中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1518-1528.doi: 10.3864/j.issn.0578-1752.2022.08.004
吴月1(),隋新华2,戴良香1,郑永美1,张智猛1,田云云1,于天一1,孙学武1,孙棋棋1,马登超3,吴正锋1()
收稿日期:
2021-07-14
接受日期:
2021-10-09
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
吴月,E-mail: wuyuesw@163.com。
基金资助:
WU Yue1(),SUI XinHua2,DAI LiangXiang1,ZHENG YongMei1,ZHANG ZhiMeng1,TIAN YunYun1,YU TianYi1,SUN XueWu1,SUN QiQi1,MA DengChao3,WU ZhengFeng1()
Received:
2021-07-14
Accepted:
2021-10-09
Published:
2022-04-16
Online:
2022-05-11
摘要:
氮是植物生长发育所必需的大量元素之一,豆科植物通过与根瘤菌的共生固氮获得氮素。这种共生关系的建立包括结瘤和固氮两个过程,涉及复杂的互作调控机理,并受环境因素的显著影响。花生与慢生根瘤菌的共生对花生生产尤为重要,具有较多特异和未知的共生机制。本文综述了慢生根瘤菌及其与花生共生的相关内容,具体包括:(1)花生的慢生根瘤菌多样性和基因组功能;(2)花生与慢生根瘤菌的共生机制,包括慢生根瘤菌的裂隙侵染及与花生的共生信号交流,花生的结瘤固氮和根瘤数调控机制;(3)田间环境因素(土壤氮素、pH、温度、水分)对花生结瘤固氮及产量的影响。本文从慢生根瘤菌、慢生根瘤菌与花生的共生以及在花生田间的应用三方面指出目前研究中存在的问题主要为:针对花生的慢生根瘤菌基因组功能研究较少、慢生根瘤菌与花生互作调节机理细节未知、慢生根瘤菌菌剂田间应用利用率差等。基于此,未来研究重点应该集中在花生慢生根瘤菌基因组及基因功能分析;慢生根瘤菌与花生的信号交流、根瘤数调节和营养交换机制;与根瘤固氮规律相配合的化学氮肥合理施用技术、通过合成生物学手段获得适用于花生种植的新型根瘤菌剂等方面。本文为深入了解豆科植物与根瘤菌的共生机制、提高豆科作物结瘤固氮效率和产量、减少化学氮肥施用和改善农业生态环境等提供理论基础。
吴月, 隋新华, 戴良香, 郑永美, 张智猛, 田云云, 于天一, 孙学武, 孙棋棋, 马登超, 吴正锋. 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8): 1518-1528.
WU Yue, SUI XinHua, DAI LiangXiang, ZHENG YongMei, ZHANG ZhiMeng, TIAN YunYun, YU TianYi, SUN XueWu, SUN QiQi, MA DengChao, WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut[J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[1] | 张秋磊, 林敏, 平淑珍. 生物固氮及在可持续农业中的应用. 生物技术通报, 2008, 2: 1-4. |
ZHANG Q L, LIN M, PING S Z. Biological nitrogen fixation and its application in sustainable agriculture. Biotechnology Bulletin, 2008, 2: 1-4. (in Chinese) | |
[2] | 陈文新, 汪恩涛, 陈文峰. 根瘤菌-豆科植物共生多样性与地理环境的关系. 中国农业科学, 2004, 37(1): 81-86. |
CHEN W X, WANG E T, CHEN W F. The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments. Scientia Agricultura Sinica, 2004, 37(1): 81-86. (in Chinese) | |
[3] | 常月立. 中国南方地区花生、扁豆根瘤菌的多相分类[D]. 北京: 中国农业大学, 2010. |
CHANG Y L. Polyphasic systematics of rhizobia isolated from Arachis hypogaea and Lablab purpureus grown in southern China[D]. Beijing: China Agricultural University, 2010. (in Chinese) | |
[4] | 陈文新, 汪恩涛. 中国根瘤菌. 北京: 科学出版社, 2011. |
CHEN W X, WANG E T. Rhizobia in China. Beijing: Science Press, 2011. (in Chinese) | |
[5] | DE LAJUDIE P, MOUSAVI S A, YOUNG J P W. International committee on systematics of prokaryotes subcommittee on the taxonomy of rhizobia and agrobacteria minutes of the closed meeting by videoconference, 6 July 2020. International Journal of Systematic and Evolutionary Microbiology, 2021, 71: 4784. |
[6] | 张丹. 中国北方花生主产区花生根瘤菌多样性及其与土壤生态因子之间关系的研究[D]. 北京: 中国农业大学, 2010. |
ZHANG D. Diversity of rhizobia isolated from peanut nodules in main peanut producing region of northern China and relationship between the diversity and soil factors[D]. Beijing: China Agricultural University, 2010. (in Chinese) | |
[7] |
CHEN J Y, GU J, WANG E T, MA X X, KANG S T, HUANG L Z, CAO X P, LI L B, WU Y L. Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils. Systematic and Applied Microbiology, 2014, 37: 525-532.
doi: 10.1016/j.syapm.2014.05.004 |
[8] | 刘保平. 根瘤菌菌剂研究[D]. 武汉: 华中农业大学, 2005. |
LIU B P. Study on rhizobium inoculants[D]. Wuhan: Huazhong Agricultural University, 2005. (in Chinese) | |
[9] |
BOGINO P, BANCHIO E, GIORDANO W. Molecular diversity of peanut-nodulating rhizobia in soils of Argentina. Journal of Basic Microbiology, 2010, 50: 274-279.
doi: 10.1002/jobm.200900245 |
[10] |
El-AKHAL M R, RINCON A, El-MOURABIT N, PUEYO J J, BARRIJAL S. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (Arachis hypogaea L.) grown in Moroccan soils. Journal of Basic Microbiology, 2009, 49: 415-425.
doi: 10.1002/jobm.200800359 pmid: 19455516 |
[11] |
GRONEMEYER J L, CHIMWAMUROMBE P, REINHOLD-HUREK B. Bradyrhizobium subterraneum sp nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 3241-3247.
doi: 10.1099/ijsem.0.000403 |
[12] |
GRONEMEYER J L, HUREK T, BUNGER W, REINHOLD-HUREK B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. International Journal of Systematic and Evolutionary Microbiology, 2016, 66: 62-69.
doi: 10.1099/ijsem.0.000674 |
[13] | 王蕊. 中国南方花生根瘤菌多样性及其与土壤因子相关性研究[D]. 北京: 中国农业大学, 2013. |
WANG R. Biodiversity of peanut rhizobia collected from southern China and its correlation with soil factors[D]. Beijing: China Agricultural University, 2013. (in Chinese) | |
[14] | 张小平. 四川花生根瘤菌的遗传多样性和系统发育研究[D]. 武汉: 华中农业大学, 2001. |
ZHANG X P. Diversity and phylogeny of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan[D]. Wuhan: Huazhong Agricultural University. (in Chinese) | |
[15] |
CHANG Y L, WANG J Y, WANG E T, LIU H C, SUI X H, CHEN W X. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea grown. International Journal of Systematic and Evolutionary Microbiology, 2011, 61: 2496-2502.
doi: 10.1099/ijs.0.027110-0 |
[16] |
WANG R, CHANG Y L, ZHRNG W T, ZHANG D, ZHANG X X, SUI X H, WANG E T, HU J Q, ZHANG L Y, CHEN W X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Systematic and Applied Microbiology, 2013, 36: 101-105.
doi: 10.1016/j.syapm.2012.10.009 |
[17] |
LI Y H, WANG R, ZHANG X X, YOUNG J P W, WANG E T, SUI X H, CHEN W X. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 4655-4661.
doi: 10.1099/ijsem.0.000629 |
[18] | LI Y H, WANG R, SUI X H, WANG E T, ZHAGN X X, TIAN C F, CHEN W F, CHEN W X. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in southeast China. Systematic and Applied Microbiology, 2019, 42: 126002. |
[19] | 李永华. 比较基因组学阐释根瘤菌在花生和绿豆上的共生差异及慢生根瘤菌的进化[D]. 北京: 中国农业大学, 2019. |
LI Y H. Comparative genomic analysis of peanut bradyrhizobia reveals the genetic differences underlying two symbiotic phenotypes in peanut and mung bean and the evolution of Bradyrhizobium spp[D]. Beijing: China Agricultural University, 2019. (in Chinese) | |
[20] | 吴月. 不同花生慢生根瘤菌共生差异的表型和遗传比较[D]. 北京: 中国农业大学, 2020. |
WU Y. Comparison of symbiotic difference in phenotype and genotype of peanut bradyrhizobia[D]. Beijing: China Agricultural University, 2020. (in Chinese) | |
[21] |
D‘HAEZE W, GAO M S, RYCKE R D, MONTAGU M V, ENGLER G, HOLSTERS M. Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Molecular Plant-Microbe Interactions, 1998, 11(10): 999-1008.
doi: 10.1094/MPMI.1998.11.10.999 |
[22] |
HIRSCH A M. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Current Opinion in Plant Biology, 1999, 2: 320-326.
doi: 10.1016/S1369-5266(99)80056-9 |
[23] |
VAN RHIJN P, FUJISHIGE N A, LIM P O, HIRSCH A M. Sugar- binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae1. Plant Physiology, 2001, 126: 133-144.
doi: 10.1104/pp.126.1.133 |
[24] |
DARDANELLI M, ANGELINI J, FABRA A. A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Canadian Journal of Microbiology, 2003, 49: 399-405.
doi: 10.1139/w03-054 |
[25] |
FABRA A, CASTRO S, TAURIAN T, ANGELINI J, IBANEZ F, DARDANELLI M, TONELLI M, BIANUCCI E, VALETTI L. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: How much is it known? Critical Reviews in Microbiology, 2010, 36(3): 179-194.
doi: 10.3109/10408410903584863 |
[26] |
BREWIN N J. Plant cell wall remodeling in the rhizobium-legume symbiosis. Critical Reviews in Plant Sciences, 2004, 23: 293-316.
doi: 10.1080/07352680490480734 |
[27] | ROTH L E, STACEY G. Bacterium release into host-cells of nitrogen-fixing soybean nodules-the symbiosome membrane comes from 3 sources. European Journal of Cell Biology, 1989, 49(1): 13-23. |
[28] |
MURRAY J D. Invasion by invitation: Rhizobial infection in legumes. Molecular Plant-Microbe Interactions, 2011, 24(6): 631-639.
doi: 10.1094/MPMI-08-10-0181 |
[29] |
GAGE D J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews, 2004, 68(2): 280-300.
doi: 10.1128/MMBR.68.2.280-300.2004 |
[30] |
BONALDI K, GARGANI D, PRIN Y, FARDOUX J, GULLY D, NOUWEN N, GOORMACHTIG S, GIRAUD E. Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: The Nod-dependent versus the Nod-independent symbiotic interaction. Molecular Plant-Microbe Interactions, 2011, 24(11): 1359-1371.
doi: 10.1094/MPMI-04-11-0093 |
[31] |
BOOGERD F C, VAN ROSSUM D. Nodulation of groundnut by Bradyrhizobium: A simple infection process by crack infection. FEMS Microbiology Reviews, 1997, 21(1): 5-27.
doi: 10.1111/j.1574-6976.1997.tb00342.x |
[32] |
FOURNIER J, TIMMERS A C J, SIEBERER B J, JAUNEAU A, CHABAUD M, BARKER VAN RHIJN P, VANDERLEYDEN J. The Rhizobium-plant symbiosis. Microbiological Reviews, 1995, 59(1): 124-142.
doi: 10.1128/mr.59.1.124-142.1995 |
[33] |
SPAINK H P. Root nodulation and infection factors produced by rhizobial bacteria. Annual Review of Microbiology, 2000, 54: 257-288.
doi: 10.1146/annurev.micro.54.1.257 |
[34] |
EHRHARDT D W, WAIS R, LONG S R. Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell, 1996, 85: 673-681.
doi: 10.1016/S0092-8674(00)81234-9 |
[35] | MADSEN L H, TIRICHINE L, JURKIEWICZ A, SULLIVAN J T, HECKMANN A B, BEK A S, RONSON C W, JAMES E K, STOUGAARD J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicas. Nature Communications, 2010, 1: 1-10. |
[36] |
STACEY G, SO J S, ROTH L E, LAKSHMI B S K, CARLSON R W. A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation. Molecular Plant-Microbe Interactions, 1991, 4(4): 332-340.
doi: 10.1094/MPMI-4-332 |
[37] |
LEIGH J A, COPLIN D L. Exopolysaccharides in plant-bacteria interactions. Annual Review Microbiology, 1992, 46: 307-346.
doi: 10.1146/annurev.mi.46.100192.001515 |
[38] | IBANEZ F, FABRA A. Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis. Plant Biology, 2011: 1 3: 794-800. |
[39] |
GUHA S, SARKAR M, GANGULY P, UDDIN M R, MANDAL S, DASGUPTA M. Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped fields of Bengal Basin, India. Environmental Microbiology, 2016, 18(8): 2575-2590.
doi: 10.1111/1462-2920.13348 |
[40] |
IBANEZ F, ANGELINI J, FIGUEREDO M S, MUNOZ V, TONELLI M L, FABRA A. Sequence and expression analysis of putative Arachis hypogaea (peanut) Nod factor perception proteins. Journal of Plant Research, 2015, 128: 709-718.
doi: 10.1007/s10265-015-0719-6 |
[41] |
KARMAKAR K, KUNDU A, RIZVI A Z, DUBOIS E, SEVERAC D, CZERNIC P, CARTIEAUX F, DASGUPTA M. Transcriptomic analysis with the progress of symbiosis in ‘Crack-Entry’ legume Arachis hypogaea highlights its contrast with ‘Infection Thread’ adapted legumes. Molecular Plant-Microbe Interactions, 2019, 32(3): 271-285.
doi: 10.1094/MPMI-06-18-0174-R |
[42] |
SAHA S, PAUL A, HERRING L, DUTTA A, BHATTACHARYA A, SAMADDAR S, GOSHE M B, DASGUPTA M. Gatekeeper tyrosine phosphorylation of SYMRK is essential for synchronizing the epidermal and cortical responses in root nodule symbiosis. Plant Physiology, 2016, 171: 71-81.
doi: 10.1104/pp.15.01962 |
[43] |
SINHAROY S, DASGUPTA M. RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the aeschynomeneae legume Arachis. Molecular Plant-Microbe Interactions, 2009, 22(11): 1466-1475.
doi: 10.1094/MPMI-22-11-1466 |
[44] |
KUNDU A, DASGUPTA M. Silencing of putative cytokinin receptor histidine kinase1 inhibits both inception and differentiation of root nodules in Arachis hypogaea. Molecular Plant-Microbe Interactions, 2018, 31(2): 187-199.
doi: 10.1094/MPMI-06-17-0144-R |
[45] |
SHARMA V, BHATTACHARYYA S, KUMAR R, KUMAR A, IBANEZ F, WANG J, GUO B, SUDINI H K, GOPALAKRISHNAN S, DASGUPTA M, VARSHNEY R K, PANDEY M K. Molecular basis of root nodule symbiosis between Bradyrhizobium and 'crack-entry' legume Groundnut (Arachis hypogaea L.). Plants, 2020, 9: 276.
doi: 10.3390/plants9020276 |
[46] |
PENG Z, LIU F, WANG L, ZHOU H, PAUDEL D, TAN L, MAKU J, GALLO M, WANG J. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Scientific Reports, 2017, 7: 40066.
doi: 10.1038/s41598-017-00453-9 |
[47] |
MORGANTE C, ANGELINI J, CASTRO S, FABRA A. Role of rhizobial exopolysaccharides in crack entry/intercellular infection of peanut. Soil Biology and Biochemistry, 2005, 37: 1436-1444.
doi: 10.1016/j.soilbio.2004.12.014 |
[48] |
MORGANTE C, CASTRO S, FABRA A. Role of rhizobial EPS in the evasion of peanut defense response during the crack-entry infection process. Soil Biology and Biochemistry, 2007, 39: 1222-1225.
doi: 10.1016/j.soilbio.2006.11.022 |
[49] | JONES K M, KOBAYASHI H, DAVIES B W, TAGA M E, WALKER G C. How rhizobial symbionts invade plants: The Sinorhizobium-Medicago model. Nature Reviews, 2007, 5: 619-633. |
[50] |
BAL A K, SEN D, WEAVER R W. Cell wall (outer membrane) of bacteroids in nitrogen-fixing peanut nodules. Current Microbiology, 1985, 12: 353-356.
doi: 10.1007/BF01567896 |
[51] |
WANG Q, LIU J, ZHU H. Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 2018, 9: 313.
doi: 10.3389/fpls.2018.00313 |
[52] |
SEN D, WEAVER R W, BAL A K. Structure and organization of effective peanut and cowpea root nodules induced by rhizobial strain 32H1. Journal of Experimental Botany, 1986, 37(176): 356-363.
doi: 10.1093/jxb/37.3.356 |
[53] |
FERNANDEZ-LUQUENO F, DENDOOVEN L, MUNIVE A, CORLAY-CHEE L, SERRANO-COVARRUBIAS L M, ESPINOSA- VICTORIA D. Micro-morphology of common bean (Phaseolus vulgaris L.) nodules undergoing senescence. Acta Physiologiae Plantarum, 2008, 30: 545-552.
doi: 10.1007/s11738-008-0153-7 |
[54] | CORBY H D L. Types of rhizobial nodules and their distribution among leguminosae. Kirkia, 1988, 13(1): 53-124. |
[55] | FABRE S, GULLY D, POITOUT A, PATREL D, ARRIGHI J F, GIRAUD E, CZERNIC P, CARTIEAUX F. Nod factor-independent nodulation in Aeschynomene evenia required the common plant- microbe symbiotic toolkit. Plant Physiology, 2015, 169: 2654-2664. |
[56] |
BAL A K, HAMEED S, JAYARAM S. Ultrastructural characteristics of the host-symbiont interface in nitrogen-fixing peanut nodules. Protoplasma, 1989, 150: 19-26.
doi: 10.1007/BF01352917 |
[57] |
SIDDIQUE A M, BAL A K. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies. Plant Physiology, 1991, 95: 896-899.
doi: 10.1104/pp.95.3.896 |
[58] | HUNT S, LAYZELL D B. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annual Review of Plant Physiology, 1993, 44: 483-511. |
[59] |
FISCHER H M. Genetic regulation of nitrogen fixation in rhizobia. Microbiology Review, 1994, 58(3): 352-386.
doi: 10.1128/mr.58.3.352-386.1994 |
[60] | 武维华. 植物生理学.第二版. 北京: 科学出版社, 2008: 121-122. |
WU W H. Plant Physiology. 2nd edition. Beijing: Science Press, 2008: 121-122. (in Chinese) | |
[61] |
UDVARDI M, POOLE P S. Transport and metabolism in legume- rhizobia symbioses. Annual Review of Plant Biology, 2013, 64: 781-805.
doi: 10.1146/annurev-arplant-050312-120235 |
[62] |
RUBIO L M, LUDDEN P W. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual Review of Microbiology, 2008, 62: 93-111.
doi: 10.1146/annurev.micro.62.081307.162737 |
[63] |
HOFFMAN B M, LUKOYANOV D, YANG Z, DEAN D R, SEEFELDT L C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chemical Reviews, 2014, 114: 4041-4062.
doi: 10.1021/cr400641x |
[64] | POOLE P, ALLAWAY D. Carbon and nitrogen metabolism in Rhizobium. Advances in Microbial Physiology, 2000, 43: 117-163. |
[65] |
MAUNOURY N, REDONDO-NIETO M, BOURCY M, DE VELDE W V, ALUNNI B, LAPORTE P, DURAND P, AGIER N, MARISA M, VAUBERT D, DELACROIX H, DUC G, RATET P, AGGERBECK L, KONDOROSI E, MERGAERT P. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS ONE, 2010, 5(3): e9519.
doi: 10.1371/journal.pone.0009519 |
[66] | LI Y, TIAN C F, CHEN W F, WANG L, SUI X H, CHEN W X. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS ONE, 2013, 8(8): e70531. |
[67] |
JIAO J, WU L J, ZHANG B, HU Y, LI Y, ZHANG X X, GUO H J, LIU L X, CHEN W X, ZHANG Z, TIAN C F. MucR is required for transcriptional activation of conserved ion transporters to support nitrogen fixation of Sinorhizobium fredii in soybean nodules. Molecular Plant-Microbe Interactions, 2016, 29(5): 352-361.
doi: 10.1094/MPMI-01-16-0019-R |
[68] |
HOOD G, RAMACHANDRAN V, EAST A K, DOWNIE J A, POOLE P S. Manganese transport is essential for N2‐fixation by Rhizobium leguminosarumin bacteroids from galegoid but not phaseoloid nodules. Environmental Microbiology, 2017, 19: 2715-2726.
doi: 10.1111/1462-2920.13773 |
[69] | 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30(3): 961-968. |
ZHENG Y M, DU L T, WANG C X, WU Z F, SUN X W, YU T Y, SHEN P, WAGN C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chinese Journal of Applied Ecology, 2019, 30(3): 961-968. (in Chinese) | |
[70] |
KOSSLAK R M, BOHLOOL B B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiology, 1984, 75: 125-130.
doi: 10.1104/pp.75.1.125 |
[71] |
REID D E, FERGUSON B J, GRESSHOFF P M. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Molecular Plant-Microbe Interactions, 2011, 24(5): 606-618.
doi: 10.1094/MPMI-09-10-0207 |
[72] |
FERGUSON B J, MENS C, HASTWELL A H, ZHANG M B, SU H, JONES C H, CHU X T, GRESSHOFF P M. Legume nodulation: The host controls the party. Plant Cell and Environment, 2019, 42: 41-51.
doi: 10.1111/pce.13348 |
[73] |
LIU H, ZHANG C, YANG J, YU N, WANG E. Hormone modulation of legume-rhizobial symbiosis. Journal of Integrative Plant Biology, 2018, 60(8): 632-648.
doi: 10.1111/jipb.12653 |
[74] | GUINEL F C. Ethylene, a hormone at the center-stage of nodulation. Frontiers in Plant Science, 2015, 6: 1121. |
[75] | 崔贤, 王洪丹, 邱洪湘, 张国英, 谢金玉, 魏梅花. 花生配方施肥技术肥料效应试验研究. 花生学报, 2008, 37(3): 33-36. |
CUI X, WANG H D, QIU H X, ZHANG G Y, XIE J Y, WEI M H. Effects of compounding application of fertilizer on peanut. Journal of Peanut Science, 2008, 37(3): 33-36. (in Chinese) | |
[76] | OHYAMA T, FUJIKAKE H, YASHIMA H, TANABATA S, ISHIKAWA S, SATO T, NISHIWAKI T, OHTAKE N, SUEYOSHI K, ISHII S. Effect of nitrate on nodulation and nitrogen fixation of soybean//EL-SHEMY H A. In Soybean Physiology and Biochemistry. Croatia, Rijeka: InTech, 2011: 333-364. |
[77] |
NISHIDA H, SUZAKI T. Nitrate-mediated control of root nodule symbiosis. Current Opinion in Plant Biology, 2018, 44: 129-136.
doi: 10.1016/j.pbi.2018.04.006 |
[78] |
DU M, GAO Z, LI X, LIAO H. Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins. Annals of Botany, 2020, 126: 61-72.
doi: 10.1093/aob/mcaa002 |
[79] |
CARROLL B J, MCNEIL D L, GRESSHOFF P M. A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiology, 1985, 78: 34-40.
doi: 10.1104/pp.78.1.34 |
[80] |
NISHIMURA R, HAYASHI M, WU G, KOUCHI H, IMAIZUMI- ANRAKU H, MURAKAMI Y, KAWASAKI S, AKAO S, OHMORI M, NAGASAWA M, HARADA K, KAWAGUCHI M. HAR1 mediates systemic regulation of symbiotic organ development. Nature, 2002, 420: 426-429.
doi: 10.1038/nature01231 |
[81] |
SEARLE I R, MEN A E, LANIYA T S, BUZAS D M, ITURBE- ORMAETXE I, CARROLL, B J, GRESSHOFF P M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003, 299: 109-112.
doi: 10.1126/science.1077937 |
[82] |
JIN J, WATT M, MATHESIUS U. The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiology, 2012, 159: 489-500.
doi: 10.1104/pp.112.194993 |
[83] | OKAMOTO S, KAWAGUCHI M. Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus. Plant Signaling and Behavior, 2015, 10: 5. |
[84] | 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38(2): 207-213. |
WU Z F, CHEN D X, ZHENG Y M, WANG C B, SUN X W, LI X D, WANG X X, SHI C R, FENG H, YU T Y. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chinese Journal of Oil Crop Sciences, 2016, 38(2): 207-213. (in Chinese) | |
[85] | 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31(12): 2418-2425. |
ZHENG Y M, WANG C X, LIU Q M, WU Z F, WANG C B, SUN X S, ZHENG Y P. Regulatory effects of nitrogen fertilizer on peanut root growth and nodulation. Journal of Nuclear Agricultural Sciences, 2017, 31(12): 2418-2425. (in Chinese) | |
[86] |
VARGAS A A T, GRAHAM P H. Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Research, 1988, 19(2): 91-101.
doi: 10.1016/0378-4290(88)90047-0 |
[87] |
GRAHAM P H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology, 1992, 38: 475-484.
doi: 10.1139/m92-079 |
[88] |
MACCIÓ D, FABRA A, CASTRO S. Acidity and calcium interaction affect the growth of Bradyrhizobium sp. and the attachment to peanut roots. Soil Biology and Biochemistry, 2002, 34: 201-208.
doi: 10.1016/S0038-0717(01)00174-2 |
[89] |
ANGELINI J, CASTRO S, FABRA A. Alterations in root colonization and nodC gene induction in the peanut-rhizobia interaction under acidic conditions. Plant Physiology and Biochemistry, 2003, 41: 289-294.
doi: 10.1016/S0981-9428(03)00021-4 |
[90] |
KRULWICH T A, AGUS R, SCHNEIR M, GUFFANTI A A. Buffering capacity of bacilli that grow at different pH ranges. Journal of Bacteriology, 1985, 162(2): 768-772.
doi: 10.1128/jb.162.2.768-772.1985 |
[91] |
BHAGWAT A A, APTE S K. Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen- fixing cyanobacterium Anabaena sp. Strain L-31. Journal of Bacteriology, 1989, 171(9): 5187-5189.
doi: 10.1128/jb.171.9.5187-5189.1989 |
[92] |
GRAHAM P H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology, 1992, 38: 475-484.
doi: 10.1139/m92-079 |
[93] |
HOWIESON J G, ROBSON A D, ABBOTT L K. Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Australian Journal of Agricultural Research, 1992, 43(3): 765-772.
doi: 10.1071/AR9920765 |
[94] |
CHEN H, RICHARDSON A E, ROLFE B G. Studies of the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Applied and Environmental Microbiology, 1993, 59: 1798-1804.
doi: 10.1128/aem.59.6.1798-1804.1993 |
[95] |
ANGELINI J, TAURIAN T, MORGANTE C, IBANEZ F, CASTRO S, FABRA A. Peanut nodulation kinetics in response to low pH. Plant Physiology and Biochemistry, 2005, 43: 754-759.
doi: 10.1016/j.plaphy.2005.05.012 |
[96] |
NATERA V, SOBREVALS L, FABRA A, CASTRO S. Glutamate is involved in acid stress response in Bradyrhizobium sp. SEMIA 6144 (Arachis hypogaea L.) microsymbiont. Current Microbiology, 2006, 53: 479-482.
doi: 10.1007/s00284-006-0146-y |
[97] |
ROUGHLEY R J. The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen-fixing efficiency of the root nodules of Trifolium subterraneum. Annals of Botany, 1970, 34: 631-646.
doi: 10.1093/oxfordjournals.aob.a084397 |
[98] |
ROUGHLEY R J, DART P J. Root temperature and root-hair infection of Trifolium subterraneum L. cv. Cranmore. Plant Soil, 1970, 32: 518-520.
doi: 10.1007/BF01372887 |
[99] | DARDANELLI M S, WOELKE M R, GONZÁLEZ P S, BUENO M A, GHITTONI N E. The effects of nonionic hyperosmolarity and of high temperature on cell-associated low molecular weight saccharides from two rhizobia strains. Symbiosis, 1997, 23(1): 73-84. |
[100] |
MICHIELS J, VERRETH C, VANDERLEYDEN J. Effects of temperature stress on bean-nodulating Rhizobium strains. Applied and Environmental Microbiology, 1994, 60(4): 1206-1212.
doi: 10.1128/aem.60.4.1206-1212.1994 |
[101] |
PIMRATCH S, JOGLOY S, VORASOOT N, TOOMSAN B, PATANOTHAI A, HOLBROOK C C. Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. Journal of Agronomy and Crop Science, 2008, 194: 15-25.
doi: 10.1111/j.1439-037X.2007.00286.x |
[102] | SERRAJ R, SINCLAIR T R, PURCELL L C. Symbiotic N-2 fixation response to drought. Journal of Experimental Botany, 1999, 50(331): 143-155. |
[103] | FURLAN A, LLANES A, LUNA V, CASTRO S. Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp.. International Scholarly Research Network ISRN Agronomy, 2012, 2012: 1-8. |
[1] | 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学, 2023, 56(4): 635-648. |
[2] | 张一中, 张晓娟, 梁笃, 郭琦, 范昕琦, 聂萌恩, 王绘艳, 赵文博, 杜维俊, 柳青山. 基于表型性状的高粱育种材料遗传多样性分析及综合评价[J]. 中国农业科学, 2023, 56(15): 2837-2853. |
[3] | 孙涛, 冯晓敏, 高新昊, 邓艾兴, 郑成岩, 宋振伟, 张卫建. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响[J]. 中国农业科学, 2023, 56(15): 2929-2940. |
[4] | 李欢, 鄢小青, 杨占烈, 谭金玉, 黎小冰, 陈能刚, 吴荣菊, 陈惠查, 阮仁超. 贵州香禾糯地方稻种资源表型遗传多样性分析与综合评价[J]. 中国农业科学, 2023, 56(11): 2035-2046. |
[5] | 郭燕, 张树航, 李颖, 张馨方, 王广鹏. 中国板栗36个叶片表型性状的多样性[J]. 中国农业科学, 2022, 55(5): 991-1009. |
[6] | 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652. |
[7] | 王娟,陈皓宁,石大川,于天一,闫彩霞,孙全喜,苑翠玲,赵小波,牟艺菲,王奇,李春娟,单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究[J]. 中国农业科学, 2022, 55(22): 4356-4372. |
[8] | 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析[J]. 中国农业科学, 2022, 55(2): 233-247. |
[9] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[10] | 万映伶,朱梦婷,刘爱青,金亦佳,刘燕. 中国观赏芍药表型多样性解析与资源评价[J]. 中国农业科学, 2022, 55(18): 3629-3639. |
[11] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[12] | 胡光明,张琼,韩飞,李大卫,李作洲,汪志,赵婷婷,田华,刘小莉,钟彩虹. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学, 2022, 55(17): 3411-3425. |
[13] | 郭灿,岳晓凤,白艺珍,张良晓,张奇,李培武. 花生黄曲霉毒素平衡取样-随机森林风险预警模型的应用研究[J]. 中国农业科学, 2022, 55(17): 3426-3436. |
[14] | 杨静,张贺,李双霜,李桂花,张建峰. 砂质潮土施用改良剂对土壤动物群落特征的影响[J]. 中国农业科学, 2022, 55(16): 3185-3199. |
[15] | 张晨曦, 田明慧, 杨硕, 杜嘉琪, 何堂庆, 仇云鹏, 张学林. 酸性土壤中丛枝菌根真菌菌剂多样性对玉米产量及其磷钾吸收的影响[J]. 中国农业科学, 2022, 55(15): 2899-2910. |
|