中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 1-11.doi: 10.3864/j.issn.0578-1752.2022.01.001
武亚瑞1(),刘锡建1,杨国敏2,刘红伟1,孔文超1,吴永振1,孙晗1,秦冉1,崔法1(),赵春华1()
收稿日期:
2021-06-07
接受日期:
2021-08-16
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
崔法,赵春华
作者简介:
武亚瑞,E-mail: 基金资助:
WU YaRui1(),LIU XiJian1,YANG GuoMin2,LIU HongWei1,KONG WenChao1,WU YongZhen1,SUN Han1,QIN Ran1,CUI Fa1(),ZHAO ChunHua1()
Received:
2021-06-07
Accepted:
2021-08-16
Online:
2022-01-01
Published:
2022-01-07
Contact:
Fa CUI,ChunHua ZHAO
摘要:
【目的】旗叶是小麦光合碳固定的重要场所,对小麦产量起十分重要的作用。研究小麦旗叶在高、低氮环境下的遗传特性,分析其遗传机制,为优异株型育种、高产育种提供参考依据。【方法】以科农9204和京411为亲本所构建的188个RIL群体为材料,分别种植在6个不同的高、低氮环境下,通过对群体旗叶性状调查并进行遗传分析,从而确定控制各性状的基因数目,估计遗传效应值及遗传率,并对小麦旗叶性状与产量之间的关系进行分析。【结果】在遗传估测中,低氮环境下:旗叶长在E3环境的最适遗传模型为2MG-CE,即2对互补作用主基因遗传模型,其加性×加性上位性互作效应值为1.098,主基因遗传率为31.35%,在其他低氮环境下均表现为多基因遗传;旗叶宽均表现为多基因遗传;旗叶面积(除E5)的最适遗传模型均为2MG-CE,加性×加性上位性互作效应值为1.884,主基因遗传率为36.7%,在E5为多基因遗传。高氮环境下:旗叶长(除E4)的最适遗传模型为2MG-CE,加性×加性上位性互作效应值为1.133,主基因遗传率为32.6%,在E4环境的最适遗传模型为2MG-ER,即2对隐性上位主基因遗传模型,其第一对主基因的加性效应值为1.431,第二对主基因的加性效应值为1.108,主基因遗传率为51.77%;旗叶宽(除E2)的最适遗传模型为2MG-CE,加性×加性上位性互作效应值为0.119,主基因遗传率为37.29%,在E2表现为多基因遗传;旗叶面积的最适遗传模型为2MG-CE,加性×加性上位性互作效应值为3.067,主基因遗传率为44.42%。旗叶性状在不同环境的遗传模型不同,在高氮环境下遗传较为稳定,在低氮下受环境影响较大。在旗叶与产量性状的相关性分析中,旗叶性状与穗粒数、穗粒重、单株产量之间呈显著正相关,且在不同环境下的影响程度不同。【结论】旗叶性状易受外界环境影响,在高、低氮环境下的表现不同。旗叶在低氮环境下表现为不同的主基因遗传和多基因遗传;在高氮环境下大多表现为主基因遗传,由2对基因控制,并且存在基因之间的相互作用,且可能存在效应较大的主效QTL。改善旗叶性状可以提高小麦的单株产量、穗粒重等产量性状。
武亚瑞,刘锡建,杨国敏,刘红伟,孔文超,吴永振,孙晗,秦冉,崔法,赵春华. 高低氮处理下小麦旗叶性状的遗传分析[J]. 中国农业科学, 2022, 55(1): 1-11.
WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen[J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
表1
不同环境下两亲本旗叶性状的方差分析"
性状 Trait | 变异源 Source of variation | 自由度 Degree of freedom | 均方 Mean square | F | 显著性 Significance | 效应量 Effect quantity |
---|---|---|---|---|---|---|
旗叶长 FLL | 品种Breed | 1 | 0.421 | 0.091 | 0.763 | 0.001 |
环境Environment | 5 | 220.711 | 47.859 | 0.000 | 0.660 | |
品种×环境 Breed×Environment | 5 | 4.134 | 0.896 | 0.486 | 0.035 | |
误差Error | 123 | 4.612 | ||||
旗叶宽FLW | 品种Breed | 1 | 0.939 | 46.235 | 0.000 | 0.273 |
环境Environment | 5 | 0.472 | 23.247 | 0.000 | 0.486 | |
品种×环境 Breed×Environment | 5 | 0.035 | 1.741 | 0.130 | 0.066 | |
误差Error | 123 | 0.020 | ||||
旗叶面积FLA | 品种Breed | 1 | 120.240 | 8.819 | 0.004 | 0.067 |
环境Environment | 5 | 674.892 | 49.497 | 0.000 | 0.668 | |
品种×环境 Breed×Environment | 5 | 20.239 | 1.484 | 0.200 | 0.057 | |
误差Error | 123 | 13.635 |
表2
不同生境下旗叶性状的统计值"
性状 Trait | 生境 Environment | 亲本Parent | RIL群体RIL population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
科农9204 Kenong 9204 | 京411 Jing 411 | 最小值 Min | 最大值 Max | 均值 Average | 标准差 SD | 变异系数 CV (%) | 偏度 Skew | 峰度 Kurt | |||
旗叶长FLL | 低氮LN | E1 | 10.05 | 11.05 | 6.00 | 17.40 | 13.30 | 1.50 | 0.11 | 0.24 | 0.04 |
E3 | 14.42 | 14.83 | 9.92 | 20.14 | 14.67 | 1.69 | 0.12 | 0.26 | 0.13 | ||
E5 | 14.78 | 15.56 | 12.08 | 20.82 | 15.43 | 1.37 | 0.09 | 0.30 | 0.71 | ||
均值Average | 13.08 | 13.81 | 9.33 | 19.45 | 14.47 | 1.52 | 0.11 | 0.27 | 0.29 | ||
高氮HN | E2 | 16.46 | 15.20 | 11.80 | 22.50 | 16.03 | 1.72 | 0.11 | 0.42 | 0.20 | |
E4 | 19.22 | 19.61 | 13.48 | 25.62 | 19.66 | 2.27 | 0.12 | 0.20 | -0.32 | ||
E6 | 19.11 | 18.79 | 13.60 | 25.74 | 19.04 | 1.75 | 0.09 | 0.22 | 0.27 | ||
均值Average | 18.26 | 17.87 | 12.96 | 24.62 | 18.24 | 1.91 | 0.11 | 0.28 | 0.05 | ||
旗叶宽FLW | 低氮LN | E1 | 1.48 | 1.25 | 0.78 | 1.66 | 1.20 | 0.14 | 0.11 | 0.27 | 0.60 |
E3 | 1.43 | 1.36 | 1.06 | 1.74 | 1.35 | 0.13 | 0.09 | 0.17 | -0.24 | ||
E5 | 1.55 | 1.42 | 1.16 | 1.80 | 1.43 | 0.13 | 0.09 | 0.35 | -0.27 | ||
均值Average | 1.49 | 1.34 | 1.00 | 1.73 | 1.33 | 0.13 | 0.10 | 0.26 | 0.03 | ||
高氮HN | E2 | 1.44 | 1.13 | 0.82 | 1.76 | 1.31 | 0.15 | 0.11 | 0.15 | 0.38 | |
E4 | 1.79 | 1.56 | 1.18 | 2.30 | 1.59 | 0.17 | 0.11 | 0.43 | 0.30 | ||
E6 | 1.68 | 1.57 | 1.22 | 2.10 | 1.58 | 0.17 | 0.10 | 0.42 | 0.10 | ||
均值Average | 1.64 | 1.42 | 1.07 | 2.05 | 1.49 | 0.16 | 0.11 | 0.33 | 0.26 | ||
旗叶 面积FLA | 低氮LN | E1 | 12.14 | 11.97 | 6.10 | 20.67 | 13.27 | 2.39 | 0.18 | 0.39 | 0.37 |
E3 | 17.17 | 16.74 | 9.72 | 28.28 | 16.48 | 2.99 | 0.18 | 0.41 | 0.15 | ||
E5 | 18.99 | 18.30 | 11.95 | 28.69 | 18.36 | 2.43 | 0.13 | 0.42 | 0.31 | ||
均值Average | 16.10 | 15.67 | 9.26 | 25.88 | 16.04 | 2.60 | 0.16 | 0.41 | 0.28 | ||
高氮HN | E2 | 19.82 | 14.63 | 9.74 | 28.84 | 17.57 | 3.14 | 0.18 | 0.41 | 0.06 | |
E4 | 28.64 | 25.38 | 15.44 | 42.92 | 26.09 | 4.83 | 0.19 | 0.50 | 0.24 | ||
E6 | 26.66 | 25.53 | 16.45 | 37.57 | 25.07 | 3.91 | 0.16 | 0.51 | 0.08 | ||
均值Average | 25.04 | 21.85 | 13.88 | 36.44 | 22.91 | 3.96 | 0.18 | 0.47 | 0.13 |
表3
旗叶性状在重组自交系群体中的最适遗传模型分析"
性状 Trait | 环境 Environment | 模型代码 Model code | 最适遗传模型代号 Optimal genetic model code | 最大似然值Log Max likelihood value | 最小AIC值 Min AIC value | |
---|---|---|---|---|---|---|
旗叶长 FLL | 低氮LN | E1 | — | 0MG | -705.64 | 1415.28 |
E3 | B-1-7 | 2MG-CE | -729.05 | 1464.11 | ||
E5 | — | 0MG | -652.32 | 1308.63 | ||
高氮HN | E2 | B-1-7 | 2MG-CE | -732.15 | 1470.30 | |
E4 | B-1-5 | 2MG-ER | -838.02 | 1684.05 | ||
E6 | B-1-7 | 2MG-CE | -743.82 | 1493.63 | ||
旗叶宽FLW | 低氮LN | E1 | — | 0MG | 126.13 | -248.25 |
E3 | — | 0MG | 240.62 | -477.24 | ||
E5 | — | 0MG | 81.13 | -158.27 | ||
高氮HN | E2 | — | 0MG | 43.46 | -82.91 | |
E4 | B-1-7 | 2MG-CE | 137.97 | -269.93 | ||
E6 | B-1-7 | 2MG-CE | 145.32 | -284.64 | ||
旗叶面积FLA | 低氮LN | E1 | B-1-7 | 2MG-CE | -854.10 | 1714.21 |
E3 | B-1-7 | 2MG-CE | -942.37 | 1890.73 | ||
E5 | — | 0MG | -963.52 | 1931.05 | ||
高氮HN | E2 | B-1-7 | 2MG-CE | -954.50 | 1915.00 | |
E4 | B-1-7 | 2MG-CE | -1119.11 | 2244.22 | ||
E6 | B-1-7 | 2MG-CE | -1037.79 | 2081.58 |
表4
小麦RIL群体旗叶性状的各阶遗传参数"
性状 Trait | 环境 Environment | 模型代码 Optimal genetic mode | 一阶遗传参数1st order parameter estimate | 二阶遗传参数2nd order parameter estimate | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
m | d(da) | db | iab(i*) | σ²p | σ²mg | σ²e | h²mg (%) | ||||
旗叶长FLL | 低氮LN | E1 | 0MG | — | — | — | — | 2.505 | — | 2.505 | — |
E3 | 2MG-CE | 15.233 | — | — | 1.098 | 2.868 | 0.899 | 1.969 | 31.353 | ||
E5 | 0MG | — | — | — | — | 1.886 | — | 1.886 | — | ||
高氮HN | E2 | 2MG-CE | 16.692 | — | — | 1.302 | 2.970 | 1.260 | 1.711 | 42.410 | |
E4 | 2MG-ER | 19.652 | 1.431 | 1.108 | — | 5.180 | 2.682 | 2.499 | 51.766 | ||
E6 | 2MG-CE | 19.522 | — | — | 0.963 | 3.081 | 0.702 | 2.379 | 22.790 | ||
旗叶宽FLW | 低氮LN | E1 | 0MG | — | — | — | — | 0.030 | — | 0.030 | — |
E3 | 0MG | — | — | — | — | 0.016 | — | 0.016 | — | ||
E5 | 0MG | — | — | — | — | 0.038 | — | 0.038 | — | ||
高氮HN | E2 | 0MG | — | — | — | — | 0.047 | — | 0.047 | — | |
E4 | 2MG-CE | 1.654 | — | — | 0.122 | 0.029 | 0.011 | 0.018 | 38.575 | ||
E6 | 2MG-CE | 1.643 | — | — | 0.116 | 0.028 | 0.010 | 0.018 | 35.993 | ||
旗叶面积FLA | 低氮LN | E1 | 2MG-CE | 14.168 | — | — | 1.726 | 5.718 | 2.193 | 3.525 | 38.347 |
E3 | 2MG-CE | 17.504 | — | — | 2.042 | 8.978 | 3.140 | 5.839 | 34.970 | ||
E5 | 0MG | — | — | — | — | 9.873 | — | 9.874 | — | ||
高氮HN | E2 | 2MG-CE | 18.803 | — | — | 2.390 | 9.858 | 4.216 | 5.641 | 42.770 | |
E4 | 2MG-CE | 27.948 | — | — | 3.716 | 23.389 | 10.417 | 12.972 | 44.538 | ||
E6 | 2MG-CE | 26.677 | — | — | 3.095 | 15.335 | 7.048 | 8.288 | 45.956 |
表5
小麦RIL群体的旗叶性状与产量性状间的相关性"
性状 Trait | 环境 Environment | 有效穗数 Effective panicles | 穗粒数 Spike grain number | 穗粒重 Spike grain weight | 单株产量 Yield | 千粒重 Thousand grain weight |
---|---|---|---|---|---|---|
旗叶长 FLL | E1 | 0.032 | 0.237** | 0.168** | 0.178** | -0.060 |
E2 | 0.060 | 0.166** | 0.140** | 0.081 | — | |
E3 | 0.067 | 0.358** | 0.372** | 0.171** | 0.101 | |
E4 | 0.212** | 0.235** | 0.130* | 0.208** | -0.016 | |
E5 | 0.144** | 0.055 | 0.193** | 0.230** | 0.115* | |
E6 | -0.002 | 0.078 | 0.126* | 0.093 | 0.081 | |
旗叶宽 FLW | E1 | -0.014 | 0.101 | 0.105* | 0.086 | 0.043 |
E2 | 0.120* | 0.102 | 0.043 | 0.059 | — | |
E3 | 0.088 | 0.243** | 0.313** | 0.215** | 0.064 | |
E4 | 0.133* | 0.332** | 0.302** | 0.181** | 0.008 | |
E5 | -0.041 | 0.186** | 0.208** | 0.045 | -0.022 | |
E6 | -0.236** | 0.416** | 0.189** | -0.084 | -0.143** | |
旗叶面积 FLA | E1 | 0.046 | 0.288** | 0.236** | 0.221** | -0.054 |
E2 | 0.100 | 0.190** | 0.105* | 0.106* | — | |
E3 | 0.088 | 0.352** | 0.397** | 0.221** | 0.092 | |
E4 | 0.199** | 0.345** | 0.258** | 0.227** | -0.005 | |
E5 | 0.046 | 0.177** | 0.266** | 0.155** | 0.044 | |
E6 | -0.160** | 0.325** | 0.200** | -0.001 | -0.045 |
[1] | 夏江宝, 张光灿, 许景伟, 李传荣. 干旱胁迫下常春藤净光合速率日变化及其影响因子分析. 水土保持通报, 2010, 30(3): 78-82. |
XIA J B, ZHANG G C, XU J W, LI C R. Analysis on diurnal variation of net photosynthetic rate and its influencing factors under drought stress. Bulletin of Soil and Water Conservation, 2010, 30(3): 78-82. (in Chinese) | |
[2] | 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23(3): 724-730. |
MA F J, LI D D, CAI J, JIANG D, CAO W X, DAI T B. Effects of drought stress on root growth and leaf photosynthesis of wheat seedlings. Chinese Journal of Applied Ecology, 2012, 23(3): 724-730. (in Chinese) | |
[3] | 贺安娜, 姚奕. 虎耳草冬季净光合速率、蒸腾速率日变化及其影响因子分析. 西南农业学报, 2011, 24(4): 1298-1302. |
HE A N, YAO Y. Analysis of diurnal variation of net photosynthetic rate, transpiration rate and its influencing factors in winter. Southwest China Journal of Agricultural Sciences, 2011, 24(4): 1298-1302. (in Chinese) | |
[4] | 张治安, 杨福, 陈展宇, 徐克章. 菰叶片净光合速率日变化及其与环境因子的相互关系. 中国农业科学, 2006, 39(3): 502-509. |
ZHANG Z A, YANG F, CHEN Z Y, XU K Z. Diurnal variation of net photosynthetic rate in leaves of wild rice and its relationship with environmental factors. Scientia Agricultura Sinica, 2006, 39(3): 502-509. (in Chinese) | |
[5] | 唐晓培, 杨丽, 冯冬雪, 高壮壮, 张文杰, 刘海军. 非充分灌溉下8个小麦品种旗叶光合与产量及水分利用效率的关系. 干旱地区农业研究, 2020, 38(4): 245-252+265. |
TANG X P, YANG L, FENG D X, GAO Z Z, ZHANG W J. LIU H J. The relationship between flag leaf photosynthesis and yield and water use efficiency of eight wheat cultivars under inadequate irrigation. Agricultural Research in the Arid Areas, 2020, 38(4): 245-252+265. (in Chinese) | |
[6] | 徐恒永, 赵君实. 高产冬小麦的冠层光合能力及不同器官的贡献. 作物学报, 1995, 21(2): 204-209. |
XU H Y, ZHAO J S. Canopy photosynthetic capacity and contribution of different organs in high-yielding winter wheat. Acta Agronomica Sinica, 1995, 21(2): 204-209. (in Chinese) | |
[7] |
LIU L P, SUN G L, REN X F, LI C D, SUN D F. Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genetics, 2015, 16(1): 29.
doi: 10.1186/s12863-015-0187-y |
[8] | 熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016, 49(12): 2267-2279. |
XIONG S P, WU K Y, WANG X C, ZHANG J, DU P, WU Y X, MA X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279. (in Chinese) | |
[9] |
LIDIYA M, OREST F, VALERIY P, et al. Nitrogen balance of crop production in Ukraine. Journal of Environmental Management, 2019, 246: 860-867.
doi: 10.1016/j.jenvman.2019.05.108 |
[10] |
LASSALETTA L, BILLEN G, GARNIER J, BOUWMAN L, VELAZQUEZ E, MUELLER N D, GERBER J S. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters, 2016, 11(9): 095007.
doi: 10.1088/1748-9326/11/9/095007 |
[11] | 盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26(4): 385-391. |
GAI J Y, ZHANG Y M, WANG J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agronomica Sinica, 2000, 26(4): 385-391. (in Chinese) | |
[12] |
WANG J K, PODLICH D W, COOPER M, DELACY I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theoretical and Applied Genetics, 2001, 103: 804-816.
doi: 10.1007/s001220100628 |
[13] |
WANG J K, GAI J Y. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001, 122(1): 9-18.
doi: 10.1023/A:1012649506212 |
[14] | GAI J Y. Segregation analysis on genetic system of quantitative traits in plants. Frontiers of Biology, 2006, 1(1): 85-92. |
[15] | KHAN M I, KHATTAK G S S, KHAN A J, SUBHAN F, MOHAMMAD T, ALI A. Genetic control of flag leaf area in wheat (Triticum aestivum) crosses. African Journal of Agricultural Research, 2012, 7(27): 3978-3990. |
[16] | KUMAR S. Quantitative genetics, molecular markers, and plant improvement. Scholarly Journal of Agricultural Science, 2014, 4(10): 502-511. |
[17] |
BECHE E, BENIN G, SILVA C L, MUNARO L B, MARCHESE J A. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 2014, 61: 49-59.
doi: 10.1016/j.eja.2014.08.005 |
[18] | 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003: 96-102. |
GAI J Y, ZHANG Y M, WANG J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003: 96-102. (in Chinese) | |
[19] |
MA J, TU Y, ZHU J, LUO W, LIU H, LI C, LI S, LIU J J, DING P Y, AHSAN H. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 2020, 133(1): 297-315.
doi: 10.1007/s00122-019-03458-2 |
[20] |
FAROKHZADEH S, FAKHERI B A, NEZHAD N M, TAHMASEBI S, MIRSOLEIMANI A. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2019, 25(4): 975-990.
doi: 10.1007/s12298-019-00670-8 |
[21] |
LIU K Y, XU H, LIU G, GUAN P F, ZHOU X Y, PENG H R, YAO Y Y, NI Z F, SUN Q X, DU J K. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2018, 131(4): 839-849.
doi: 10.1007/s00122-017-3040-z |
[22] | FRANCKI M G, WAIKER E, LI D A, FORREST K. High-density SNP mapping reveals closely linked QTL for resistance to Stagonospora nodorum blotch (SNB) in flag leaf and glume of hexaploid wheat. Canadian Journal of Genetics and Cytology, 2018, 61(2): 145-149. |
[23] |
HUSSAIN W, BAENZIGER P S, BELAMKAR V, GUTTIERI M J, VENEGAS J P, EASTERLY A, SALLAM A, POLAND J. Genotyping-by-sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Scientific Reports, 2017, 7(1): 16394.
doi: 10.1038/s41598-017-16006-z |
[24] | 赵倩茹, 钟兴华, 张飞, 房伟民, 陈发棣, 滕年军. 切花小菊绿心性状杂种优势与混合遗传分析. 中国农业科学, 2018, 51(5): 964-976. |
ZHAO Q R, ZHONG X H, ZHANG F, FANG W M, CHEN F D, TENG N J. Heterosis and mixed genetic analysis of green-center trait of spray cut chrysanthemum. Scientia Agricultura Sinica, 2018, 51(5): 964-976. (in Chinese) | |
[25] | 叶红霞, 吕律, 海睿, 胡雨晴, 汪炳良. 甜瓜果实糖含量的主基因+多基因遗传分析. 浙江大学学报(农业与生命科学版), 2019, 45(4): 391-400. |
YE H X, LÜ L, HAI R, HU Y Q, WANG B L. Genetic analysis of main gene + polygene in sugar content of melon fruit. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 391-400. (in Chinese) | |
[26] | 曹齐卫, 张允楠, 王永强, 杨桂兰, 孙小镭, 李利斌. 黄瓜节间长的主基因+多基因混合遗传模型分析. 农业生物技术学报, 2018, 26(2): 205-212. |
CAO Q W, ZHANG Y N, WANG Y Q, YANG G L, SUN X L, LI L B. Genetic analysis of internode length using mixed major-gene plus polygene inheritance model in Cucumis sativus. Journal of Agricultural Biotechnology, 2018, 26(2): 205-212. (in Chinese) | |
[27] |
汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会成, 洪涛, 付丽, 刘佳. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016, 42(8): 1103-1111.
doi: 10.3724/SP.J.1006.2016.01103 |
WANG W X, HU Q, MEI D S, LI Y C, ZHOU R J, WANG H C, HONG T, FU L, LIU J. Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus. Acta Agronomica Sinica, 2016, 42(8): 1103-1111. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01103 |
|
[28] |
YE Y J, WU J Y, FENG L, JU Y Q, CAI M, CHENG T R, PAN H T, ZHANG Q X. Heritability and gene effects for plant architecture traits of crape myrtle using major gene plus polygene inheritance analysis. Scientia Horticulturae, 2017, 225: 335-342.
doi: 10.1016/j.scienta.2017.06.065 |
[29] |
江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析. 作物学报, 2021, 47(7): 1215-1227.
doi: 10.3724/SP.J.1006.2021.02057 |
JIANG J H, ZHANG W H, DANG X J, RONG H, YE Q, HU C M, ZHANG Y, HE Q, WANG D Z. Genetic analysis of the stigma trait in rice nuclear male sterile lines. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. (in Chinese)
doi: 10.3724/SP.J.1006.2021.02057 |
|
[30] | 黄冰艳, 张新友, 苗利娟, 刘华, 秦利, 徐静, 张忠信, 汤丰收, 董文召, 韩锁义, 刘志勇. 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012, 45(4): 617-624. |
HUANG B Y, ZHANG X Y, MIAO L J, LIU H, QIN L, XU J, ZHANG Z X, TANG F S, DONG W Z, HAN S Y, LIU Z Y. Inheritance analysis of oleic acid and linoleic acid content of Arachis hypogaea. Scientia Agricultura Sinica, 2012, 45(4): 617-624. (in Chinese) | |
[31] | 解松峰, 吉万全, 王长有, 胡卫国, 李俊, 张耀元, 师晓曦, 张俊杰, 张宏, 陈春环. 小麦穗部性状的主基因+多基因混合遗传模型分析. 中国农业科学, 2019, 52(24): 4437-4452. |
XIE S F, JI W Q, WANG C Y, HU W G, LI J, ZHANG Y Y, SHI X X, ZHANG J J, ZHANG H, CHEN C H. Analysis of mixed genetic model of major gene and polygene for wheat panicle traits. Scientia Agricultura Sinica, 2019, 52(24): 4437-4452. (in Chinese) | |
[32] |
解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 李俊, 王长有, 张宏, 陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020, 46(3): 365-384.
doi: 10.3724/SP.J.1006.2020.91044 |
XIE S F, JI W Q, ZHANG Y Y, ZHANG J J, HU W G, LI J, WANG C Y, ZHANG H, CHEN C H. Genetic analysis of major genes and polygenes in important yield traits of wheat. Acta Agronomica Sinica, 2020, 46(3): 365-384. (in Chinese)
doi: 10.3724/SP.J.1006.2020.91044 |
|
[33] |
CUI F, FAN X L, ZHAO C H, ZHANG W, CHEN M, JI J, LI J M. A novel genetic map of wheat: Utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014, 15: 57-74.
doi: 10.1186/1471-2156-15-57 |
[34] |
FAN X L, CUI F, ZHAO C H, ZHANG W, YANG L J, ZHAO X Q, HAN J, SU Q N, JI J, ZHAO Z W, TONG Y P, LI J M. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Molecular Breeding, 2015, 35(1): 1-16.
doi: 10.1007/s11032-015-0202-z |
[35] | 胡燕美, 苏慧, 朱玉磊, 李金鹏, 李金才, 宋有洪. 花后早期增温对小麦旗叶光合和抗氧化特性及籽粒发育的影响. 麦类作物学报, 2020, 40(10): 1247-1256. |
HU Y M, SU H, ZHU Y L, LI J P, LI J C, SONG Y H. Effects of early post-anthesis warming on photosynthesis and antioxidant characteristics of flag leaves and grain development of wheat. Journal of Triticeae Genetics, 2020, 40(10): 1247-1256. (in Chinese) | |
[36] | 高娣, 吴宏亮, 刘根红, 康建宏, 坚天才, 李鑫. 不同追氮时期对花后高温胁迫下春小麦旗叶蛋白质和核酸代谢的影响. 农业科学研究, 2020, 41(3): 21-25. |
GAO D, WU H L, LIU G H, KANG J H, JIAN T C, LI X. Effects of nitrogen topdressing on protein and nucleic acid metabolism in flag leaves of spring wheat under post-anthesis heat stress. Research in Agricultural Sciences, 2020, 41(3): 21-25. (in Chinese) | |
[37] | 尹嘉德, 侯慧芝, 张绪成, 王红丽, 于显枫, 方彦杰, 马一凡, 张国平, 雷康宁. 全膜覆土下施有机肥对春小麦旗叶碳氮比、光合特性和产量的影响. 应用生态学报, 2020, 31(11): 3749-3757. |
YIN J D, HOU H Z, ZHANG X C, WANG H L, YU X F, FANG Y J, MA Y F, ZHANG G P, LEI K N. Effects of organic fertilizer application on carbon nitrogen ratio, photosynthetic characteristics and yield of flag leaf of spring wheat. Chinese Journal of Applied Ecology, 2020, 31(11): 3749-3757. (in Chinese) | |
[38] | KHAN M I, KHATTAK G S S, KHAN A J, KHAN A J, SUBHAN F, MOHAMMAD T, ALI A. Genetic control of flag leaf area in wheat (Triticum aestivum) crosses. African Journal of Agricultural Research, 2012, 7(27): 3978-3990. |
[39] | 钮力亚, 王伟伟, 王伟, 王奉芝, 赵松山, 于亮. 小麦功能叶对产量及其构成因素的影响. 作物研究, 2018, 32(4): 295-298. |
NIU L Y, WANG W W, WANG W, WANG F Z, ZHAO S S, YU L. Effects of functional leaves on yield and its components in wheat. Crop Research, 2018, 32(4): 295-298. (in Chinese) | |
[40] | 王敏, 张从宇. 小麦旗叶性状与产量因素的相关与回归分析. 种子, 2004, 23(3): 17-21. |
WANG M, ZHANG C Y. Correlation and regression analysis of flag leaf traits and yield factors in wheat. Seed, 2004, 23(3): 17-21. (in Chinese) | |
[41] | 黄杰, 乔冀良, 苗运武, 张振永, 葛昌斌, 廖平安. 小麦产量与旗叶性状的相关性分析. 中国种业, 2018(1): 63-64. |
HUANG J, QIAO J L, MIAO Y W, ZHANG Z Y, GE C B, LIAO P A. Correlation analysis of wheat yield and flag leaf traits. China Seed Industry, 2018(1): 63-64. (in Chinese) | |
[42] | 姜莉莉, 王东. 不同年代小麦产量性状与农艺性状的相关性比较. 华北农学报, 2017, 32(S1): 130-134. |
JIANG L L, WANG D. Comparison of yield and agronomic traits of wheat in different ages. Acta Agriculturae Boreali-Sinica, 2017, 32(S1): 130-134. (in Chinese) |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[4] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[5] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[6] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[7] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[8] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[9] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[10] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[11] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[12] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[13] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[14] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[15] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
|