中国农业科学 ›› 2022, Vol. 55 ›› Issue (14): 2740-2751.doi: 10.3864/j.issn.0578-1752.2022.14.005
方瀚墨1(),胡璋健1,马巧梅1,丁淑婷1,王萍1,王安然1,师恺1,2()
收稿日期:
2021-12-23
接受日期:
2022-01-25
出版日期:
2022-07-16
发布日期:
2022-07-26
通讯作者:
师恺
作者简介:
方瀚墨,E-mail: 基金资助:
FANG HanMo1(),HU ZhangJian1,MA QiaoMei1,DING ShuTing1,WANG Ping1,WANG AnRan1,SHI Kai1,2()
Received:
2021-12-23
Accepted:
2022-01-25
Online:
2022-07-16
Published:
2022-07-26
Contact:
Kai SHI
摘要:
【背景】在全球气候变化的背景下,大气CO2浓度的升高会影响植物病害的发生,进而影响农业生产。β型碳酸酐酶(β- carbonic anhydrase,βCA)是植物CO2感应和浓缩系统中的重要组成元件,参与拟南芥和烟草的植物免疫过程,但在番茄(Solanum lycopersicum)等园艺作物中的研究较少。【目的】通过探究番茄SlβCA3在抵御植物病害中的作用及机制,为番茄生产中的抗性调控提供科学依据。【方法】以拟南芥AtβCA氨基酸系列为参考序列,在番茄Sol genomics network 数据库中鉴定到4个SlβCA。进一步以野生型(wild-type,WT)番茄‘Ailsa Craig’(AC)为材料接种丁香假单胞菌番茄致病变种(Pseudomonas syringae pv. tomato DC3000,Pst DC3000),利用qRT-PCR技术测定叶片中SlβCA的表达量,筛选出受Pst DC3000诱导表达的基因SlβCA3。在此基础上,以AC为背景,利用农杆菌介导法进行番茄遗传转化,构建SlβCA3稳定过表达植株(OE-SlβCA3)。通过观察OE-SlβCA3植株接种Pst DC3000后的抗性表型,明确SlβCA3在番茄抵御Pst DC3000过程中的作用。为了研究SlβCA3调控植物抗病性的内在机制,比较WT和OE-SlβCA3植株接种Pst DC3000与对照条件下转录组的变化,并利用KEGG数据库对差异基因进行功能分析,推测糖代谢与SlβCA3介导的免疫反应有关。最后,通过测定WT和OE-SlβCA3植株糖代谢及其信号途径相关基因表达量以及葡萄糖、果糖和蔗糖含量,对转录组结果进行验证及分析。【结果】OE-SlβCA3植株对Pst DC3000的抗性增强,接种Pst DC3000后,叶片中的细菌生长量、病斑数以及死细胞积累量明显减少。转录组测序结果显示,正常条件下,OE-SlβCA3植株转录谱没有发生明显变化;接种Pst DC3000后,在WT和OE-SlβCA3植株中检测到2 100个Pst DC3000诱导基因,其中有63.3%的基因在OE-SlβCA3植株中表达量更高。KEGG分析结果显示,依赖于SlβCA3过表达的Pst DC3000诱导基因富集在糖代谢相关路径中,包括淀粉和蔗糖代谢,内质网中的蛋白质加工(糖基化),氨基糖和核苷酸糖代谢,真核生物中的核糖体生物合成以及光合作用等路径。糖代谢与糖信号密不可分,qRT-PCR及糖含量测定结果显示,接种Pst DC3000后,OE-SlβCA3植株叶片中糖代谢及其信号传导途径相关基因表达量与葡萄糖、果糖和蔗糖的含量较WT更高。【结论】番茄SlβCA3的过表达增强了植株对Pst DC3000的抗性,该过程可能与糖代谢及其信号通路在植物免疫中的作用有关。
方瀚墨,胡璋健,马巧梅,丁淑婷,王萍,王安然,师恺. 番茄SlβCA3在防御丁香假单胞菌番茄致病变种中的功能[J]. 中国农业科学, 2022, 55(14): 2740-2751.
FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000[J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
表1
qRT-PCR 特异性引物"
基因ID Accession number | 基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|---|
Solyc02g086820 | SlβCA1 | CAGCGAGAAAGCAGAACTTG | TTTCATGTGCTCAACAGGGT |
Solyc05g005490 | SlβCA2 | CGAGTTTGCCCATCACACAT | TGCATATTCGACTGCTGCAC |
Solyc02g067750 | SlβCA3 | AAATTGGGTTACCTGCCAAG | TGGATAGGTCAGCAAGTTGG |
Solyc09g010970 | SlβCA4 | CTTGCAGACGAACAATCACC | CTCCTGGTTGAAATCCCAGT |
Solyc10g083290 | CWIN | GAATCACAGTTGCACAGGCT | GCGCATAAAGATCAGCCCAA |
Solyc06g073760 | BGLU | AAGCCCACCTCATGCTAACT | CCGCTTCACAGCATCATCAA |
Solyc07g006500 | TPS | CTGGTACCTGCAGACACTGA | AGAAGCTCTTTAGCCTGCCA |
Solyc04g076810 | SnRK | CACAGGCGGGGAACTTTTTG | ATGTTGACTCCTTCGCCAGG |
Solyc01g100460 | bZIP | TTCCAACAGGGAATCTGCGA | CTGCTCACTTCCCCTGTCAA |
Solyc03g078400 | SlACTIN | TGGTCGGAATGGGACAGAAG | CTCAGTCAGGAGAACAGGGT |
[1] |
OJIAMBO P S, YUEN J, BOSCH F, MADDEN L V. Epidemiology: Past, present, and future impacts on understanding disease dynamics and improving plant disease management—A summary of focus issue articles. Phytopathology, 2017, 107(10): 1092-1094.
doi: 10.1094/PHYTO-07-17-0248-FI |
[2] |
SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, ESKER P, MCROBERTS N, NELSON A. The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3(3): 430-439.
doi: 10.1038/s41559-018-0793-y |
[3] |
JUROSZEK P, RACCA P, LINK S, FARHUMAND J, KLEINHENZ B. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, 2020, 69(2): 179-193.
doi: 10.1111/ppa.13119 |
[4] | 李建鑫, 王文平, 胡璋健, 师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应. 中国农业科学, 2021, 54(8): 1728-1738. |
LI J X, WANG W P, HU Z J, SHI K. Effects of simulated acid rain conditions on plant photosynthesis and disease susceptibility in tomato and its alleviation of brassinosteroid. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738. (in Chinese) | |
[5] | IPCC. Technical Summary. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: Working Group I, 2021: 47. |
[6] |
NOCTOR G, MHAMDI A. Climate change, CO2, and defense: The metabolic, redox, and signaling perspectives. Trends in Plant Science, 2017, 22(10): 857-870.
doi: 10.1016/j.tplants.2017.07.007 |
[7] |
ZHOU Y, VROEGOP-VOS I, VAN DIJKEN A, VAN DER DOES D, ZIPFEL C, PIETERSE C, VAN WEES S. Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance. Planta, 2020, 251: 75.
doi: 10.1007/s00425-020-03370-w |
[8] |
DIMARIO R, CLAYTON H, MUKHERJEE A, LUDWIG M, MORONEY J. Plant carbonic anhydrases: Structures, locations, evolution, and physiological roles. Molecular Plant, 2017, 10(1): 30-46.
doi: 10.1016/j.molp.2016.09.001 |
[9] |
MORONEY J V, BARTLETT S G, SAMUELSSON G. Carbonic anhydrases in plants and algae. Plant, Cell and Environment, 2001, 24(2): 141-153.
doi: 10.1111/j.1365-3040.2001.00669.x |
[10] |
TOBIN A J. Carbonic anhydrase from parsley leaves. The Journal of Biological Chemistry, 1970, 245(10): 2656-2666.
doi: 10.1016/S0021-9258(18)63120-5 |
[11] |
ENGINEER C, GHASSEMIAN M, ANDERSON J, PECK S, HU H, SCHROEDER J. Carbonic anhydrases, EPF2and a novel protease mediate CO2 control of stomatal development. Nature, 2014, 513(7517): 246-250.
doi: 10.1038/nature13452 |
[12] |
HU H, BOISSON-DERNIER A, ISRAELSSON-NORDSTROEM M, BOEHMER M, XUE S, RIES A, GODOSKI J, KUHN J, SCHROEDER J. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology, 2010, 12(1): 87-93.
doi: 10.1038/ncb2009 |
[13] |
KAVROULAKIS N, FLEMETAKIS E, AIVALAKIS G, KATINAKIS P. Carbon metabolism in developing soybean root nodules: The role of carbonic anhydrase. Molecular Plant-Microbe Interactions, 2000, 13(1): 14-22.
doi: 10.1094/MPMI.2000.13.1.14 |
[14] |
HUANG J, LI Z, BIENER G, XIONG E, MALIK S, EATON N, ZHAO C, RAICU V, KONG H, ZHAO D. Carbonic anhydrases function in anther cell differentiation downstream of the receptor-like kinase EMS1. The Plant Cell, 2017, 29(6): 1335-1356.
doi: 10.1105/tpc.16.00484 |
[15] |
KAWAMURA Y, UEMURA M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. The Plant Journal, 2003, 36(2): 141-154.
doi: 10.1046/j.1365-313X.2003.01864.x |
[16] |
YU S, ZHANG X, GUAN Q, TAKANO T, LIU S. Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnology Letters, 2007, 29(1): 89-94.
doi: 10.1007/s10529-006-9199-z |
[17] | HAMMOND-KOSACK K, JONES J. Resistance gene-dependent plant defense responses. The Plant Cell, 1996, 8(10): 1773-1791. |
[18] |
DURNER J, SHAH J, KLESSIG D. Salicylic acid and disease resistance in plants. Trends in Plant Science, 1997, 2(7): 266-274.
doi: 10.1016/S1360-1385(97)86349-2 |
[19] | 严霞, 牛晓磊, 陶均. 病原菌诱发的植物先天免疫研究进展. 分子植物育种, 2018, 16(3): 821-831. |
YAN X, NIU X L, TAO J. Research advances on pathogen-induced plant innate immunity. Molecular Plant Breeding, 2018, 16(3): 821-831. (in Chinese) | |
[20] | SLAYMAKER D, NAVARRE D, CLARK D, DEL POZO O, MARTIN G, KLESSIG D. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11640-11645. |
[21] |
WANG Y Q, FEECHAN A, YUN B W, SHAFIEI R, HOFMANN A, TAYLOR P, XUE P, YANG F Q, XIE Z S, PALLAS J, CHU C C, LOAKE G. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. The Journal of Biological Chemistry, 2009, 284(4): 2131-2137.
doi: 10.1074/jbc.M806782200 |
[22] |
RESTREPO S, MYERS K, DEL POZO O, MARTIN G, HART A, BUELL C, FRY W, SMART C. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 2005, 18(9): 913-922.
doi: 10.1094/MPMI-18-0913 |
[23] |
QUINET M, ANGOSTO T, YUSTE-LISBONA F, BLANCHARD- GROS R, BIGOT S, MARTINEZ J P, LUTTS S. Tomato fruit development and metabolism. Frontiers in Plant Science, 2019, 10: 1554.
doi: 10.3389/fpls.2019.01554 |
[24] |
ZHANG S, LI X, SUN Z, SHAO S, HU L, YE M, ZHOU Y, XIA X, YU J, SHI K. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 2015, 66(7): 1951-1963.
doi: 10.1093/jxb/eru538 |
[25] |
MANSFIELD J, GENIN S, MAGORI S, CITOVSKY V, SRIARIYANUM M, RONALD P, DOW M, VERDIER V, BEER S, MACHADO M, TOTH I, SALMOND G, FOSTER G. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 2012, 13(6): 614-629.
doi: 10.1111/j.1364-3703.2012.00804.x |
[26] |
WANG J, ZHENG C, SHAO X, HU Z, LI J, WANG P, WANG A, YU J, SHI K. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 7: 209.
doi: 10.1038/s41438-020-00442-6 |
[27] | KOCH E, SLUSARENKO A. Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 1990, 2(5): 437-445. |
[28] |
DING S, SHAO X, LI J, AHAMMED G, YAO Y, DING J, HU Z, YU J, SHI K. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant, Cell and Environment, 2021, 44(5): 1596-1610.
doi: 10.1111/pce.14019 |
[29] |
LIVAK K, SCHMITTGEN T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[30] |
ZHANG H, HU Z, LEI C, ZHENG C, WANG J, SHAO S, LI X, XIA X, CAI X, ZHOU J, ZHOU Y, YU J, FOYER C, SHI K. A plant phytosulfokine peptide initiates auxin-dependent immunity through cytosolic Ca2+ signaling in tomato. The Plant Cell, 2018, 30(3): 652-667.
doi: 10.1105/tpc.17.00537 |
[31] |
NIU Q, WANG T, LI J, YANG Q, QIAN M, TENG Y. Effects of exogenous application of GA4+7 and N-(2-chloro-4-pyridyl)-N'- phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia ‘Cuiguan’. Plant Growth Regulation, 2015, 76(3): 251-258.
doi: 10.1007/s10725-014-9995-8 |
[32] |
RUAN Y L. Signaling role of sucrose metabolism in development. Molecular Plant, 2012, 5(4): 763-765.
doi: 10.1093/mp/sss046 |
[33] |
SUN L, YANG D L, KONG Y, CHEN Y, LI X Z, ZENG L J, LI Q, WANG E T, HE Z H. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Molecular Plant Pathology, 2014, 15(2): 161-173.
doi: 10.1111/mpp.12078 |
[34] | ZHANG H, HONG Y, HUANG L, LIU S, TIAN L, DAI Y, CAO Z, HUANG L, LI D, SONG F. Virus-induced gene silencing-based functional analyses revealed the involvement of several putative trehalose-6-phosphate synthase/phosphatase genes in disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato. Frontiers in Plant Science, 2016, 7: 1176. |
[35] |
ZAMIOUDIS C, HANSON J, PIETERSE C. β-glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytologist, 2014, 204(2): 368-379.
doi: 10.1111/nph.12980 |
[36] |
LEE H J, PARK Y J, SEO P J, KIM J H, SIM H J, KIM S G, PARK C M. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. The Plant Cell, 2015, 27(12): 3425-3438.
doi: 10.1105/tpc.15.00371 |
[37] |
LI X, FAN S, HU W, LIU G, WEI Y, HE C, SHI H. Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Frontiers in Plant Science, 2017, 8: 2110.
doi: 10.3389/fpls.2017.02110 |
[38] |
LIM C, BAEK W, LIM S, HAN S W, LEE S. Expression and functional roles of the pepper pathogen-induced bZIP transcription factor CabZIP2 in enhanced disease resistance to bacterial pathogen infection. Molecular Plant-Microbe Interactions, 2015, 28(7): 825-833.
doi: 10.1094/MPMI-10-14-0313-R |
[39] | 熊二辉. β碳酸酐酶基因在拟南芥生长发育中的功能研究[D]. 郑州: 河南农业大学, 2016. |
XIONG E H. Functional studies of beta carbonic anhydrase gene family in Arabidopsis thaliana growth and development[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese) | |
[40] | MEDINA-PUCHE L, CASTELLO M, CANET J, LAMILLA J, COLOMBO M, TORNERO P. β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis. PLoS ONE, 2017, 12(7): e0181820. |
[41] | 何亚飞, 李霞, 谢寅峰. 植物中糖信号及其对逆境调控的研究进展. 植物生理学报, 2016, 52(3): 241-249. |
HE Y F, LI X, XIE Y F. Research progress in sugar signal and its regulation of stress in plants. Plant Physiology Journal, 2016, 52(3): 241-249. (in Chinese) | |
[42] |
BOLOURI MOGHADDAM M, VAN DEN ENDE W. Sweet immunity in the plant circadian regulatory network. Journal of Experimental Botany, 2013, 64(6): 1439-1449.
doi: 10.1093/jxb/ert046 |
[43] |
THIBAUD M C, GINESTE S, NUSSAUME L, ROBAGLIA C. Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-dependent but NPR1- independent signaling pathway. Plant Physiology and Biochemistry, 2004, 42(1): 81-88.
doi: 10.1016/j.plaphy.2003.10.012 |
[44] | QIAN Y, TAN D X, REITER R, SHI H. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Scientific Reports, 2015, 5: 15815. |
[45] |
CHEN Q, ZHANG J, LI G. Dynamic epigenetic modifications in plant sugar signal transduction. Trends in Plant Science, 2022, 27(4): 379-390.
doi: 10.1016/j.tplants.2021.10.009 |
[46] |
BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J, SHEEN J. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156): 938-942.
doi: 10.1038/nature06069 |
[47] |
KIM C Y, VO K, AN G, JEON J S. A rice sucrose non-fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(5): 669-675.
doi: 10.1007/s13765-015-0089-8 |
[48] |
RUAN Y L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 2014, 65: 33-67.
doi: 10.1146/annurev-arplant-050213-040251 |
[49] |
NASEEM M, KUNZ M, DANDEKAR T. Plant-pathogen maneuvering over apoplastic sugars. Trends in Plant Science, 2017, 22(9): 740-743.
doi: 10.1016/j.tplants.2017.07.001 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[3] | 谢意通,张飞,石洁,冯莉,姜丽. 外源蔗糖对紫背天葵采后品质及叶绿体的影响[J]. 中国农业科学, 2022, 55(8): 1642-1656. |
[4] | 郭泽西,孙大运,曲俊杰,潘凤英,刘露露,尹玲. 查尔酮合成酶基因在葡萄抗灰霉病和霜霉病中的作用[J]. 中国农业科学, 2022, 55(6): 1139-1148. |
[5] | 王梦蕊, 刘淑梅, 侯丽霞, 王施慧, 吕宏君, 苏晓梅. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 2022, 55(4): 707-718. |
[6] | 胡朝月, 王凤涛, 郎晓威, 冯晶, 李俊凯, 蔺瑞明, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析[J]. 中国农业科学, 2022, 55(3): 491-502. |
[7] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
[8] | 宋江涛,谌丹丹,公旭晨,商祥明,李春龙,蔡永喜,岳建平,王帅玲,张卜芬,谢宗周,刘继红. 人工疏果对‘爱媛28’橘橙果实糖酸含量及代谢基因表达的影响[J]. 中国农业科学, 2022, 55(23): 4688-4701. |
[9] | 张琦,段玉,苏越,蒋琪琪,王春庆,宾羽,宋震. 基于柑橘叶斑驳病毒的表达载体构建及应用[J]. 中国农业科学, 2022, 55(22): 4398-4407. |
[10] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[11] | 崔青青, 孟宪敏, 段韫丹, 庄团结, 董春娟, 高丽红, 尚庆茂. 断根与打顶对番茄嫁接愈合的抑制作用[J]. 中国农业科学, 2022, 55(2): 365-377. |
[12] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[13] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[14] | 李依镁,王娇,王萍,师恺. 番茄糖转运蛋白SlSTP2在防御细菌性叶斑病中的功能[J]. 中国农业科学, 2022, 55(16): 3144-3154. |
[15] | 方桃红,张敏,马春花,郑晓晨,谭文静,田冉,燕琼,周新力,李鑫,杨随庄,黄可兵,王建锋,韩德俊,王晓杰,康振生. 小麦抗条锈基因Yr52在品种改良中的应用[J]. 中国农业科学, 2022, 55(11): 2077-2091. |
|