[1] |
GAN S, AMASINO R M. Making sense of senescence: Molecular genetic regulation and manipulation of leaf senescence. Plant Physiology, 1997, 113(2):313-319.
doi: 10.1104/pp.113.2.313
|
[2] |
张金树. 日光温室冬春茬番茄的早衰及预防. 中国蔬菜, 2001, 1(4):42-43.
|
|
ZHANG J S. Premature senescence and its prevention of tomato in greenhouse at winter and spring. China Vegetables, 2001, 1(4):42-43. (in Chinese)
|
[3] |
张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能. 植物生理学报, 2019, 55(7):915-924.
|
|
ZHANG H Z, BAI X Q, ZENG Y L. Biological functions of plant NAC transcription factors. Plant Physiology Journal, 2019, 55(7):915-924. (in Chinese)
|
[4] |
BREEZE E, HARRISON E, MCHATTIE S, HUGHES L, HICKMAN R, HILL C, KIDDLE S, KIM Y S, PENFOLD C A, JENKINS D. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 2011, 23:873-894.
doi: 10.1105/tpc.111.083345
|
[5] |
KIM Y S, SAKURABA Y, HAN S H, YOO S C, PAEK N C. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiology, 2013, 54:1660-1672.
doi: 10.1093/pcp/pct113
|
[6] |
BALAZADEH S, KWASNIEWSKI M, CALDANA C, MEHRNIA M, ZANOR M L, XUE G P, BERND M R. ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Molecular Plant, 2011, 4:346-360.
doi: 10.1093/mp/ssq080
|
[7] |
HIRONORI T, KYONOSHIN M, FUMINORI T, MIKI F, TAKUYA Y, KAZUO N, FUMIYOSHI M, KIMINORI T, KAZUKO Y S, KAZUO S. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. The Plant Journal, 2015, 84:1114-1123.
doi: 10.1111/tpj.2015.84.issue-6
|
[8] |
BALAZADEH S, SIDDIQUI H, ALLU A D, MATALLANA- RAMIREZ L P, CALDANA C, MEHRNIA M, ZANOR M I, KOHLER B, MUELLER-ROEBER B. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. The Plant Journal, 2010, 62:250-264.
doi: 10.1111/j.1365-313X.2010.04151.x
|
[9] |
MAO C J, LU S C, LÜ B, ZHANG B, SHEN J B, HE J M, LUO L Q, XI D D, CHEN X, MING F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology, 2017, 174(3):1747-1763.
doi: 10.1104/pp.17.00542
|
[10] |
FAN K, BIBI N, GAN S S, LI F, YUAN S N, NI M, WANG M, SHEN H, WANG X D. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. Journal of Experimental Botany, 2015, 66:4669-4682.
doi: 10.1093/jxb/erv240
|
[11] |
LIRA B S, GRAMEGNA G, TRENCH B A, ALVES F R R, SILVA E M, SILVA G F F, THIRUMALAIKUMAR V P, LUPI A C D, DEMARCO D, PURGATTO E, NOGUEIRA F T S, BALAZADEH S, FRESCHI L, ROSSI M. Manipulation of a senescence-associated gene improves fleshy fruit yield. Plant Physiology, 2017, 175(1):452.
|
[12] |
MA X M, ZHANG Y J, TUREČKOVÁ V, XUE G P, FERNIE A R, BERND M R, BALAZADEH S. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato. Plant Physiology, 2018, 177(3):1286-1302.
doi: 10.1104/pp.18.00292
|
[13] |
MULLER F, XU J M, KRISTENSEN L, WOLTERS-ARTS M, GROOT P, JANSMA S Y, MARIANI C, PARK S H, RIEU I. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE, 2016, 11(12):e0167614.
doi: 10.1371/journal.pone.0167614
|
[14] |
BUCHANAN-WOLLASTON V, PAGE T, HARRISON E, BREEZE E, LIM P O, NAM H G, LIN J F, WU S H, SWIDZINSKI J, ISHIZAKI K, LEAVER C J. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 2005, 42:567-585.
doi: 10.1111/tpj.2005.42.issue-4
|
[15] |
KEECH O, PESQUET E, AHAD A, ASKNE A, NORDVALL D, VODNALA S M, TUOMINEN H, HURRY V, DIZENGREMEL P, GARDESTROM P. The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell & Environment, 2007, 30:1523-1534.
|
[16] |
PAN C T, YE L, QIN L, LIU X, HE Y J, WANG J, CHEN L F, LU G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 2016, 7:46916.
doi: 10.1038/srep46916
|
[17] |
LEI Y, LU L, LIU H Y, LI S, XING F, CHEN L L. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 2014, 7(9):1494-1496.
doi: 10.1093/mp/ssu044
|
[18] |
FILLATTI J J, KISER J, ROSE R, COMAI L. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefacien vector. Nature Biotechnology, 1987, 5:726-730.
doi: 10.1038/nbt0787-726
|
[19] |
KENNETH J L, THOMAS D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2002, 25:402-408.
doi: 10.1006/meth.2001.1262
|
[20] |
HELLMAN L M, FRIED M G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nature Protocols, 2007, 2(8):1849-1861.
doi: 10.1038/nprot.2007.249
|
[21] |
TRAN L S, NAKASHIMA K, SAKUMA Y, SIMPSON S D, FUJITA Y, MATUYAMA K, FUJITA M, SEKI M, SHINOZAKI K, KAZUKO Y S. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16:2481-2498.
doi: 10.1105/tpc.104.022699
|
[22] |
GREGERSEN P L, CULETIC A, BOSCHIAN L, KRUPINSKA K. Plant senescence and crop productivity. Plant Molecular Biology, 2013, 82:603-622.
doi: 10.1007/s11103-013-0013-8
|
[23] |
GUIBOILEAU A, SORMANI R, MEYER C, MASCLAUX- DAUBRESSE C. Senescence and death of plant organs: Nutrient recycling and developmental regulation. Comptes Rendus Biologies, 2010, 333:382-391.
doi: 10.1016/j.crvi.2010.01.016
|
[24] |
LIM P O, KIM H J, NAM H G. Leaf senescence. Annual Review of Plant Biology, 2007, 58:115-136.
doi: 10.1146/arplant.2007.58.issue-1
|
[25] |
BALAZADEH S, RIANO-PACHON D M, MUELLER-ROEBER B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology, 2008, 10(s1):63-75.
doi: 10.1111/plb.2008.10.issue-s1
|
[26] |
杨晓娜, 田云, 卢向阳. NAC转录因子在植物生长发育中的调控作用. 化学与生物工程, 2014, 31(1):1.
|
|
YANG X N, TIAN Y, LU X Y. The regulation role of NAC transcription factors in plant growth and development. Chemistry and Bioengineering, 2014, 31(1):1. (in Chinese)
|
[27] |
KIM H J, NAM H G, LIM P O. Regulatory network of NAC transcription factors in leaf senescence. Current Opinion in Plant Biology, 2016, 33:48-56.
doi: 10.1016/j.pbi.2016.06.002
|
[28] |
WANG J, ZHENG C F, SHAO X Q, HU Z J, LI J X, WANG P, WANG A R, YU J Q, SHI K. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 209:1-11.
|
[29] |
刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000(14):1465-1474.
|
|
LIU Q, ZHANG G Y, CHEN S Y. Structure and regulatory function of plant transcription factors. Chinese Science Bulletin, 2000(14):1465-1474. (in Chinese)
|
[30] |
GUO Y, CAI Z Y, GAN S S. Transcriptome of Arabidopsis leaf senescence. Plant Cell & Environment, 2004, 27:521-549.
|
[31] |
BREEZE E, HARRISON E, MCHATTIE S, HUGHES L, HICKMAN R, HILL C, KIDDLE S, KIM Y S, PENFOLD C A, JENKINS D. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 2011, 23:873-894.
doi: 10.1105/tpc.111.083345
|
[32] |
HE Y H, TANG W N, SWAIN J D, GREEN A L, JACK T P, GAN S S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology, 2001, 126:707-716.
doi: 10.1104/pp.126.2.707
|
[33] |
ZHANG K W, XIA X Y, ZHANG Y Y, GAN S S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. The Plant Journal, 2012, 69(4):667-678.
doi: 10.1111/tpj.2012.69.issue-4
|