meteorology, 2011,151(2):228-240.
doi: 10.1016/j.agrformet.2010.10.008 |
[49] |
KURGANOVA I N, GERENYU V O L D . Effect of the temperature and moisture on the N2O emission from some arable soils. Eurasian Soil Science, 2010,43(8):919-928.
doi: 10.1134/S1064229310080090 |
[50] | 田冬, 高明, 黄容, 吕盛, 徐畅 . 油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物炭还田的响应. 环境科学, 2017,38(7):2988-2999. |
TIAN D, GAO M, HUANG R, LV S, XU C . Response of soil respiration and heterotrophic respiration to returning of straw and biochar in rape-maize rotation systems. Environmental Science, 2017,38(7):2988-2999. (in Chinese) | |
[51] |
SCHULZE E D, LUYSSAERT S, CIAIS P . Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance.Nature Geoscience, 2009(2):842-850.
doi: 10.1038/ngeo686 |
[52] |
KNORR W, PRENTICE I C, HOUSE J I, HOLLAND E A . Long-term sensitivity of soil carbon turnover to warming. Nature, 2005,433(7023):298-301.
doi: 10.1038/nature03226 |
[53] | SOLOMON S. Climate Change 2007- The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press, 2007. |
[54] |
李露, 周自强, 潘晓健, 熊正琴 . 不同时期施用生物炭对稻田N2O和CH4排放的影响. 土壤学报, 2015,52(4):839-848.
doi: 10.11766/trxb201407160357 |
LI L, ZHOU Z Q, PAN X J, XIONG Z Q . Effects of biochar on N2O and CH4 emissions from paddy field under rice-wheat rotation during rice and wheat growing seasons relative to timing of amendment. Acta Pedologica Sinica, 2015,52(4):839-848. (in Chinese)
doi: 10.11766/trxb201407160357 |
[1] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[2] | 张学林, 吴梅, 何堂庆, 张晨曦, 田明慧, 李晓立, 侯小畔, 郝晓峰, 杨青华, 李潮海. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729-742. |
[3] | 邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响[J]. 中国农业科学, 2022, 55(3): 529-542. |
[4] | 陈绪昊,高强,陈新平,张务帅. 东北三省玉米生产资源投入和环境效应的时空特征[J]. 中国农业科学, 2022, 55(16): 3170-3184. |
[5] | 宋鸽,史东梅,蒋光毅,江娜,叶青,张健乐. 土壤管理措施对坡耕地侵蚀退化耕层的恢复作用[J]. 中国农业科学, 2021, 54(8): 1702-1714. |
[6] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[7] | 任嘉欣,刘京,陈轩敬,张跃强,张勇,王洁,石孝均. 长期施肥紫色土有效磷变化及其对稻麦轮作产量的影响[J]. 中国农业科学, 2021, 54(21): 4601-4610. |
[8] | 张卫建,严圣吉,张俊,江瑜,邓艾兴. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892-3902. |
[9] | 江娜,史东梅,蒋光毅,宋鸽,司承静,叶青. 土壤侵蚀对紫色土坡耕地耕层物理及力学特性的影响[J]. 中国农业科学, 2020, 53(9): 1845-1859. |
[10] | 宋鸽,史东梅,曾小英,蒋光毅,江娜,叶青. 紫色土坡耕地耕层质量障碍特征[J]. 中国农业科学, 2020, 53(7): 1397-1410. |
[11] | 魏丹,蔡姗姗,李艳,金梁,王伟,李玉梅,白杨,胡钰. 黑土水溶性有机碳对有机物料还田的响应[J]. 中国农业科学, 2020, 53(6): 1180-1188. |
[12] | 朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977-989. |
[13] | 邬磊,何志龙,汤水荣,吴限,张文菊,胡荣桂. 稻田转为菜地初始阶段温室气体排放特征[J]. 中国农业科学, 2020, 53(24): 5050-5062. |
[14] | 向伟,王雷,刘天奇,李诗豪,翟中兵,李成芳. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响[J]. 中国农业科学, 2020, 53(22): 4634-4645. |
[15] | 袁武,靳振江,程跃扬,贾远航,梁锦桃,邱江梅,潘复静,刘德深. 岩溶湿地和稻田的土壤酶活性与CO2和CH4排放特征[J]. 中国农业科学, 2020, 53(14): 2897-2906. |
|