中国农业科学 ›› 2021, Vol. 54 ›› Issue (17): 3766-3779.doi: 10.3864/j.issn.0578-1752.2021.17.017
马玲玲(),冯嘉,王晶(),齐广海,马友彪,武书庚,张海军,邱凯
收稿日期:
2020-11-20
接受日期:
2021-02-03
出版日期:
2021-09-01
发布日期:
2021-09-09
通讯作者:
王晶
作者简介:
马玲玲,E-mail: 基金资助:
MA LingLing(),FENG Jia,WANG Jing(),QI GuangHai,MA YouBiao,WU ShuGeng,ZHANG HaiJun,QIU Kai
Received:
2020-11-20
Accepted:
2021-02-03
Online:
2021-09-01
Published:
2021-09-09
Contact:
Jing WANG
摘要:
【目的】通过观察海兰褐蛋鸡产蛋高峰至后期(31—80周龄)鸡蛋表观指标、物理属性和力学特性的变化规律,探究产蛋后期蛋壳品质下降的关键时期及蛋壳结构与组成的变化,为产蛋后期蛋壳品质的调控提供参考和依据。【方法】以84只30周龄健康的海兰褐蛋鸡为研究对象,随机分为7个重复,每重复12只鸡。试验期饲喂玉米-豆粕型基础日粮,自由采食、饮水,饲养50周。分别于31、36、41、46、50、55、60、65、70、75和80周龄时,每重复每天采集3枚鸡蛋,连续采集3d。所有鸡蛋样品均检测表观指标、物理属性和力学特性。选择31、41、50、60、70和80周龄组蛋壳,使用扫描电子显微镜观察蛋壳横截面和内表面的超微结构、X-射线衍射分析仪检测蛋壳晶体结构,灼烧法检测蛋壳有机物含量,考马斯亮蓝法检测蛋壳总蛋白含量,电感耦合等离子体发射光谱法检测蛋壳钙和磷含量。【结果】(1)31—80周龄蛋重、长径和蛋壳面积线性增加(P<0.01);蛋壳重、蛋壳比例、蛋壳厚度和蛋壳指数随蛋鸡周龄先增加后降低(P<0.05);50周龄后蛋壳强度和蛋壳韧性较31周龄显著降低,65—80周龄各周龄均显著低于之前各采样时间点(P<0.05)。(2)蛋壳品质主成分载荷分析中,在第一主成分(PC1)中,蛋壳强度、蛋壳比例、蛋壳韧性和蛋壳指数的载荷值高,而第二主成分(PC2)中,蛋壳重、蛋壳厚度和蛋壳面积的载荷值高;根据产蛋期蛋壳物理属性和力学特性变化,可划分为31—50和55—80周龄2个阶段,后者还可划分为55—60周龄和65—80周龄2个阶段。(3)70和80周龄蛋壳乳突厚度和比例显著低于31—60周龄各组(P<0.05);乳突密度显著低于31周龄组蛋壳(P<0.05)。(4)随蛋鸡周龄增加,蛋壳晶体大小无显著变化(P>0.05)。(5)蛋壳有机物和总蛋白含量、单位蛋壳面积含量和每枚蛋壳含量均无显著变化;每枚蛋壳钙含量无显著变化(P>0.05);70和80周龄单位蛋壳面积钙含量显著降低(P<0.05);60、70和80周龄蛋壳磷百分含量显著低于之前各周龄组(P<0.05),而每枚蛋壳磷含量和单位蛋壳面积磷含量显著低于31周龄组(P<0.05)。(6)蛋壳力学特性与钙化层厚度、有效层厚度、乳突密度、有效层比例、单位蛋壳面积钙含量、磷百分含量、每枚蛋壳磷含量和单位蛋壳面积磷含量均显著正相关(P<0.05),与乳突比例显著负相关(P<0.05)。【结论】根据蛋壳物理属性和力学特性变化,海兰褐蛋鸡产蛋期可划分为31—50周龄和55—80周龄2个阶段,65周龄后蛋壳力学特性下降尤为明显;超微结构层厚度和比例的变化可能导致了产蛋期蛋壳力学特性的下降;60—80周龄蛋壳力学特性降低可能与蛋壳磷含量下降有关,乳突层结构异常和蛋壳面积增大导致的单位蛋壳面积钙含量下降加剧了70—80周龄蛋壳力学特性的下降。
马玲玲,冯嘉,王晶,齐广海,马友彪,武书庚,张海军,邱凯. 海兰褐蛋鸡产蛋高峰至后期蛋壳品质的变化特征[J]. 中国农业科学, 2021, 54(17): 3766-3779.
MA LingLing,FENG Jia,WANG Jing,QI GuangHai,MA YouBiao,WU ShuGeng,ZHANG HaiJun,QIU Kai. The Changes of Eggshell Quality in the Laying Cycle of Hy-Line Brown Layers[J]. Scientia Agricultura Sinica, 2021, 54(17): 3766-3779.
表1
海兰褐蛋鸡产蛋高峰至后期鸡蛋表观指标的变化"
项目 Items | 蛋鸡周龄 Hen age (wk) | P | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
31 | 36 | 41 | 46 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | ||
蛋重 Egg weight (g) | 61.01f±0.62 | 61.18ef±0.41 | 61.80de±0.89 | 62.19d±0.84 | 62.91c±0.72 | 63.13c±0.62 | 63.23bc±0.38 | 63.46abc±0.73 | 63.53abc±0.77 | 63.92ab±0.93 | 64.18a±0.35 | < 0.001 |
短径 Width (cm) | 4.37ab±0.02 | 4.34abc±0.02 | 4.36ab±0.05 | 4.34bc±0.02 | 4.37ab±0.04 | 4.37a±0.02 | 4.35abc±0.03 | 4.36abc±0.02 | 4.35abc±0.03 | 4.33c±0.02 | 4.37ab±0.02 | 0.004 |
长径 Length (cm) | 5.65f±0.04 | 5.63f±0.06 | 5.71e±0.04 | 5.74de±0.06 | 5.77cd±0.05 | 5.79bcd±0.04 | 5.78cd±0.04 | 5.81bcd±0.05 | 5.80bc±0.05 | 5.84b±0.04 | 5.91a±0.05 | < 0.001 |
蛋形指数 Egg shape index | 1.29e±0.01 | 1.30de±0.01 | 1.31cd±0.02 | 1.32b±0.02 | 1.32bc±0.01 | 1.32bc±0.01 | 1.33b±0.01 | 1.33b±0.01 | 1.33b±0.02 | 1.35a±0.01 | 1.37a±0.01 | < 0.001 |
蛋壳面积 Eggshell surface area (cm2) | 72.53f±0.54 | 72.66ef±0.32 | 73.12de±0.71 | 73.46d±0.54 | 74.02c±0.53 | 74.20c±0.53 | 74.28bc±0.30 | 74.46abc±0.57 | 74.51abc±0.61 | 74.82ab±0.79 | 75.02a±0.28 | < 0.001 |
表2
海兰褐蛋鸡产蛋高峰至后期蛋壳物理属性和力学特性的变化"
项目 Items | 蛋鸡周龄 Hen age (wk) | P | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
31 | 36 | 41 | 46 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | ||
蛋壳重 Eggshell weight (g) | 5.91cd±0.25 | 5.99bcd±0.25 | 6.36a±0.24 | 6.34a±0.27 | 6.19abc±0.22 | 6.14abcd±0.37 | 6.27ab±0.14 | 5.89d±0.28 | 5.87d±0.14 | 6.07abcd±0.36 | 6.14abcd±0.20 | < 0.001 |
蛋壳比例 Eggshell percentage (%) | 9.79bc±0.34 | 9.91bc±0.36 | 10.31a±0.28 | 10.19ab±0.40 | 9.84bc±0.35 | 9.72c±0.19 | 9.92bc±0.22 | 9.28d±0.37 | 9.27d±0.30 | 9.56cd±0.40 | 9.56cd±0.33 | < 0.001 |
蛋壳指数 Eggshell index (mg·mm-2) | 8.15bc±0.34 | 8.24bc±0.32 | 8.74a±0.25 | 8.63a±0.36 | 8.36ab±0.30 | 8.09bc±0.49 | 8.44ab±0.19 | 7.91c±0.34 | 7.89c±0.23 | 8.15bc±0.43 | 8.18bc±0.28 | < 0.001 |
蛋壳厚度 Eggshell thickness (×10-2mm) | 45.39cde±0.83 | 45.61cde±0.93 | 44.89e±0.47 | 46.81a±0.68 | 46.56ab±0.21 | 45.45cde±0.75 | 45.87bcd±0.61 | 45.13de±0.93 | 43.86f±0.67 | 46.05abc±0.55 | 45.21de±0.85 | < 0.001 |
蛋壳强度 Eggshell strength (N) | 48.60a±2.79 | 46.68ab±2.46 | 46.19abc±1.47 | 47.60ab±2.60 | 45.18bcd±3.21 | 42.71d±2.80 | 43.55cd±2.35 | 36.01ef±3.74 | 38.55e±2.86 | 38.24ef±2.19 | 35.28f±2.26 | < 0.001 |
蛋壳韧性 Eggshell fracture toughness (N/mm3/2) | 390.65a±18.79 | 382.44ab±15.37 | 386.93ab±16.07 | 378.48ab±17.83 | 367.91b±11.93 | 326.70cd±11.87 | 336.69c±25.35 | 290.33f±21.47 | 315.68de±20.61 | 300.06ef±16.70 | 280.97f±10.27 | < 0.001 |
表3
蛋壳品质主成分载荷分析"
项目 Items | 主成分 Principal components | |
---|---|---|
PC1 | PC2 | |
X-exp2 | 64% | 23% |
参数 Parameters | ||
蛋壳强度 Eggshell strength | -0.428 | 0.262 |
蛋壳重 Eggshell weight | -0.326 | -0.519 |
蛋壳厚度 Eggshell thickness | -0.187 | -0.440 |
蛋壳面积 Eggshell surface area | 0.343 | -0.512 |
蛋壳比例 Eggshell percentage | -0.454 | -0.134 |
蛋壳韧性 Fracture toughness | -0.419 | 0.335 |
蛋壳指数 Eggshell index | -0.420 | -0.276 |
表4
海兰褐蛋鸡产蛋高峰至后期蛋壳超微结构的变化"
项目 Items | 蛋鸡周龄 Hen age (wk) | P | |||||
---|---|---|---|---|---|---|---|
31 | 41 | 50 | 60 | 70 | 80 | ||
钙化层厚度 Calcified thickness (μm) | 357.05±15.78 | 345.99±13.83 | 363.50±9.71 | 356.41±24.60 | 345.80±13.31 | 342.91±23.87 | 0.300 |
乳突厚度 Mammillary thickness (μm) | 90.01c±5.80 | 106.56b±6.14 | 114.35b±9.37 | 114.18b±8.03 | 125.98a±6.24 | 130.41a±8.43 | <0.001 |
有效层厚度 Effective thickness (μm) | 268.14a±12.91 | 243.06b±9.77 | 246.91b±10.18 | 243.50b±17.63 | 220.22c±10.25 | 212.04c±26.74 | <0.001 |
乳突宽度 Mammillary knob width (μm) | 70.18±4.27 | 71.24±6.24 | 72.27±6.15 | 72.01±4.10 | 73.66±7.16 | 70.93±5.79 | 0.926 |
乳突比例 Mammillary layer rate (%) | 24.87c±1.67 | 30.80b±1.46 | 31.32b±1.78 | 32.12b±0.85 | 36.31a±1.35 | 37.85a±2.08 | <0.001 |
有效层比例 Effective layer rate (%) | 75.13a±1.67 | 69.20b±1.46 | 68.68b±1.78 | 68.13b±0.88 | 63.69c±1.35 | 62.15c±2.08 | <0.001 |
乳突密度 Mammillary knob density (1 mm2) | 286.66a±11.75 | 268.97ab±17.45 | 270.96ab±27.20 | 271.40ab±11.46 | 256.07b±8.44 | 230.93c±11.90 | 0.001 |
表6
海兰褐蛋鸡产蛋高峰至后期蛋壳化学组成的变化"
项目 Items | 蛋鸡周龄 Hen age (wk) | P | |||||
---|---|---|---|---|---|---|---|
31 | 41 | 50 | 60 | 70 | 80 | ||
有机物百分含量Organic matter (%) | 3.54±0.16 | 3.56±0.42 | 3.71±0.08 | 3.48±0.20 | 3.47±0.13 | 3.33±0.34 | 0.482 |
每枚鸡蛋蛋壳有机物含量 Organic matter per eggshell (mg) | 209.33±12.62 | 226.19±30.90 | 235.47±7.65 | 217.06±11.57 | 214.26±24.24 | 204.06±21.34 | 0.266 |
单位蛋壳面积有机物含量 Organic matter per unit area (mg·cm-2) | 2.88±0.17 | 3.09±0.42 | 3.19±0.08 | 2.92±0.16 | 2.88±0.32 | 2.72±0.28 | 0.163 |
总蛋白百分含量Total protein (%) | 1.33±0.26 | 1.27±0.13 | 1.32±0.11 | 1.32±0.22 | 1.30±0.12 | 1.50±0.17 | 0.292 |
每枚鸡蛋蛋壳总蛋白含量 Total protein per eggshell (mg) | 77.59±14.88 | 79.90±8.38 | 81.90±7.37 | 82.20±14.43 | 76.01±7.62 | 92.22±10.08 | 0.196 |
单位蛋壳面积总蛋白含量 Total protein per unit area (mg·cm-2) | 1.07±0.20 | 1.09±0.11 | 1.11±0.10 | 1.11±0.19 | 1.02±0.11 | 1.23±0.14 | 0.301 |
Ca (%) | 37.29a±0.73 | 34.11b±0.54 | 33.57b±1.52 | 35.02b±0.35 | 34.87b±1.11 | 34.85b±1.09 | 0.001 |
每枚鸡蛋蛋壳钙含量 Calcium content per eggshell (mg) | 2176.08±78.59 | 2158.57±74.75 | 2108.28±88.13 | 2148.98±50.53 | 2069.85±52.24 | 2100.90±64.76 | 0.305 |
单位蛋壳面积钙含量 Calcium content per unit area (mg·cm-2) | 29.93a±1.11 | 29.53ab±1.17 | 28.54ab±1.10 | 28.99ab±0.77 | 27.79b±0.69 | 27.76b±0.69 | 0.033 |
P (%) | 0.13a±0.01 | 0.14a±0.01 | 0.13a±0.01 | 0.11b±0.01 | 0.10b±0.00 | 0.11b±0.01 | < 0.001 |
每枚鸡蛋蛋壳磷含量 Phosphorus content per eggshell (mg) | 7.66b±0.38 | 8.89a±0.55 | 8.18ab±0.73 | 6.75c±0.78 | 6.01c±0.22 | 6.46c±0.58 | < 0.001 |
单位蛋壳面积磷含量 Phosphorus content per unit area (mg·cm-2) | 0.11b±0.01 | 0.12a±0.00 | 0.11b±0.01 | 0.09c±0.01 | 0.08c±0.00 | 0.09c±0.01 | < 0.001 |
表7
蛋壳力学特性、结构和化学组成的相关性分析"
ES | FT | MW | ET | MT | CT | ER | MR | MD | Ca | CaP | CaD | P | PP | PD | OM | OMP | OMD | TP | TPP | TPD | GS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ES | 1.00 | |||||||||||||||||||||
FT | 0.91** | 1.00 | ||||||||||||||||||||
MW | 0.24 | 0.07 | 1.00 | |||||||||||||||||||
ET | 0.70** | 0.65** | 0.34 | 1.00 | ||||||||||||||||||
MT | -0.44 | -0.43 | -0.02 | -0.71** | 1.00 | |||||||||||||||||
CT | 0.66** | 0.60* | 0.50* | 0.89** | -0.32 | 1.00 | ||||||||||||||||
ER | 0.61* | 0.59* | 0.12 | 0.91** | -0.93** | 0.62* | 1.00 | |||||||||||||||
MR | -0.63* | -0.60* | -0.14 | -0.92** | 0.92** | -0.65** | -1.00** | 1.00 | ||||||||||||||
MD | 0.64** | 0.65** | 0.19 | 0.48 | -0.45 | 0.35 | 0.53* | -0.52* | 1.00 | |||||||||||||
Ca | 0.05 | 0.09 | -0.09 | 0.56* | -0.77** | 0.26 | 0.72** | -0.71** | 0.04 | 1.00 | ||||||||||||
CaP | 0.42 | 0.51* | 0.04 | 0.38 | -0.01 | 0.52* | 0.18 | -0.20 | -0.24 | 0.01 | 1.00 | |||||||||||
CaD | 0.57* | 0.67** | 0.09 | 0.55* | -0.23 | 0.61* | 0.39 | -0.41 | -0.02 | 0.14 | 0.96** | 1.00 | ||||||||||
P | 0.71** | 0.81** | 0.43 | 0.55* | -0.12 | 0.67** | 0.35 | -0.37 | 0.69** | -0.11 | 0.36 | 0.49* | 1.00 | |||||||||
PP | 0.64** | 0.72** | 0.47 | 0.48* | 0.01 | 0.65** | 0.25 | -0.27 | 0.62* | -0.25 | 0.34 | 0.45 | 0.96** | 1.00 | ||||||||
PD | 0.75** | 0.85** | 0.35 | 0.57* | -0.06 | 0.73** | 0.33 | -0.34 | 0.52* | -0.15 | 0.55* | 0.62* | 0.93** | 0.91** | 1.00 | |||||||
OM | 0.28 | 0.24 | 0.40 | 0.32 | -0.07 | 0.36 | 0.23 | -0.24 | 0.65** | -0.03 | -0.36 | -0.23 | 0.57* | 0.66** | 0.40 | 1.00 | ||||||
OMP | 0.22 | 0.18 | 0.51* | 0.18 | 0.18 | 0.35 | 0.00 | -0.02 | 0.49* | -0.30 | -0.20 | -0.12 | 0.58* | 0.74** | 0.45* | 0.93** | 1.00 | |||||
OMD | 0.27 | 0.24 | 0.52* | 0.23 | 0.12 | 0.38 | 0.07 | -0.08 | 0.53* | -0.26 | -0.17 | -0.07 | 0.61* | 0.77** | 0.49 | 0.93** | 1.00** | 1.00 | ||||
TP | 0.01 | 0.08 | -0.36 | -0.04 | -0.42 | -0.37 | 0.27 | -0.25 | 0.37 | 0.05 | -0.38 | -0.26 | -0.11 | -0.06 | -0.20 | 0.23 | 0.10 | 0.11 | 1.00 | |||
TPP | 0.02 | 0.08 | -0.14 | -0.10 | -0.18 | -0.28 | 0.09 | -0.08 | 0.37 | -0.24 | -0.29 | -0.20 | 0.04 | 0.19 | -0.04 | 0.39 | 0.40 | 0.41 | 0.91** | 1.00 | ||
TPD | 0.09 | 0.15 | -0.11 | -0.03 | -0.25 | -0.22 | 0.17 | -0.15 | 0.43 | -0.20 | -0.26 | -0.14 | 0.11 | 0.24 | 0.01 | 0.41 | 0.41 | 0.43 | 0.91** | 1.00** | 1.00 | |
GS | 0.36 | 0.37 | -0.37 | 0.03 | -0.20 | -0.07 | 0.13 | -0.12 | 0.29 | 0.01 | 0.09 | 0.15 | 0.06 | -0.15 | 0.04 | -0.44 | -0.55* | -0.52* | -0.09 | -0.29 | -0.26 | 1.00 |
[1] |
HAMILTON R M G. Methods and factors that affect the measurement of egg shell quality. Poultry Science, 1982, 61(10): 2022-2039.
doi: 10.3382/ps.0612022 |
[2] |
ZHANG Y N, WANG J, ZHANG H J, WU S G, QI G H. Effect of dietary supplementation of organic or inorganic manganese on eggshell quality, ultrastructure, and components in laying hens. Poultry Science, 2017, 96(7): 2184-2193.
doi: 10.3382/ps/pew495 |
[3] |
QIU J L, ZHOU Q, ZHU J M, LU X T, LIU B, YU D Y, LIN G, AO T, XU J M. Organic trace minerals improve eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period. Poultry Science, 2020, 99(3): 1483-1490.
doi: 10.1016/j.psj.2019.11.006 |
[4] |
LI L L, MIAO L P, ZHU M K, WANG L S, ZOU X T. Dietary addition of zinc-methionine influenced eggshell quality by affecting calcium deposition in eggshell formation of laying hens. The British Journal of Nutrition, 2019, 122(9): 961-973.
doi: 10.1017/S000711451900206X |
[5] |
WANG J, ZHANG H J, WU S G, QI G H, XU L, WANG J. Dietary chloride levels affect performance and eggshell quality of laying hens by substitution of sodium sulfate for sodium chloride. Poultry Science, 2020, 99(2): 966-973.
doi: 10.1016/j.psj.2019.10.030 |
[6] |
MIN Y N, LIU F X, QI X, JI S, MA S X, LIU X, WANG Z P, GAO Y P. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poultry Science, 2018, 97(10): 3587-3593.
doi: 10.3382/ps/pey203 |
[7] |
WEN J, LIVINGSTON K A, PERSIA M E. Effect of high concentrations of dietary vitamin D3 on pullet and laying hen performance, skeleton health, eggshell quality, and yolk vitamin D3 content when fed to W36 laying hens from day of hatch until 68 wk of age. Poultry Science, 2019, 98(12): 6713-6720.
doi: 10.3382/ps/pez386 |
[8] |
ABDELQADER A, AL-FATAFTAH A R, DA G. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Animal Feed Science and Technology, 2013, 179(1-4): 103-111.
doi: 10.1016/j.anifeedsci.2012.11.003 |
[9] |
AN S H, KIM D W, AN B K. Effects of dietary calcium levels on productive performance, eggshell quality and overall calcium status in aged laying hens. Asian-Australasian Journal of Animal Sciences, 2016, 29(10): 1477-1482.
doi: 10.5713/ajas.15.0655 pmid: 26954217 |
[10] |
RATTANAWUT J, PIMPA O, YAMAUCHI K E. Effects of dietary bamboo vinegar supplementation on performance, eggshell quality, ileal microflora composition, and intestinal villus morphology of laying hens in the late phase of production. Animal Science Journal. 2018, 89(11): 1572-1580.
doi: 10.1111/asj.2018.89.issue-11 |
[11] |
ZITA L, TŮMOVÁ E, ŠTOLC L. Effects of genotype, age and their interaction on egg quality in brown-egg laying hens. Acta Veterinaria Brno, 2009, 78(1): 85-91.
doi: 10.2754/avb200978010085 |
[12] |
SIRRI F, ZAMPIGA M, BERARDINELLI A, MELUZZI A. Variability and interaction of some egg physical and eggshell quality attributes during the entire laying hen cycle. Poultry Science, 2018, 97(5): 1818-1823.
doi: 10.3382/ps/pex456 |
[13] |
PARK J A, SOHN S H. The influence of hen aging on eggshell ultrastructure and shell mineral components. Korean Journal for Food Science of Animal Resources, 2018, 38(5): 1080-1091.
doi: 10.5851/kosfa.2018.e41 |
[14] |
ROLAND S R, DAVID A. Factors influencing shell quality of aging hens. Poultry Science, 1979, 58(4): 774-777.
doi: 10.3382/ps.0580774 |
[15] |
RAYAN G N, GALAL A, FATHI M M, EL-ATTAR A A. Impact of layer breeder flock age and strain on mechanical and ultrastructural properties of eggshell in chicken. International Journal of Poultry Science, 2010, 9(2): 139-147.
doi: 10.3923/ijps.2010.139.147 |
[16] |
FATHI M M, GALAL A, ALI U M, ABOU-EMERA O K. Physical and mechanical properties of eggshell as affected by chicken breed and flock age. British Poultry Science, 2019, 60(5): 506-512.
doi: 10.1080/00071668.2019.1621992 |
[17] |
FATHI M M, EL-DLEBSHANY A E, EL-DEEN M B, RADWAN L M, RAYAN G N. Effect of long-term selection for egg production on eggshell quality of Japanese quail (Coturnix japonica). Poultry Science, 2016, 95(11): 2570-2575.
doi: 10.3382/ps/pew233 |
[18] |
PANHELEUX M, NYS Y, WILLIAMS J, GAUTRON J, BOLDICKE T, HINCKE MT. Extraction and quantification by ELISA of eggshell organic matrix proteins (ovocleidin-17, ovalbumin, ovotransferrin) in shell from young and old hens. Poultry Science, 2000, 79(4): 580-588.
doi: 10.1093/ps/79.4.580 |
[19] |
SAMIULLAH S, OMAR A S, ROBERTS J, CHOUSALKAR K. Effect of production system and flock age on eggshell and egg internal quality measurements. Poultry Science, 2017, 96(1): 246-258.
doi: 10.3382/ps/pew289 |
[20] | 海兰国际育种公司. 海兰褐蛋鸡饲养管理手册. 海兰国际育种公司. 2018. |
Hy-Line International Breeding Company. Management manual of Hy-Line variety Brown. Hy-Line International Breeding Company, 2018. (in Chinese) | |
[21] |
VAN DEN BRAND H, PARMENTIER H K, KEMP B. Effects of housing system (outdoor vs cages) and age of laying hens on egg characteristics. British Poultry Science, 2004, 45(6): 745-752.
doi: 10.1080/00071660400014283 |
[22] |
RIZZI C, CHIERICATO G M. Organic farming production. Effect of age on the productive yield and egg quality of hens of two commercial hybrid lines and two local breeds. Italian Journal of Animal Science, 2005, 4(sup3): 160-162.
doi: 10.4081/ijas.2005.3s.160 |
[23] |
NYS Y. Relationships between age, shell quality and individual rate and duration of shell formation in domestic hens. British Poultry Science, 1986, 27(2): 253-259.
doi: 10.1080/00071668608416878 |
[24] | DUNN I C. Long Life Layer; genetic and physiological limitations to extend the laying period//Proceedings of the 19th European Symposium on Poultry Nutrition, 2013. |
[25] |
BELL D D, WEAVER W D. Commercial chicken meat and egg production: 5th edition. The Journal of Applied Poultry Research, 2002, 11(2m): 224-225.
doi: 10.1093/japr/11.2.224 |
[26] | OH K Y, RUY B G, NOH J S, CHOI D S, CHOE K J. Analyses on the status of eggshell breakage in the step of egg conveyer system of the laying hen house. Journal of Livestock Housing & Environment, 2008, 14(1): 47-52. |
[27] |
DE KETELAERE B, GOVAERTS T, COUCKE P, DEWIL E, VISSCHER J, DECUYPERE E, DE BAERDEMAEKER J. Measuring the eggshell strength of 6 different genetic strains of laying Hens: Techniques and comparisons. British Poultry Science, 2002, 43(2): 238-244.
doi: 10.1080/00071660120121454 |
[28] |
MOLNÁR A, MAERTENS L, AMPE B, BUYSE J, KEMPEN I, ZOONS J, DELEZIE E. Changes in egg quality traits during the last phase of production: Is there potential for an extended laying cycle? British Poultry Science, 2016, 57(6): 842-847.
doi: 10.1080/00071668.2016.1209738 |
[29] | 王佩伦. 不同周龄及不同品质鸡蛋壳的化学组分和物理结构[D]. 杭州: 浙江农林大学, 2012. |
WANG P L. Chemical composition and physical structure of eggshells with distinct eggshell quality or from various aging hens[D]. Hangzhou: Zhejiang A & F University, 2012. (in Chinese) | |
[30] |
TAYLOR D. Measuring fracture toughness in biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77: 776-782.
doi: 10.1016/j.jmbbm.2017.07.007 |
[31] |
CHANG-HO K, SONG J H, LEE J C, LEE K W. Age-related changes in egg quality of Hy-Line Brown hens. International Journal of Poultry Science, 2014, 13(9): 510.
doi: 10.3923/ijps.2014.510.514 |
[32] |
SIMONS P. Egg signals. World’s Poultry Science Journal, 2017, 73(03): 710.
doi: 10.1017/S0043933917000654 |
[33] |
CHUKWUKA O K, OKOLI I C, OKEUDO N J, UDEDIBIE A B I, OGBUEWU I P, ALADI N O, IHESHIULOR O O M, OMEDEA A. Egg quality defects in poultry management and food safety. Asian Journal of Agricultural Research, 2011, 5(1): 1-16.
doi: 10.3923/ajar.2011.1.16 |
[34] |
VOISEY P W, HUNT J R. Measurement of eggshell strength. Journal of Texture Studies, 1974, 5(2): 135-182.
doi: 10.1111/jts.1974.5.issue-2 |
[35] |
BAIN M M. Recent advances in the assessment of eggshell quality and their future application. World’s Poultry Science Journal, 2005, 61(2): 268-277.
doi: 10.1079/WPS200459 |
[36] |
RODRIGUEZ-NAVARRO A B. Rapid quantification of avian eggshell microstructure and crystallographic-texture using two-dimensional X-ray diffraction. British Poultry Science, 2007, 48(2): 133-144.
doi: 10.1080/00071660701302262 |
[37] | 卜舒扬. 不同产蛋期蛋鸡小肠及肾脏钙磷代谢相关因子表达变化的研究[D]. 沈阳: 沈阳农业大学, 2017. |
BU S Y. Study of intestine and kidney calcium-phosphorus metabolism related factors expression levels in different laying periods hens[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese) | |
[38] | HINCKE M T, NYS Y, GAUTRON J, MANN K, RODRIGUEZ- NAVARRO A B, MCKEE M D. The eggshell: Structure, composition and mineralization. Front Bioscience (Landmark Ed), 2012, 17: 1266-1280. |
[39] | 韩进诚, 洪尧彰, 曹博宏, 郑永祥. 维生素D代谢物调节钙代谢的机理及其应用. 动物营养学报, 2012, 24(3): 411-415. |
HAN J C, HONG Y Z, CAO B H, ZHENG Y X. Vitamin D metabolites: Mechanism for regulating calcium metabolism and their application. Acta Zoonutrimenta Sinica, 2012, 24(3): 411-415. (in Chinese) | |
[40] |
LI P, WANG R M, JIAO H C, WANG X J, ZHAO J P, LIN H. Effects of dietary phosphorus level on the expression of calcium and phosphorus transporters in laying hens. Frontiers in Physiology, 2018, 9: 627.
doi: 10.3389/fphys.2018.00627 |
[41] | 谭占坤, 白世平, 张克英, 丁雪梅, 曾秋风, 彭西. 磷来源与水平对蛋鸡生产性能和蛋壳质量的影响. 动物营养学报, 2011, 23(10): 1684-1696. |
TAN Z K, BAI S P, ZHANG K Y, DING X M, ZENG Q F, PENG X. Effects of phosphorus source and level on performance and eggshell quality of laying hens. Acta Zoonutrimenta Sinica, 2011, 23(10): 1684-1696.(in Chinese) | |
[42] |
CLUNIES M, PARKS D, LEESON S. Calcium and phosphorus metabolism and eggshell formation of hens fed different amounts of calcium. Poultry Science, 1992, 71(3): 482-489.
doi: 10.3382/ps.0710482 |
[43] |
CUSACK M, FRASER A C, STACHEL T. Magnesium and phosphorus distribution in the avian eggshell. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003, 134(1): 63-69.
doi: 10.1016/S1096-4959(02)00185-9 |
[44] |
BAIN M M. Eggshell strength: A relationship between the mechanism of failure and the ultrastructural organization of the mammillary layer. British Poultry Science, 1992, 33(2): 303-319.
doi: 10.1080/00071669208417469 |
[1] | 李菲菲, 廉雪菲, 尹韬, 常媛媛, 金燕, 马小川, 陈岳文, 叶丽, 李云松, 卢晓鹏. 柑橘果实囊衣发育与化渣性的形成[J]. 中国农业科学, 2023, 56(2): 333-344. |
[2] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[3] | 张亚男,金永燕,庄智威,王爽,夏伟光,阮栋,陈伟,郑春田. 鸡蛋与鸭蛋的蛋壳力学特性、超微结构及蛋壳组分的比较[J]. 中国农业科学, 2022, 55(24): 4957-4968. |
[4] | 刘东尧,闫振华,陈艺博,杨琴,贾绪存,李鸿萍,董朋飞,王群. 增温对玉米茎秆生长发育、抗倒性和产量的影响[J]. 中国农业科学, 2021, 54(17): 3609-3622. |
[5] | 张彬,李萌,刘晶,王俊杰,侯思宇,李红英,韩渊怀. 绿小米和白小米谷子籽粒叶绿素合成途径结构基因的表达分析[J]. 中国农业科学, 2020, 53(12): 2331-2339. |
[6] | 吴杨,高慧纯,张必弦,张海玲,王全伟,刘鑫磊,栾晓燕,马岩松. 24-表油菜素内酯对盐碱胁迫下大豆生育、生理及细胞超微结构的影响[J]. 中国农业科学, 2017, 50(5): 811-821. |
[7] | 邵瑞鑫,李蕾蕾,郑会芳,信龙飞,苏小雨,冉午玲,杨青华. 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响[J]. 中国农业科学, 2016, 49(2): 251-259. |
[8] | 刘自刚,孙万仓,方彦,李学才,杨宁宁,武军艳,曾秀存,王月. 夜间低温对白菜型冬油菜光合机构的影响[J]. 中国农业科学, 2015, 48(4): 672-682. |
[9] | 秦玉芝1, 邢铮1, 邹剑锋2, 何长征1, 李炎林1, 熊兴耀1, 3. 持续弱光胁迫对马铃薯苗期生长和光合特性的影响[J]. 中国农业科学, 2014, 47(3): 537-545. |
[10] | 姜淑贞,孙华,黄丽波,杨在宾,王淑静,刘法孝,F. Chi. 不同水平玉米赤霉烯酮对断奶仔猪血清代谢产物和肝肾组织病理学影响[J]. 中国农业科学, 2014, 47(18): 3708-3715. |
[11] | 刘月兰, 于振文, 张永丽, 石玉, 王东 . 拔节期和开花期不同土层深度测墒补灌对北方小麦 旗叶叶绿体超微结构和荧光特性的影响[J]. 中国农业科学, 2014, 47(14): 2751-2761. |
[12] | 肖华贵, 杨焕文, 饶勇, 杨斌, 朱英, 张文龙. 甘蓝型油菜黄化突变体的叶绿体超微结构、 气孔特征参数及光合特性[J]. 中国农业科学, 2013, 46(4): 715-727. |
[13] | 张林, 张海军, 武书庚, 岳洪源, 姚军虎, 齐广海. 单色光间歇性刺激胚蛋对肉仔鸡胸肉生长及肉品质的影响[J]. 中国农业科学, 2012, 45(5): 951-957. |
[14] | 刘朝营, 许自成, 邵惠芳, 宋朝鹏, 杨杰, 耿宗泽, 赵爽, 张丽英. 不同成熟度烟叶密集烘烤过程中细胞超微结构的变化[J]. 中国农业科学, 2012, 45(24): 4988-4997. |
[15] | 秦浩然, 和绍禹, 吴杰, 李继莲. 东方蜜蜂微孢子虫对密林熊蜂的致病机理[J]. 中国农业科学, 2012, 45(22): 4697-4704. |
|