[1] |
李君明, 项朝阳, 王孝宣, 国艳梅, 黄泽军, 刘磊, 李鑫, 杜永臣. “十三五”我国番茄产业现状及展望. 中国蔬菜, 2021(2): 13-20.
|
|
LI J M, XIANG C Y, WANG X X, GUO Y M, HUANG Z J, LIU L, LI X, DU Y C. Current situation of tomato industry in China during ‘The Thirteenth Five-year Plan’ period and future prospect. China Vegetables, 2021(2): 13-20. (in Chinese)
|
[2] |
冷鹏, 唐洪杰, 钟建峰, 姚夕敏, 董慧颖, 范永强, 周耀武. 番茄细菌性斑点病的发生与防治. 浙江农业科学, 2011(4): 901-902, 905.
|
|
LENG P, TANG H J, ZHONG J F, YAO X M, DONG H Y, FAN Y Q, ZHOU Y W. Occurrence and control of tomato bacterial spot. Journal of Zhejiang Agricultural Sciences, 2011(4): 901-902, 905. (in Chinese)
|
[3] |
李宝聚, 朱辉, 石延霞. 番茄细菌性斑点病的识别与防治. 长江蔬菜, 2008(13): 23-24, 58.
|
|
LI B J, ZHU H, SHI Y X. Identification and control of tomato bacterial spot. Journal of Changjiang Vegetables, 2008(13): 23-24, 58. (in Chinese)
|
[4] |
REUSCHER S, AKIYAMA M, YASUDA T, MAKINO H, AOKI K, SHIBATA D, SHIRATAKE K. The sugar transporter inventory of tomato: Genome-wide identification and expression analysis. Plant and Cell Physiology, 2014, 55(6): 1123-1141.
doi: 10.1093/pcp/pcu052
|
[5] |
DOIDY J, GRACE E, KÜHN C, SIMON-PLAS F, CASIERI L, WIPF D. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 2012, 17(7): 413-422.
doi: 10.1016/j.tplants.2012.03.009
|
[6] |
LEMONNIER P, GAILLARD C, VEILLET F, VERBEKE J, LEMOINE R, COUTOS-THEVENOT P, LA CAMERA S. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Molecular Biology, 2014, 85(4/5): 473-484.
doi: 10.1007/s11103-014-0198-5
|
[7] |
YAMADA K, SAIJO Y, NAKAGAMI H, TAKANO Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science, 2016, 354(6318): 1427-1430.
doi: 10.1126/science.aah5692
|
[8] |
怀宝玉. 小麦感条锈病过程中TaSTP3和TaSTP6的功能及调控机理研究[D]. 杨凌: 西北农林科技大学, 2020.
|
|
HUAI B Y.The function and regulation mechanism of TaSTP3 and TaSTP6 in wheat susceptibility to stripe rust[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
|
[9] |
MCCURDY D W, DIBLEY S, CAHYANEGARA R, MARTIN A, PATRICK J W. Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. Molecular Plant, 2010, 3(6): 1049-1063.
doi: 10.1093/mp/ssq050
|
[10] |
LI L, SHEEN J. Dynamic and diverse sugar signaling. Current Opinion in Plant Biology, 2016, 33: 116-125.
doi: 10.1016/j.pbi.2016.06.018
|
[11] |
FU Y, LIM S, URANO D, TUNC-OZDEMIR M, PHAN N G, ELSTON T C, JONES A M. Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell, 2014, 156(5): 1084-1095.
doi: 10.1016/j.cell.2014.01.013
|
[12] |
HUANG J, TAYLOR J P, CHEN J G, UHRIG J F, SCHNELL D J, NAKAGAWA T, KORTH K L, JONES A M. The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. The Plant Cell, 2006, 18(5): 1226-1238.
doi: 10.1105/tpc.105.037259
|
[13] |
LEMAIRE K, VAN DE VELDE S, VAN DIJCK P, THEVELEIN J M. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Molecular Cell, 2004, 16(2): 293-299.
doi: 10.1016/j.molcel.2004.10.004
|
[14] |
LEE S, ROJAS C M, ISHIGA Y, PANDEY S, MYSORE K S. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS ONE, 2013, 8(12): e82445.
doi: 10.1371/journal.pone.0082445
|
[15] |
LIANG X, MA M, ZHOU Z, WANG J, YANG X, RAO S, BI G, LI L, ZHANG X, CHAI J, CHEN S, ZHOU J M. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Research, 2018, 28(5): 529-543.
doi: 10.1038/s41422-018-0027-5
|
[16] |
WANG J, GRUBB L E, WANG J, LIANG X, LI L, GAO C, MA M, FENG F, LI M, LI L, et al. A regulatory module controlling homeostasis of a plant immune kinase. Molecular Cell, 2018, 69(3): 493-504.
doi: 10.1016/j.molcel.2017.12.026
|
[17] |
ZHANG S, LI X, SUN Z, SHAO S, HU L, YE M, ZHOU Y, XIA X, YU J, SHI K. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 2015, 66(7): 1951-1963.
doi: 10.1093/jxb/eru538
|
[18] |
HU Z, MA Q, FOYER C H, LEI C, CHOI H W, ZHENG C, LI J, ZUO J, MAO Z, MEI Y, YU J, KLESSIG D F, SHI K. High CO2- and pathogen-driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. New Phytologist, 2021, 229(5): 2827-2843.
doi: 10.1111/nph.17087
|
[19] |
WANG J, ZHENG C, SHAO X, HU Z, LI J, WANG P, WANG A, YU J, SHI K. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 7(1): 209.
doi: 10.1038/s41438-020-00442-6
|
[20] |
MÜLLER F, XU J, KRISTENSEN L, WOLTERS-ARTS M, DE GROOT P F M, JANSMA S Y, MARIANI C, PARK S, RIEU I. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE, 2016, 11(12): e0167614.
doi: 10.1371/journal.pone.0167614
|
[21] |
方瀚墨, 胡璋健, 马巧梅, 丁淑婷, 王萍, 王安然, 师恺. 番茄SlβCA3在防御丁香假单胞菌番茄致病变种中的功能. 中国农业科学, 2022, 55(14): 2740-2751.
|
|
FANG H M, HU Z J, MA Q M, DING S T, WANG P, WANG A R, SHI K. Function of SlβCA3 in plant defense against Pseudomonas syringae pv. tomato DC3000. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751. (in Chinese)
|
[22] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
|
[23] |
LIAO Y, TIAN M, ZHANG H, LI X, WANG Y, XIA X, ZHOU J, ZHOU Y, YU J, SHI K, KLESSIG D F. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato. New Phytologist, 2015, 205(3): 1296-1307.
doi: 10.1111/nph.13137
|
[24] |
DING S, SHAO X, LI J, AHAMMED G J, YAO Y, DING J, HU Z, YU J, SHI K. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant, Cell and Environment, 2021, 44(5): 1596-1610.
doi: 10.1111/pce.14019
|
[25] |
HU Z, LI J, DING S, CHENG F, LI X, JIANG Y, YU J, FOYER C H, SHI K. The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermos tolerance in tomato. Plant Physiology, 2021, 186(2): 1302-1317.
doi: 10.1093/plphys/kiab120
|
[26] |
NORHOLM M, NOUR-ELDIN H H, BRODERSEN P, MUNDY J, HALKIER B A. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Letters, 2006, 580(9): 2381-2387.
doi: 10.1016/j.febslet.2006.03.064
|
[27] |
TRUERNIT E, SCHMID J, EPPLE P, ILLIG J, SAUER N. The sink-specific and stress-regulated Arabidopsis STP4 gene: Enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. The Plant Cell, 1996, 8(12): 2169-2182.
|
[28] |
BÜTTNER M. The Arabidopsis sugar transporter (AtSTP) family: An update. Plant Biology, 2010, 121(Suppl. 1): 35-41.
|
[29] |
MOORE J W, HERRERA-FOESSEL S, LAN C, SCHNIPPENKOETTER W, AYLIFFE M, HUERTA-ESPINO J, LILLEMO M, VICCARS L, MILNE R, PERIYANNAN S, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015, 47(12): 1494-1498.
doi: 10.1038/ng.3439
|
[30] |
王娇. 弱光下番茄抗病性变化中质外体葡萄糖信号的作用及机制研究[D]. 杭州: 浙江大学, 2021.
|
|
WANG J. Function and mechanisms of apoplastic glucose signaling in tomato disease resistance under low light condition[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
|
[31] |
TORRES M A, MORALES J, SANCHEZ-RODRIGUEZ C, MOLINA A, DANGL J L. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. Molecular Plant-Microbe Interactions, 2013, 26(6): 686-694.
doi: 10.1094/MPMI-10-12-0236-R
|
[32] |
LOREK J, GRIEBEL T, JONES A M, KUHN H, PANSTRUGA R. The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. Molecular Plant-Microbe Interactions, 2013, 26(9): 991-1003.
doi: 10.1094/MPMI-03-13-0077-R
|
[33] |
NINH T T, GAO W, TRUSOV Y, ZHAO J R, LONG L, SONG C P, BOTELLA J R. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. Plant Direct, 2021, 5(11): e359.
|