中国农业科学 ›› 2023, Vol. 56 ›› Issue (2): 314-332.doi: 10.3864/j.issn.0578-1752.2023.02.009
收稿日期:
2021-12-08
接受日期:
2022-01-29
出版日期:
2023-01-16
发布日期:
2023-02-07
通讯作者:
王小龙,E-mail:作者简介:
陈晓炜,E-mail:基金资助:
CHEN XiaoWei(),WANG XiaoLong()
Received:
2021-12-08
Accepted:
2022-01-29
Online:
2023-01-16
Published:
2023-02-07
摘要:
【目的】基于农业碳计量学方法对种养复杂系统全生命周期固碳减排效果的综合评估,是从全产业链视角开展我国低碳农作制度设计和优化的基础。本研究比较了5种系统情景及其对应的种养循环产业链碳足迹评估框架,以期为国内外低碳农作制度创建提供科学、合理、可用的方法学借鉴。【方法】研究基于ISO 14040发布的产品全生命周期碳足迹评价框架,结合IPCC提供的农田和养殖业温室气体核算体系,在不同的系统边界下,构建种养循环农作制度碳足迹评估框架,并以华南热作区鲜食玉米-奶牛-粪便还田循环模式为实证研究对象开展评估效果验证。【结果】评估框架明确了种养循环和分离模式全产业链都包含有农资投入、农田种植、动物养殖、粪便管理、运输和土壤碳汇变化等6个核算环节,并对各环节的碳计量学逻辑及其碳足迹核算方法进行了分析。案例结果表明,鲜食玉米-奶牛-粪便还田种养循环模式全生命周期碳足迹比分离模式降低了34.44%,表现出更好的固碳减排效果。评估框架对种养“耦合”或“脱耦”后对上游农资生产及运输环节的“间接排放”,以及下游产业链饲料替代和废弃物循环利用的“替代性减排”特征能够充分体现,实景系统田间实测数据和调研数据与背景系统的模型评估参数相结合,所得评估结果更加贴近种养循环农作制度的生产实际。【结论】本研究构建的种养循环农作制度碳足迹评估框架,能够在全生命周期视角和合理的系统边界下,进行种养产业链循环和分离系统固碳减排效果的综合评估,并提供优化方向。
陈晓炜, 王小龙. 种养循环农作制度碳足迹评估—以鲜食玉米-奶牛-粪便还田循环模式为例[J]. 中国农业科学, 2023, 56(2): 314-332.
CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model[J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
表1
不同种养情景下系统边界设定及对应核算方法"
系统类型System category | 单一种植系统 Single planting system | 单一养殖系统 Single breeding system | 种养分离模式 Separated crop-livestock system | 种养循环模式 Integrated crop-livestock system | 种养循环优化模式 Integrated crop-livestock optimization system |
---|---|---|---|---|---|
代号 Codename | SPS | SBS | SCLS | ICLS | ICLOS |
系统特征 System characteristic | 农场单一经营种植业Farm monoculture operation | 农场单一经营养殖业Single livestock breeding farm | 农场包括SPS和SBS两部分产业,但分离经营,尚未合理的物能代谢过程实现种养循环 The farm includes both SPS and SBS industries operated separately in the SLCS system. Besides, it has not yet been rationalized to realize the physical and energy metabolism cycle | 农场包括SPS和SBS两部分产业,且通过种植业产品部分替代养殖业外源饲料和养殖废弃物部分替代农田化肥2种途径形成了种养循环The farm includes both SPS and SBS industries, and the farming cycle is formed through two ways: partial substitution of farming products for off-farm feed and partial substitution of farming waste for cropland fertilizer | 按照现有废弃物还田量,假定农场养殖业产生的粪污能够通过增加农田面积而被种植业完全消纳,在此条件下构成的“零排放”种养循环模式 Based on the existing amount of waste returned to the farm, this scenario assumes that the manure generated from livestock farming can be completely absorbed by the farming industry by increasing the area of farmland, which constitutes a "zero-emission" farming cycle model |
系统边界 System boundary | 从农资生产上游到作物收获后秸秆处理完成 From the upstream production of agricultural materials to the straw completed treatment after crop harvest | 从养殖场所需农资的生产上游到粪便管理环节 From all upstream processes of all agricultural inputs production of the animal farm, up to the manure management process | 从农田种植和养殖场农资投入的生产上游到作物种植和养殖业的废弃物管理环节From the upstream production of agricultural inputs to the waste management chain of planting and breeding farms | 从农田种植和养殖场农资投入的生产上游到养殖业废弃物管理环节 From the production upstream of agricultural inputs in planting and breeding to the farming waste management chain | |
核算环节 Accounting section | 农田所需农资投入、农田种植、运输环节及土壤有机碳变化 The whole life cycle of upstream production of materials and energy required for crop cultivation to farm waste management after crop harvest, includes the following process: agriculture inputs in farmland, greenhouse gas emissions on the field, soil carbon pool variation and transportation process | 从非农场生产的饲料作物及其他物资生产的上游到动物生产收获的全生命周期,包含的环节有:饲料生产和加工过程、动物生产过程的物能消耗、动物肠道发酵、粪便管理以及运输环节 The whole life cycle is from the “off-farm” upstream production of feeds and other materials to the “on-farm” animal manure management, containing the following process: feed production and processing, materials and energy production and consumption in farming, enteric fermentation, manure management, and transportation process | 单一种植业和养殖业直接构成的种养分离模式,包含SPS和SBS两个系统的所有环(SCLS=SPS+SBS),两个生产系统之间空间分离且没有物质交流 The separated crop-livestock model is directly constituted by planting and farming, containing all the processes of both SPS and SBS systems (SCLS = SPS + SBS), with spatial separation and no material exchange between systems | 农场中包含种植系统和养殖系统,与ICLS核算的生产环节一致,两种模式的区别在于两个生产系统之间有物质交流,同时将替代性(增)减排效应纳入对种养循环模式碳足迹的核算范围 The farm contains both the planting and the farming, which is consistent with the production process accounted by the ICLS system. The difference between these two systems is that there is the material exchange between the two production systems, while the alternative (increase) reduction emission effect is taken into account when accounting for the carbon footprint of the integrated crop-livestock model | ICLOS系统是在ICLS的基础上进行优化调控情景模拟。在考虑粪便完全消纳所需要的种植面积重新构建的种植业和养殖业形成的种养循环模式 The ICLOS system is an optimal regulation scenario simulation based on the ICLS system. This integrated crop livestock model is reconstructed by considering the planting area required for complete consume manure |
表2
不同种养情景下碳足迹核算框架"
系统情景 System scenario | 评估框架 Assessment framework |
---|---|
SPS | $C{{F}_{\text{Total,SPS}}}=(C{{F}_{\text{AI,1}}}+C{{F}_{\text{AC,1}}})\times {{S}_{1}}+C{{F}_{\text{VT,1}}}-(C{{F}_{\text{dSOC,}1}}\times {{S}_{1}})$ |
SBS | $C{{F}_{\text{Total,SBS}}}=C{{F}_{\text{LB,1}}}+C{{F}_{\text{MM,1}}}+C{{F}_{\text{VT,}2}}$ |
SCLS | $SC{{F}_{\text{Total,SCLS}}}=(C{{F}_{\text{AI,1}}}+C{{F}_{\text{AC,1}}})\times {{S}_{1}}+C{{F}_{\text{LB,1}}}+C{{F}_{\text{MM,1}}}+C{{F}_{\text{VT,}3}}-(C{{F}_{\text{dSOC,}1}}\times {{S}_{1}})$ |
ICLS | $C{{F}_{\text{Total,ICLS}}}=(C{{F}_{\text{AI},1}}+C{{F}_{\text{AC},1}})\times {{S}_{1}}+C{{F}_{\text{LB,2}}}+C{{F}_{\text{MM},2}}+C{{F}_{\text{VT,}4}}-(C{{F}_{\text{dSOC,}1}}\times {{S}_{1}})$ |
ICLOS | $C{{F}_{\text{Total,ICLOS}}}=(C{{F}_{\text{AI,}2}}+C{{F}_{\text{AC,}2}})\times {{S}_{2}}+C{{F}_{\text{LB},2}}+C{{F}_{\text{MM},3}}+C{{F}_{\text{VT,5}}}-(C{{F}_{\text{dSOC},2}}\times {{S}_{2}})$ |
代号说明 Code description | CFTotal是系统全产业链温室气体总和(kg CO2-eq·a-1);CFAI指农田生产中农资投入所引发的田间温室气体排放(kg CO2-eq·hm-2·a-1);CFAC指种植过程和秸秆处理的田间温室气体排放(kg CO2-eq·hm-2·a-1);CFLB是养殖环节温室气体排放(kg CO2-eq·a-1);CFMM是粪便管理环节温室气体排放(kg CO2-eq·a-1);CFVT是运输环节温室气体排放(kg CO2-eq·a-1);CFdSOC是土壤有机碳变化量 (kg CO2-eq·hm-2·a-1)。数字下标表示同一环节在不同系统中的数量变化;S1指农场实际种植面积,S2指ICLOS情景中的假设种植面积 CFTotal is the total GHG emissions generated the system (kg CO2-eq·a-1); CFAI is on-field GHG emissions from agricultural inputs (kg CO2-eq·hm-2·a-1); CFAC is the on-field GHG emissions from crop cultivation and straw treatment (kg CO2-eq·hm-2·a-1); CFLB is GHG emissions from animal rearing (kg CO2-eq·a-1); CFMM is GHG emissions from manure management (kg CO2-eq·a-1); CFVT is GHG emissions from transportation (kg CO2-eq·a-1); CFdSOC is the change in soil organic carbon storage (kg CO2-eq·hm-2·a-1). The numbers subscript indicated quantity change of the same link in different systems; S1 is the actual area of planting area in farm in the case, S2 is the assumed planting area in the ICLOS scenario |
表3
农资温室气体排放系数"
项目 Item | 温室气体排放系数 Emission factors for agricultural inputs |
---|---|
氮肥 Nitrogenous fertilizer (kg CO2-eq·kg-1) | 2.12[ |
磷肥 Phosphate fertilizer (kg CO2-eq·kg-1) | 0.64[ |
钾肥 Potassium fertilizer (kg CO2-eq·kg-1) | 0.18[ |
杀虫剂 Insecticide (kg CO2-eq·kg-1) | 23.90[ |
除草剂 Herbicide (kg CO2-eq·kg-1) | 14.40[ |
杀菌剂 Bactericide (kg CO2-eq·kg-1) | 21.00[ |
玉米种子 Maize seeds (kg CO2-eq·kg-1) | 1.22[ |
柴油 Diesel (kg CO2-eq·kg-1) | 3.16[ |
电力 Electricity (kg CO2-eq·kWh-1) | 0.55[ |
疫苗 Vaccine (kg CO2-eq·kg-1) | 6.58[ |
兽药 Veterinary medicines (kg CO2-eq/yuan) | 0.011) |
表4
运输环节温室气体排放核算参数"
项目Item | 符号Symbol | 数值Value |
---|---|---|
车辆载重量Vehicle capacity (t) | M | 5.00[ |
满载耗油量Full load fuel consumption (t·kWh-1) | g1 | 0.000382[ |
满载速率Full load speed (km·h-1) | V1 | 45.00[ |
空载的耗油量No-load fuel consumption (t·kWh-1) | g0 | 0.00031[ |
空载速率No-load speed (km·h-1) | V0 | 60.00[ |
车辆的比功率Specific power of vehicle (kW·t-1) | VSP | 7.20[ |
农资单次运输距离Single transport distance for nitrogen fertilizer (km) | Lt | 根据案例实际确定 Determined by actual case study |
表5
种植系统相关农资投入与产量"
项目 Item | 系统类型 System category | |||
---|---|---|---|---|
SPS | SCLS | ICLS | ICLOS | |
农资投入 Agricultural inputs | ||||
总氮投入量Total N application rate (kg·hm-2) | 300.00 | 300.00 | 300.00 | 300.00 |
牛粪的全氮含量 Total nitrogen content of dairy manure (g·kg-1) | 7.04 | 7.04 | 7.04 | 7.04 |
牛粪施用量 Dairy manure application rate (kg·hm-2) | 0.00 | 0.00 | 21321.96 | 21321.96 |
氮肥 Nitrogen fertilizer (kg·hm-2) | 300.00 | 300.00 | 150.00 | 150.00 |
磷肥 Phosphate fertilizer (kg·hm-2) | 150.00 | 150.00 | 150.00 | 150.00 |
钾肥 Potassium fertilizer (kg·hm-2) | 300.00 | 300.00 | 300.00 | 300.00 |
杀虫剂 Insecticide (kg·hm-2) | 1.19 | 1.19 | 1.19 | 1.19 |
除草剂 Herbicide (kg·hm-2) | 15.71 | 15.71 | 15.71 | 15.71 |
杀菌剂 Bactericide (kg·hm-2) | 0.69 | 0.69 | 0.69 | 0.69 |
玉米种子 Maize seeds (kg·hm-2) | 7.50 | 7.50 | 7.50 | 7.50 |
柴油 Diseal (kg·hm-2) | 11.03 | 11.03 | 11.03 | 11.03 |
电力 Electricity (kWh·hm-2) | 417.44 | 417.44 | 417.44 | 417.44 |
种植年限Planting period (a) | 0.25 | 0.25 | 0.25 | 0.25 |
种植面积Planting area1) (hm2) | 13.33 | 13.33 | 13.33 | 355.18 |
系统产出 System output | ||||
玉米的单位面积产量 Maize yield per unit area (kg·hm-2) | 10975.00 | 10975.00 | 9946.33 | 9946.33 |
玉米秸秆的单位产量 Maize straw yield per unit area (kg·hm-2) | 13938.25 | 13938.25 | 12631.84 | 12631.84 |
玉米总产量 Total maize yield (t·a-1) | 439.00 | 439.00 | 397.85 | 10598.14 |
玉米秸秆总产量Total maize straw yield (t·a-1) | 557.53 | 557.53 | 505.27 | 13459.63 |
表6
奶牛场基本状况"
项目 Item | 犊牛 Calf | 育成牛 Finishing cow | 青年牛 Young cow | 干奶牛 Dry cow | 泌乳牛 Lactating cow |
---|---|---|---|---|---|
饲养周期Period of feeding[ | 183 | 183 | 210 | 60 | 280 |
日存栏量 Head per day (head) | 216 | 432 | 312 | 140 | 1300 |
牛群结构Proportion of dairy structure (%) | 9.00 | 18.00 | 13.00 | 6.00 | 54.00 |
日产粪便量 Daily fecal volume[ | 10.89 | 16.61 | 16.61 | 33.01 | 33.01 |
粪便总量Total manure production1) (t·a-1) | 858.57 | 2338.39 | 1688.84 | 2302.83 | 15831.95 |
青粗饲料用量Green fodder dosage (kg·head-1·a-1) | 1149.75 | 2613.40 | 2978.40 | 2430.90 | 8030.00 |
精饲料用量Concentrate feed dosage (kg·head-1·a-1) | 492.75 | 821.25 | 981.85 | 1310.35 | 3285.00 |
淘汰奶牛数量Number of eliminated cow (head) | 265.80 | 99.36 | 71.76 | 32.20 | 299.00 |
淘汰奶牛平均体重Average weight of eliminated cow (kg·head-1) | 82.76[ | 350.00[ | 460.00[ | 650.00[ | 650.00[ |
淘汰奶牛净肉率Net meat rate of cow 2) (%) | 25.30[ | 49.00[ | 40.00[ | 47.00[ | 47.00[ |
牛肉的脂肪质量分数 Fat mass fraction of beef 2) (%) | 2.69[ | 4.69[ | 4.08[ | 9.38[ | 9.38[ |
牛肉蛋白质质量分数 Protein mass fraction of beef 2) (%) | 19.64[ | 21.00[ | 24.70[ | 20.73[ | 20.73[ |
表7
养殖系统主产品相关参数"
指标类型 Type of indicator | 符号Symbol | 数值 Value |
---|---|---|
原奶年产量 Annual production of raw milk (t·a-1) | MRM | 10660.00 |
原奶脂肪质量分数 Mass fraction of fat in raw milk (%) | CTF | 4.001) |
原奶蛋白质质量分数 Protein content of raw milk (%) | CTP | 3.301) |
原奶乳糖质量分数 Lactose content of raw milk (%) | CTL | 5.001) |
脂肪的能量系数 Energy coefficient of fat (MJ·kg-1) | eTF | 36.70[ |
蛋白质的能量系数Energy coefficient of protein (MJ·kg-1) | eTP | 16.70[ |
乳糖的能量系数Energy coefficient of lactose (MJ·kg-1) | eTL | 16.70[ |
按脂肪和蛋白质矫正后的牛奶年产量 Annual milk production corrected by fat and protein (t·a-1) | MECM | 2761.05 |
表8
系统碳足迹评估结果"
项目 Item | 系统类型 System category | |||
---|---|---|---|---|
SPS | SBS | SCLS | ICLS | |
田间农资投入环节 Agricultural inputs in farmland (t CO2-eq·a-1) | 53.17 | - | 53.17 | 52.08 |
田间温室气体排放GHG emissions on field (t CO2-eq·a-1) | 903.94 | - | 903.94 | 115.16 |
奶牛场饲养环节 Dairy cow breeding process (t CO2-eq·a-1) | - | 16307.71 | 16307.71 | 15954.96 |
粪便管理环节 Manure management (t CO2-eq·a-1) | - | 1681.36 | 1681.36 | 1639.28 |
运输环节 Transportation process (t CO2-eq·a-1) | 0.14 | 0.00 | 0.14 | 0.11 |
土壤碳库变化 Soil carbon pool variation (t CO2-eq·a-1) | -5432.06 | - | -5432.06 | 1780.20 |
系统碳足迹 Carbon footprint of system (t CO2-eq·a-1) | 6389.30 | 17989.07 | 24378.37 | 15981.39 |
系统能量总产出Total energy output of system (×106 MJ·a-1) | 7.16 | 31.19 | 38.34 | 31.40 |
单位能量产出碳足迹 Carbon footprint of unit output (kg CO2-eq·MJ-1) | 0.89 | 0.58 | 0.64 | 0.51 |
[1] |
MATUŠTÍK J, KOČÍ V. What is a footprint? A conceptual analysis of environmental footprint indicators. Journal of Cleaner Production, 2021, 285: 124833. doi:10.1016/j.jclepro.2020.124833.
doi: 10.1016/j.jclepro.2020.124833 |
[2] |
ESTEVES E M M, ESTEVES V P P, BUNGENSTAB D J, DE QUEIROZ FERNANDES ARAÚJO O, MORGADO C D R V. Greenhouse gas emissions related to biodiesel from traditional soybean farming compared to integrated crop-livestock systems. Journal of Cleaner Production, 2018, 179: 81-92. doi:10.1016/j.jclepro.2017.12.262.
doi: 10.1016/j.jclepro.2017.12.262 |
[3] |
ORTIZ-GONZALO D, VAAST P, OELOFSE M, DE NEERGAARD A, ALBRECHT A, ROSENSTOCK T S. Farm-scale greenhouse gas balances, hotspots and uncertainties in smallholder crop-livestock systems in Central Kenya. Agriculture, Ecosystems & Environment, 2017, 248: 58-70. doi:10.1016/j.agee.2017.06.002.
doi: 10.1016/j.agee.2017.06.002 |
[4] |
PARAJULI R, DALGAARD T, BIRKVED M. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Science of the Total Environment, 2018, 619/620: 127-143. doi:10.1016/j.scitotenv.2017.11.082.
doi: 10.1016/j.scitotenv.2017.11.082 |
[5] |
DE FIGUEIREDO E B, JAYASUNDARA S, DE OLIVEIRA BORDONAL R, BERCHIELLI T T, REIS R A, WAGNER-RIDDLE C, LA SCALA JR N. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, 2017, 142: 420-431. doi:10.1016/j.jclepro.2016.03.132.
doi: 10.1016/j.jclepro.2016.03.132 |
[6] |
BULLER L S, BERGIER I, ORTEGA E, MORAES A, BAYMA-SILVA G, ZANETTI M R. Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: case study assessment in the Pantanal savanna highland, Brazil. Agricultural Systems, 2015, 137: 206-219. doi:10.1016/j.agsy.2014.11.004.
doi: 10.1016/j.agsy.2014.11.004 |
[7] |
LI Z J, SUI P, WANG X L, YANG X L, LONG P, CUI J X, YAN L L, CHEN Y Q. Comparison of net GHG emissions between separated system and crop-swine integrated system in the North China Plain. Journal of Cleaner Production, 2017, 149: 653-664. doi:10.1016/j.jclepro.2017.02.113.
doi: 10.1016/j.jclepro.2017.02.113 |
[8] |
MALCOLM G M, CAMARGO G G T, ISHLER V A, RICHARD T L, KARSTEN H D. Energy and greenhouse gas analysis of northeast US dairy cropping systems. Agriculture, Ecosystems & Environment, 2015, 199: 407-417. doi:10.1016/j.agee.2014.10.007.
doi: 10.1016/j.agee.2014.10.007 |
[9] |
DE SOUZA FILHO W, DE ALBUQUERQUE NUNES P A, BARRO R S, KUNRATH T R, DE ALMEIDA G M, GENRO T C M, BAYER C, DE FACCIO CARVALHO P C. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. Journal of Cleaner Production, 2019, 213: 968-975. doi:10.1016/j.jclepro.2018.12.245.
doi: 10.1016/j.jclepro.2018.12.245 |
[10] |
HUANG X L, SHI B Y, WANG S, YIN C B, FANG L N. Mitigating environmental impacts of milk production via integrated maize silage planting and dairy cow breeding system: a case study in China. Journal of Cleaner Production, 2021, 309: 127343. doi:10.1016/j.jclepro.2021.127343.
doi: 10.1016/j.jclepro.2021.127343 |
[11] |
VEYSSET P, LHERM M, BÉBIN D, ROULENC M. Mixed crop-livestock farming systems: a sustainable way to produce beef? Commercial farms results, questions and perspectives. Animal, 2014, 8(8): 1218-1228. doi:10.1017/S1751731114000378.
doi: 10.1017/S1751731114000378 pmid: 24589421 |
[12] |
VEYSSET P, LHERM M, BÉBIN D. Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: model-based analysis and forecasts. Agricultural Systems, 2010, 103(1): 41-50. doi:10.1016/j.agsy.2009.08.005.
doi: 10.1016/j.agsy.2009.08.005 |
[13] |
RODRÍGUEZ-ORTEGA T, BERNUÉS A, OLAIZOLA A M, BROWN M T. Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 2017, 144: 171-179. doi:10.1016/j.jclepro.2016.12.089.
doi: 10.1016/j.jclepro.2016.12.089 |
[14] | Environmental management-Life cycle assessment-Principles and framework: ISO 14040: 2006 Geneva, Switzerland: International Organization for Standardization, 2006. |
[15] | IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Rome: Intergovernmental Panel on Climate Change, 2019. |
[16] | MYHRE G, SHINDELL D T, PONGRATZ J. Anthropogenic and Natural Radiative Forcing Climate Change 2013:The Physical Science Basis. Contribution of Working I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014. |
[17] |
陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算. 生态学报, 2015, 35(19): 6371-6383. doi:10.5846/stxb201402210304.
doi: 10.5846/stxb201402210304 |
CHEN S, LU F, WANG X K. Estimation of greenhouse gases emission factors for China's nitrogen, phosphate, and potash fertilizers. Acta Ecologica Sinica, 2015, 35(19): 6371-6383. doi:10.5846/stxb201402210304. (in Chinese)
doi: 10.5846/stxb201402210304 |
|
[18] |
张国, 逯非, 黄志刚, 陈舜, 王效科. 我国主粮作物的化学农药用量及其温室气体排放估算. 应用生态学报, 2016, 27(9): 2875-2883. doi:10.13287/j.1001-9332.201609.031.
doi: 10.13287/j.1001-9332.201609.031 |
ZHANG G, LU F, HUANG Z G, CHEN S, WANG X K. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China. Chinese Journal of Applied Ecology, 2016, 27(9): 2875-2883. doi:10.13287/j.1001-9332.201609.031. (in Chinese)
doi: 10.13287/j.1001-9332.201609.031 |
|
[19] | 刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法: 误区、改进与应用: 兼析中国集约农作碳效率. 中国农业资源与区划, 2013, 34(6): 1-11. |
LIU X H, XU W X, LI Z J, CHU Q Q, YANG X L, CHEN F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China's intensive farming. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1-11. (in Chinese) | |
[20] | 中华人民共和国国家统计局. 中国第三产业统计年鉴-2017. 北京: 中国统计出版社, 2017. |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook of the Tertiary Industry-2017. Beijing: China Statistics Press, 2017. (in Chinese) | |
[21] | 国家发展和改革委员会. 2011 年和2012 年中国区域电网平均二氧化碳排放因子. 北京: 国家发展和改革委员会应对气候变化司组织国家应对气候变化战略研究和国际合作中心研究, 2012. |
NATIONAL DEVELOPMENT & REFORM COMMISSION OF CHINA. Emission factors of regional power grids in China in 2011 and 2012 on average. Beijing: National Development and Reform Commission Department of Climate Change Response organized the National Center for Strategic Research and International Cooperation on Climate Change Research, 2012. | |
[22] | 中华人民共和国国家统计局. 中国环境统计年鉴-2020. 北京: 中国统计出版社, 2021. |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook on Environment-2020. Beijing: China Statistics Press, 2021. (in Chinese) | |
[23] |
FRIEDLINGSTEIN P, JONES M W, O'SULLIVAN M, ANDREW R M, HAUCK J, PETERS G P, PETERS W, PONGRATZ J, SITCH S, LE QUÉRÉ C, BAKKER D C E, CANADELL J G, CIAIS P, JACKSON R B, ANTHONI P, BARBERO L, BASTOS A, BASTRIKOV V, BECKER M, BOPP L, BUITENHUIS E, CHANDRA N, CHEVALLIER F, CHINI L P, CURRIE K I, FEELY R A, GEHLEN M, GILFILLAN D, GKRITZALIS T, GOLL D S, et al. Global carbon budget 2019. Earth System Science Data, 2019, 11(4): 1783-1838. doi:10.5194/essd-11-1783-2019.
doi: 10.5194/essd-11-1783-2019 |
[24] | IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Rome: Intergovernmental Panel on Climate Change, 2006. |
[25] | 王晓玉, 薛帅, 谢光辉. 大田作物秸秆量评估中秸秆系数取值研究. 中国农业大学学报, 2012, 17(1): 1-8. |
WANG X Y, XUE S, XIE G H. Value-taking for residue factor as a parameter to assess the field residue of field crops. Journal of China Agricultural University, 2012, 17(1): 1-8. (in Chinese) | |
[26] |
丛建辉, 朱婧, 陈楠, 刘学敏. 中国城市能源消费碳排放核算方法比较及案例分析: 基于“排放因子”与“活动水平数据”选取的视角. 城市问题, 2014(3): 5-11. doi:10.13239/j.bjsshkxy.cswt.140302.
doi: 10.13239/j.bjsshkxy.cswt.140302 |
CONG J H, ZHU J, CHEN N, LIU X M. Comparison and cases analysis to the accounting methods for carbon emission of China's urban energy consumption: from the perspectives of emission factors and activity-level data. Urban Problems, 2014(3): 5-11. doi:10.13239/j.bjsshkxy.cswt.140302. (in Chinese)
doi: 10.13239/j.bjsshkxy.cswt.140302 |
|
[27] | 国家发展改革委应对气候变化司. 省级温室气体清单编制指南. 2011. |
Department of Climate Change, National Development & Reform Commission of China. Guidelines for the preparation of provincial greenhouse gas inventories. 2011. (in Chinese) | |
[28] | 陈丽能, 林鸿, 徐展峰, 王飞. 农村运输机械耗油量数学模型的研究. 浙江大学学报(农业与生命科学版), 2003, 29(2): 185-187. |
CHEN L N, LIN H, XU Z F, WANG F. Research on the math models of the combustion oil consumption of the farm transport machineries. Journal of Zhejiang University (Agriculture and Life Sciences), 2003, 29(2): 185-187. (in Chinese) | |
[29] | 周元清. 中国规模化生猪养殖碳足迹评估方法与案例研究[D]. 北京: 中国农业科学院, 2018. |
ZHOU Y Q. Carbon footprint assessment method and case study of intensive pig production system in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[30] | VASEASHTA A. Life Cycle Analysis of Nanoparticles - Risk, Assessment, and Sustainability. Pennsylvania: DEStech Publications, Inc, 2015. |
[31] |
WILFART A, GAC A, SALAÜN Y, AUBIN J, ESPAGNOL S. Allocation in the LCA of meat products: is agreement possible? Cleaner Environmental Systems, 2021, 2: 100028. doi:10.1016/j.cesys.2021.100028.
doi: 10.1016/j.cesys.2021.100028 |
[32] |
ØSTERGAARD S, SØRENSEN J T, HOUE H. A stochastic model simulating milk fever in a dairy herd. Preventive Veterinary Medicine, 2003, 58(3/4): 125-143. doi:10.1016/S0167-5877(03)00049-7.
doi: 10.1016/S0167-5877(03)00049-7 |
[33] | SJAUNJA L O, BAEVRE L, JUNKKARINEN L, PEDERSEN J. A Nordic proposal for an energy corrected milk (ECM) formula. Paris:27th Session International Committee for Recording and Productivity of Milk Animals. Performance Recording of Animals-State of the Art, 1990, EAAP Publication 156-157. |
[34] | 杨奎花, 刘娜娜, 王锡波, 马永仁. 牛群结构模型的建立及不同因素对奶牛生产经济效益的影响. 中国奶牛, 2014(15): 37-41. |
YANG K H, LIU N N, WANG X B, MA Y R. Establishment of the herd structural model and the effect of different factors on the economic benefits of dairy cows production. China Dairy Cattle, 2014(15): 37-41. (in Chinese) | |
[35] | 廉德平, 黄兰兰, 杨景丽, 黄林林, 葛玉华. 规模化奶牛场的牛群结构及周转计划. 中国草食动物, 2005, 25(5): 55-56. |
LIAN D P, HUANG L L, YANG J L, HUANG L L, GE Y H. Cattle structure and turnover plan of large-scale dairy farm. China Herbivore, 2005, 25(5): 55-56. (in Chinese) | |
[36] | 郭军, 杨月欣. 食物能量换算系数的现状. 国外医学(卫生学分册), 2006(1): 28-33. |
GUO J, YANG Y X. Current statution of food energy conversion coefficient. Foreign Medical Sciences (Section Hygiene), 2006(1): 28-33. (in Chinese) | |
[37] | 王刚, 穆秋玲, 张黎黎, 李元浩. 规模化奶牛场牛群结构与周转探讨. 中国奶牛, 2011(3): 57-58. |
WANG G, MU Q L, ZHANG L L, LI Y H. Discussion on cattle structure and turnover in large-scale dairy farm. China Dairy Cattle, 2011(3): 57-58. (in Chinese) | |
[38] | 付云宝. 奶牛场标准化管理手册. 北京: 中国农业出版社, 2015. |
FU Y B. Handbook of Standardized Management of Dairy Farms. Beijing: China Agriculture Press, 2015. (in Chinese) | |
[39] |
杨前平, 李晓锋, 熊琪, 索效军, 张年, 陶虎, 陈明新. 奶牛场粪污产生量及性能参数测定. 湖北农业科学, 2019, 58(24): 106-108, 119. doi:10.14088/j.cnki.issn0439-8114.2019.24.025.
doi: 10.14088/j.cnki.issn0439-8114.2019.24.025 |
YANG Q P, LI X F, XIONG Q, SUO X J, ZHANG N, TAO H, CHEN M X. Determination of feces production and performance parameters in dairy farm. Hubei Agricultural Sciences, 2019, 58(24): 106-108, 119. doi:10.14088/j.cnki.issn0439-8114.2019.24.025. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2019.24.025 |
|
[40] | 中国农业科学院农业环境与可持续发展研究所, 环境保护部南京科学研究所. 第一次全国污染源普查畜禽养殖业源产排污系数手册. 北京: 农业部科技教育司, 2009. |
Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection. First National Pollution Census Bulletin of China. Beijing: Department of Science and Technology Education, Ministry of Agriculture, 2009. (in Chinese) | |
[41] |
吴宏达, 王嘉博, 亓美玉, 杨洁, 赵晓川, 孙芳. 奶公犊肉用性能及肉质变化规律分析. 东北农业大学学报, 2014, 45(8): 55-64. doi:10.19720/j.cnki.issn.1005-9369.2014.08.009.
doi: 10.19720/j.cnki.issn.1005-9369.2014.08.009 |
WU H D, WANG J B, QI M Y, YANG J, ZHAO X C, SUN F. Analysis of beef performance and quality changes of dairy bull calves. Journal of Northeast Agricultural University, 2014, 45(8): 55-64. doi:10.19720/j.cnki.issn.1005-9369.2014.08.009. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2014.08.009 |
|
[42] | 黄文明, 张勇, 郭海明, 叶均安. 荷斯坦后备奶牛生长发育规律的研究进展. 畜牧与兽医, 2016, 48(5): 131-135. |
HUANG W M, ZHANG Y, GUO H M, YE J A. Research progress on growth and development law of Holstein reserve cows. Animal Husbandry & Veterinary Medicine, 2016, 48(5): 131-135. (in Chinese) | |
[43] |
岳康宁, 李秋凤, 曹玉凤, 吴磊, 于春起, 杜柳柳, 王晓玲, 高艳霞, 李建国. 不同能量水平日粮对淘汰荷斯坦育成母牛生长性能和屠宰性能的影响. 中国畜牧兽医, 2018, 45(2): 392-399. doi:10.16431/j.cnki.1671-7236.2018.02.013.
doi: 10.16431/j.cnki.1671-7236.2018.02.013 |
YUE K N, LI Q F, CAO Y F, WU L, YU C Q, DU L L, WANG X L, GAO Y X, LI J G. Influence of different dietary energy levels on growth performance and slaughter performance of culling Holstein heifers. China Animal Husbandry & Veterinary Medicine, 2018, 45(2): 392-399. doi:10.16431/j.cnki.1671-7236.2018.02.013. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2018.02.013 |
|
[44] | 岳康宁. 日粮能量水平对淘汰荷斯坦母牛育肥性能的影响及机理研究[D]. 保定: 河北农业大学, 2018. |
YUE K N. Influence of dietary energy levels on fattening performance and mechanism of culling Holstein cows[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese) | |
[45] | 胡东伟, 孙芳, 吴民, 苗树君, 王嘉厚, 李红宇. 奶公牛犊屠宰试验及肉品质研究. 中国牛业科学, 2011, 37(4): 10-14, 29. |
HU D W, SUN F, WU M, MIAO S J, WANG J H, LI H Y. Slaughter test and study on the beef meat quality of dairy bull calves. China Cattle Science, 2011, 37(4): 10-14, 29. (in Chinese) | |
[46] | 张美琦, 李妍, 李树静, 高艳霞, 李建国, 曹玉凤, 李秋凤. 饲粮能量水平对13-18月龄荷斯坦阉牛生产性能和屠宰指标的影响. 畜牧兽医学报, 2020, 51(6): 1295-1305. |
ZHANG M Q, LI Y, LI S J, GAO Y X, LI J G, CAO Y F, LI Q F. Effects of dietary energy level on production performance and slaughter indicators of 13-18 months old Holstein steers. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(6): 1295-1305. (in Chinese) | |
[47] | 李秋凤, 李春芳, 曹玉凤, 李建国, 殷元虎, 李伟. 不同营养水平对淘汰荷斯坦奶牛消化代谢、肉品质的影响. 草业学报, 2014, 23(6): 126-135. |
LI Q F, LI C F, CAO Y F, LI J G, YIN Y H, LI W. Influence of different nutrition levels on the digestion metabolism and beef quality of Holstein culling cows. Acta Prataculturae Sinica, 2014, 23(6): 126-135. (in Chinese) | |
[48] |
MA Y F, HOU Y, DONG P B, VELTHOF G L, LONG W T, MA L, MA W Q, JIANG R F, OENEMA O. Cooperation between specialized livestock and crop farms can reduce environmental footprints and increase net profits in livestock production. Journal of Environmental Management, 2022, 302: 113960. doi:10.1016/j.jenvman.2021.113960.
doi: 10.1016/j.jenvman.2021.113960 |
[49] |
WU X H, WU F Q, TONG X G, WU J, SUN L, PENG X Y. Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: analysis of the ecological recycle of wastes. Resources, Conservation and Recycling, 2015, 96: 40-50. doi:10.1016/j.resconrec.2015.01.010.
doi: 10.1016/j.resconrec.2015.01.010 |
[50] |
FAN W G, DONG X B, WEI H J, WENG B Q, LIANG L, XU Z H, WANG X C, WU F L, CHEN Z D, JIN Y, SONG C Q. Is it true that the longer the extended industrial chain, the better the circular agriculture? A case study of circular agriculture industry company in Fuqing, Fujian. Journal of Cleaner Production, 2018, 189: 718-728. doi:10.1016/j.jclepro.2018.04.119.
doi: 10.1016/j.jclepro.2018.04.119 |
[51] |
VIGNE M, PEYRAUD J L, LECOMTE P, CORSON M S, WILFART A. Emergy evaluation of contrasting dairy systems at multiple levels. Journal of Environmental Management, 2013, 129: 44-53. doi:10.1016/j.jenvman.2013.05.015.
doi: 10.1016/j.jenvman.2013.05.015 pmid: 23792889 |
[52] |
YAN Z G, LI W, YAN T H, CHANG S H, HOU F J. Evaluation of energy balances and greenhouse gas emissions from different agricultural production systems in Minqin Oasis, China. PeerJ, 2019, 7: e6890. doi:10.7717/peerj.6890.
doi: 10.7717/peerj.6890 |
[53] |
HUANG Y W, REN W, WANG L X, HUI D F, GROVE J H, YANG X J, TAO B, GOFF B. Greenhouse gas emissions and crop yield in no-tillage systems: a meta-analysis. Agriculture, Ecosystems & Environment, 2018, 268: 144-153. doi:10.1016/j.agee.2018.09.002.
doi: 10.1016/j.agee.2018.09.002 |
[54] |
ALSKAF K, MOONEY S J, SPARKES D L, WILSON P, SJÖGERSTEN S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil and Tillage Research, 2021, 206: 104803. doi:10.1016/j.still.2020.104803.
doi: 10.1016/j.still.2020.104803 |
[55] |
TAN Y C, WU D, BOL R, WU W L, MENG F Q. Conservation farming practices in winter wheat-summer maize cropping reduce GHG emissions and maintain high yields. Agriculture, Ecosystems & Environment, 2019, 272: 266-275. doi:10.1016/j.agee.2018.12.001.
doi: 10.1016/j.agee.2018.12.001 |
[56] |
ALMEIDA A K, HEGARTY R S, COWIE A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Animal Nutrition, 2021, 7(4): 1219-1230. doi:10.1016/j.aninu.2021.09.005.
doi: 10.1016/j.aninu.2021.09.005 pmid: 34754963 |
[57] |
DE SOUZA CONGIO G F, BANNINK A, MAYORGA MOGOLLÓN O. LEnteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. Journal of Cleaner Production, 2021, 312: 127693. doi:10.1016/j.jclepro.2021.127693.
doi: 10.1016/j.jclepro.2021.127693 |
[58] |
HOU Y, VELTHOF G L, OENEMA O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Global Change Biology, 2015, 21(3): 1293-1312. doi:10.1111/gcb.12767.
doi: 10.1111/gcb.12767 pmid: 25330119 |
[59] |
SOUSSANA J F, LEMAIRE G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 2014, 190: 9-17. doi:10.1016/j.agee.2013.10.012.
doi: 10.1016/j.agee.2013.10.012 |
[60] |
SALTON J C, MERCANTE F M, TOMAZI M, ZANATTA J A, CONCENÇO G, SILVA W M, RETORE M. Integrated crop-livestock system in tropical Brazil: toward a sustainable production system. Agriculture, Ecosystems & Environment, 2014, 190: 70-79. doi:10.1016/j.agee.2013.09.023.
doi: 10.1016/j.agee.2013.09.023 |
[61] |
REGAN J T, MARTON S, BARRANTES O, RUANE E, HANEGRAAF M, BERLAND J, KOREVAAR H, PELLERIN S, NESME T. Does the recoupling of dairy and crop production via cooperation between farms generate environmental benefits? A case-study approach in Europe. European Journal of Agronomy, 2017, 82: 342-356. doi:10.1016/j.eja.2016.08.005.
doi: 10.1016/j.eja.2016.08.005 |
[62] |
BREWER K M, GAUDIN A C M. Potential of crop-livestock integration to enhance carbon sequestration and agroecosystem functioning in semi-arid croplands. Soil Biology and Biochemistry, 2020, 149: 107936. doi:10.1016/j.soilbio.2020.107936.
doi: 10.1016/j.soilbio.2020.107936 |
[1] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[2] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[3] | 陈绪昊,高强,陈新平,张务帅. 东北三省玉米生产资源投入和环境效应的时空特征[J]. 中国农业科学, 2022, 55(16): 3170-3184. |
[4] | 姜明红, 刘欣超, 唐华俊, 辛晓平, 陈吉泉, 董刚, 吴汝群, 邵长亮. 生命周期评价在畜牧生产中的应用研究现状及展望[J]. 中国农业科学, 2019, 52(9): 1635-1645. |
[5] | 刘松, 王效琴, 胡继平, 李强, 崔利利, 段雪琴, 郭亮. 施肥与灌溉对甘肃省苜蓿碳足迹的影响[J]. 中国农业科学, 2018, 51(3): 556-565. |
[6] | 王占彪,王猛,陈阜. 华北平原作物生产碳足迹分析[J]. 中国农业科学, 2015, 48(1): 83-92. |
[7] | 黄文强,董红敏,朱志平,刘翀,陶秀萍,王悦. 畜禽产品碳足迹研究进展与分析[J]. 中国农业科学, 2015, 48(1): 93-111. |
|