中国农业科学 ›› 2022, Vol. 55 ›› Issue (24): 4957-4968.doi: 10.3864/j.issn.0578-1752.2022.24.013
张亚男(),金永燕(),庄智威,王爽,夏伟光,阮栋,陈伟(),郑春田()
收稿日期:
2021-08-18
接受日期:
2022-10-23
出版日期:
2022-12-16
发布日期:
2023-01-04
通讯作者:
陈伟,郑春田
作者简介:
张亚男,E-mail:基金资助:
ZHANG YaNan(),JIN YongYan(),ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei(),ZHENG ChunTian()
Received:
2021-08-18
Accepted:
2022-10-23
Online:
2022-12-16
Published:
2023-01-04
Contact:
Wei CHEN,ChunTian ZHENG
摘要:
【目的】通过比较研究鸡蛋与鸭蛋的蛋壳力学特性、超微结构和蛋壳组分的异同,为精准调控鸭蛋蛋壳品质提供科学依据。【方法】试验选用45周龄海兰灰蛋鸡和龙岩山麻鸭所产蛋,选取平均蛋重接近生理蛋重的鸡蛋和鸭蛋各160枚,随机分为2个组,每组8个重复,每个重复20枚蛋。蛋鸡和蛋鸭均饲喂玉米-豆粕型饲粮,营养水平参照国家标准配制。采用蛋壳强度仪测定蛋壳强度,数显千分尺测定蛋壳膜和钙化蛋壳的厚度,计算蛋壳比例和韧性。采用扫描电子显微镜观察蛋壳的超微结构,测定蛋壳有效厚度、乳突厚度和宽度,计算总厚度、有效层和乳突层比例。观察蛋壳乳突结构,对乳突结构的变异程度进行评分。蛋壳粉碎提取后,采用考马斯亮蓝方法测定基质蛋白含量,微波消解后,参照国标方法,测定蛋壳中钙、磷、镁、锰、铜、锌含量。【结果】与鸡蛋相比,鸭蛋的蛋重和蛋壳重更大(P<0.01),蛋壳比例无显著差异(P>0.05);蛋壳强度、韧性和蛋壳膜厚度更大(P <0.01),钙化层厚度(不含壳膜)无显著差异(P>0.05)。超微结构中,鸭蛋壳的乳突厚度和单位乳突个数均显著低于鸡蛋壳(P<0.01),乳突宽度和乳突层比例显著高于鸡蛋壳(P<0.01);蛋壳总厚度和有效厚度无显著差异(P>0.05),鸭蛋壳有效层比例显著高于鸡蛋壳(P<0.001)。乳突结构中,鸭蛋壳的乳突密度、B型和A型乳突、乳突的霰石、袖口和凹陷结构的评分均无显著差异(P>0.05),鸭蛋壳乳突的帽子结构、汇流程度、早期融合、晚期融合的评分及乳突结构的总评分显著低于鸡蛋壳(P<0.05),表明鸡蛋壳较鸭蛋壳有较为频繁的乳突结构变异,鸭蛋壳帽子结构上沟壑状痕迹较鸡蛋壳更为深刻清晰,具有较为广泛的早期融合,乳突层与壳膜纤维间的结合更致密。鸭蛋壳中磷、铜和锰的含量更高(P<0.05),但镁和基质蛋白含量较低(P<0.001),钙和锌含量无显著差异(P>0.05)。【结论】鸡蛋和鸭蛋具有相似的力学特性和超微结构,蛋壳比例、钙化层厚度、蛋壳中钙和锌的含量无差异。与鸡蛋壳相比,鸭蛋蛋壳力学特性较好,蛋壳强度和韧性较高,主要与鸭蛋壳具有较致密的超微结构和乳突结构有关,鸭蛋壳的有效厚度高、乳突排列更平整,具有较为广泛的早期融合,相邻乳突单元间致密性更好;蛋壳组分中磷、铜和锰含量高,镁和基质蛋白含量低。可通过调控蛋壳矿物元素及基质蛋白含量,影响蛋壳形成过程尤其是乳突和栅栏层中碳酸钙的沉积,增加蛋壳有效层的厚度,改善乳突层结构,从而改善鸭蛋的蛋壳品质。
张亚男,金永燕,庄智威,王爽,夏伟光,阮栋,陈伟,郑春田. 鸡蛋与鸭蛋的蛋壳力学特性、超微结构及蛋壳组分的比较[J]. 中国农业科学, 2022, 55(24): 4957-4968.
ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs[J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
表1
蛋鸡基础饲粮组成及营养水平"
原料Raw material | 含量Content (%) | 营养成分Nutritional ingredient② | 含量Content | |
---|---|---|---|---|
玉米Corn (CP 7.8%) | 64.21 | 代谢能ME (MJ·kg-1) | 11.29 | |
豆粕Sbean meal (CP 43%) | 25.55 | 粗蛋白质CP (%) | 16.49 | |
石粉Limestone | 8.35 | 钙Ca (%) | 3.50 | |
磷酸氢钙CaHPO4 | 1.14 | 总磷TP (%) | 0.52 | |
食盐NaCl | 0.30 | 赖氨酸Lys (%) | 0.84 | |
蛋氨酸Met (98%) | 0.11 | 蛋氨酸Met (%) | 0.38 | |
预混料Premix① | 0.34 | 蛋氨酸+胱氨酸 (%) | 0.65 | |
合计Total | 100.00 |
表2
蛋鸭基础饲粮组成及营养水平"
原料Raw material | 含量Content (%) | 营养成分Nutritional ingredient② | 含量Content | |
---|---|---|---|---|
玉米Corn (CP 7.8%) | 53.79 | 代谢能ME (MJ·kg-1) | 10.46 | |
豆粕Soybean meal (CP 43%) | 23.19 | 粗蛋白CP (%) | 16.50 | |
麦麸Wheat bran | 11.73 | 钙Ca (%) | 3.60 | |
石粉Limestone | 8.57 | 总磷TP (%) | 0.60 | |
蛋氨酸Met (98%) | 0.16 | 非植酸磷NPP (%) | 0.34 | |
赖氨酸Lys | 0.03 | 赖氨酸Lys (%) | 0.84 | |
磷酸氢钙CaHPO4 | 1.23 | 蛋氨酸Met (%) | 0.41 | |
食盐NaCl | 0.30 | |||
预混料Premix① | 1.00 | |||
合计Total | 100.00 |
表3
乳突超微结构评分标准"
指标Item | 等级及评分Grade and score | |||||
---|---|---|---|---|---|---|
帽子Caps | 好Good (1) | 好-Good- (3) | 差+Poor+(6) | 差Poor (8) | 差-Poor- (10) | |
汇流Confluence | 无None (3) | 孤立Isolated (4) | 中等Moderate (6) | 广泛Extensive (1) | ||
B型Type B | 无None (1) | 孤立Isolated (2) | 中等Moderate (5) | 广泛Extensive (8) | ||
A型Type A | 无None (1) | 孤立Isolated (2) | ||||
霰石Aragonite | 无None (1) | 孤立Isolated (2) | 中等Moderate (5) | |||
早期融合Early fusion | 孤立Isolated (4) | 中等Moderate (2) | 广泛Extensive (1) | |||
晚期融合Late fusion | 孤立Isolated (1) | 中等Moderate (3) | 广泛Extensive (6) | |||
袖口Cuffing | 无None (5) | 独立Isolated (4) | 中等Moderated (1) | |||
凹陷Pitted | 无None (1) | 坑洼Depression (5) | 侵蚀Erosion (7) | 孔洞Hole (12) | ||
总分Total score | 优秀Excelle (<20) | 好Good (20-29) | 好-Good- (30-34) | 差+Poor+ (35-39) | 差Poor (40-49) | 差-Poor-- (>50) |
表4
鸡蛋与鸭蛋的蛋壳力学特性的差异比较"
项目Item | 鸡蛋Chicken egg | 鸭蛋Duck egg | P值 P-value |
---|---|---|---|
蛋重Egg weight (g) | 57.57±0.28 | 66.60±0.28 | <0.001 |
蛋壳重Eggshell weight (g) | 5.33±0.033 | 6.11±0.043 | <0.001 |
蛋壳比例Eggshell ratio (%) | 9.25±0.073 | 9.17±0.055 | 0.430 |
蛋壳韧性Eggshell toughness (N/mm2/3) | 425.99±5.17 | 466.91±7.89 | 0.001 |
蛋壳强度Eggshell strength (N) | 33.99±0.49 | 38.66±1.01 | 0.001 |
蛋壳膜厚Eggshell membrane thickness (mm) | 0.062±0.00078 | 0.10±0.0013 | <0.001 |
蛋壳厚度Eggshell calcification thickness (mm) | 0.35±0.0031 | 0.35±0.0038 | 0.222 |
表5
鸡蛋与鸭蛋的蛋壳超微结构的差异比较"
项目Item | 鸡蛋Chicken egg | 鸭蛋Duck egg | P值P-value |
---|---|---|---|
总厚度Total thickness (μm) | 304.27±3.56 | 304.54±3.14 | 0.958 |
有效厚度Effective thickness (μm) | 233.16±3.66 | 238.45±3.14 | 0.325 |
有效层比例Effective layer ratio (%) | 76.61±0.93 | 78.17±0.31 | 0.004 |
乳突厚度Mammillary thickness (μm) | 71.11±0.56 | 66.45±0.93 | 0.001 |
乳突层比例Mammillary layer ratio (%) | 23.39±0.33 | 21.83±0.31 | 0.004 |
乳突个数Mammillary knobs (个/mm) | 15.41±0.18 | 13.79±0.30 | <0.001 |
乳突宽度 Mammillary width (μm) | 65.37±0.60 | 73.21±1.61 | <0.001 |
表6
鸡蛋和鸭蛋的蛋壳乳突结构的差异比较"
项目Item | 鸡蛋Chicken egg | 鸭蛋Duck egg | P值P-value |
---|---|---|---|
乳突密度 Mammillae (mm2) | 227.33±3.31 | 224.88±6.32 | 0.710 |
帽子结构 Caps | 2.86±0.45 | 1.54±0.14 | 0.015 |
汇流 Confluence | 3.82±0.17 | 3.40±0.070 | 0.038 |
B型 Type B | 1.50±0.63 | 1.13±0.040 | 0.133 |
A型 Type A | 1.25±0.091 | 1.11±0.055 | 0.213 |
霰石 Aragonite | 1.42±0.070 | 1.28±0.052 | 0.130 |
早期融合 Early fusion | 1.86±0.084 | 1.60±0.073 | 0.035 |
晚期融合 Late fusion | 3.89±0.23 | 3.25±0.16 | 0.038 |
袖口 Cuffing | 3.61±0.15 | 3.64±0.31 | 0.935 |
凹陷 Pitted | 1.28±0.14 | 1.00±0.00 | 0.073 |
总分 Total score | 21.46±0.98 | 17.95±0.43 | 0.006 |
表7
鸡蛋和鸭蛋的蛋壳中矿物元素及蛋白含量差异比较"
项目Item | 鸡蛋Chicken egg | 鸭蛋Duck egg | P值P-value |
---|---|---|---|
钙 Calcium (%) | 34.11±0.37 | 33.95±0.41 | 0.765 |
磷 Phosphorus (%) | 0.193±0.018 | 0.294±0.033 | 0.017 |
镁 Magnesium (%) | 0.29±0.0041 | 0.092±0.0016 | <0.001 |
铜 Copper (mg/kg) | 0.53±0.033 | 17.66±0.53 | 0.004 |
锰 Manganese (mg/kg) | 0.22±0.013 | 0.67±0.018 | 0.001 |
锌 Zinc (mg/kg) | 2.57±0.43 | 1.74±0.17 | 0.375 |
蛋白 Protein (mg/g) | 9.10±0.49 | 6.12±0.16 | <0.001 |
[1] |
WILSON P B. Recent advances in avian egg science: a review. Poultry Science, 2017, 96(10): 3747-3754. doi:10.3382/ps/pex187.
doi: 10.3382/ps/pex187 pmid: 28938769 |
[2] |
MA Y F, YAO J W, ZHOU S, MI Y L, LI J, ZHANG C Q. Improvement of eggshell quality by dietary N-carbamylglutamate supplementation in laying chickens. Poultry Science, 2020, 99(8): 4085-4095. doi:10.1016/j.psj.2020.04.004.
doi: S0032-5791(20)30241-8 pmid: 32731996 |
[3] |
PARK J A, SOHN S H. The influence of hen aging on eggshell ultrastructure and shell mineral components. Korean Journal for Food Science of Animal Resources, 2018, 38(5): 1080-1091. doi:10.5851/kosfa.2018.e41.
doi: 10.5851/kosfa.2018.e41 |
[4] |
MARIE P, LABAS V, BRIONNE A, HARICHAUX G, HENNEQUET- ANTIER C, NYS Y, GAUTRON J. Quantitative proteomics and bioinformatic analysis provide new insight into protein function during avian eggshell biomineralization. Journal of Proteomics, 2015, 113: 178-193. doi:10.1016/j.jprot.2014.09.024.
doi: 10.1016/j.jprot.2014.09.024 pmid: 25284052 |
[5] |
GAUTRON J. Proteomics analysis of avian eggshell matrix proteins: toward new advances on biomineralization. Proteomics, 2019, 19(13): e1900120. doi:10.1002/pmic.201900120.
doi: 10.1002/pmic.201900120 |
[6] | 张亚男. 饲粮锰调控鸡蛋壳品质的作用机制研究[D]. 北京: 中国农业科学院, 2017. |
ZHANG Y N. Dietary manganese supplementation modulated eggshell quality in laying hens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[7] |
DUNN I C, RODRÍGUEZ-NAVARRO A B, MCDADE K, SCHMUTZ M, PREISINGER R, WADDINGTON D, WILSON P W, BAIN M M. Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers. Animal Genetics, 2012, 43(4): 410-418. doi:10.1111/j.1365-2052.2011.02280.x.
doi: 10.1111/j.1365-2052.2011.02280.x pmid: 22497523 |
[8] | BAIN M M. Eggshell strength: a mechanical/ultrastructural evaluation[D]. Glasgow: University of Glasgow, 1990. |
[9] |
PANHELEUX M, NYS Y, WILLIAMS J, GAUTRON J, BOLDICKE T, HINCKE M T. Extraction and quantification by ELISA of eggshell organic matrix proteins (ovocleidin-17, ovalbumin, ovotransferrin) in shell from young and old hens. Poultry Science, 2000, 79(4): 580-588. doi:10.1093/ps/79.4.580.
doi: 10.1093/ps/79.4.580 pmid: 10780658 |
[10] | 张凯. 鸭蛋壳的力学特性及多孔超微结构的渗透特性研究[D]. 武汉: 华中农业大学, 2012. |
ZHANG K. Research on mechanics of duck eggshells and its permeability of porous ultrastructure[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese) | |
[11] |
BAIN M M. Recent advances in the assessment of eggshell quality and their future application. World's Poultry Science Journal, 2005, 61(2): 268-277. doi:10.1079/wps200459.
doi: 10.1079/wps200459 |
[12] |
RODRIGUEZ-NAVARRO A, KALIN O, NYS Y, GARCIA-RUIZ J M. Influence of the microstructure on the shell strength of eggs laid by hens of different ages. British Poultry Science, 2002, 43(3): 395-403. doi:10.1080/00071660120103675.
doi: 10.1080/00071660120103675 |
[13] |
MACLEOD N, BAIN M M, HANCOCK J W. The mechanics and mechanisms of failure of hens’ eggs. International Journal of Fracture, 2006, 142(1/2): 29-41. doi:10.1007/s10704-006-9018-5.
doi: 10.1007/s10704-006-9018-5 |
[14] |
KETTA M, TŮMOVÁ E. Eggshell structure, measurements, and quality-affecting factors in laying hens: a review. Czech Journal of Animal Science, 2016, 61(7): 299-309. doi:10.17221/46/2015-cjas.
doi: 10.17221/46/2015-cjas |
[15] |
ATHANASIADOU D, JIANG W G, GOLDBAUM D, SALEEM A, BASU K, PACELLA M S, BÖHM C F, CHROMIK R R, HINCKE M T, RODRÍGUEZ-NAVARRO A B, VALI H, WOLF S E, GRAY J J, BUI K H, MCKEE M D. Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances, 2018, 4(3): eaar3219. doi:10.1126/sciadv.aar3219.
doi: 10.1126/sciadv.aar3219 |
[16] |
NYS Y, GAUTRON J, GARCIA-RUIZ J M, HINCKE M T. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol, 2004, 3(6/7): 549-562. doi:10.1016/j.crpv.2004.08.002.
doi: 10.1016/j.crpv.2004.08.002 |
[17] | 章世元, 俞路, 王雅倩, 王志跃, 周卫东, 杨海明. 蛋壳质量与元素组成、超微结构关系的研究. 动物营养学报, 2008, 20(4): 423-428. |
ZHANG S Y, YU L, WANG Y Q, WANG Z Y, ZHOU W D, YANG H M. Research on the relationships between the quality and elemental composition, ultra-microstructure of eggshell. Chinese Journal of Animal Nutrition, 2008, 20(4): 423-428. (in Chinese) | |
[18] |
FATHI M M, ZEIN EL-DE A, EL-SAFTY S A, RADWAN L M. Using scanning electron microscopy to detect the ultrastructural variations in eggshell quality of fayoumi and dandarawi chicken breeds. International Journal of Poultry Science, 2007, 6(4): 236-241. doi:10.3923/ijps.2007.236.241.
doi: 10.3923/ijps.2007.236.241 |
[19] |
RADWAN L M. Eggshell quality: a comparison between Fayoumi, Gimieizah and Brown Hy-Line strains for mechanical properties and ultrastructure of their eggshells. Animal Production Science, 2016, 56(5): 908. doi:10.1071/an14755.
doi: 10.1071/an14755 |
[20] |
ARIAS J I, JURE C, WIFF J P, FERNÁNDEZ M S, FUENZALIDA V, ARIAS J L. Effect of sulfate content of biomacromolecules on the crystallization of calcium carbonate. MRS Proceedings, 2001, 711: HH1.7.1. doi:10.1557/proc-711-hh1.7.1.
doi: 10.1557/proc-711-hh1.7.1 |
[21] |
RADWAN L M, FATHI M M, GALAL A, EL-DEIN A Z. Mechanical and ultrastructural properties of eggshell in two Egyptian native breeds of chicken. International Journal of Poultry Science, 2009, 9(1): 77-81. doi:10.3923/ijps.2010.77.81.
doi: 10.3923/ijps.2010.77.81 |
[22] |
陈金泉, 任祖方, 任奕林. 鸭蛋壳与鸡蛋壳超微结构比较研究. 中国家禽, 2010, 32(24): 24-26, 31. doi:10.16372/j.issn.1004-6364.2010.24.014.
doi: 10.16372/j.issn.1004-6364.2010.24.014 |
CHEN J Q, REN Z F, REN Y L. Comparative study on eggshell ultrastructure of duck and chicken. China Poultry, 2010, 32(24): 24-26, 31. doi:10.16372/j.issn.1004-6364.2010.24.014. (in Chinese)
doi: 10.16372/j.issn.1004-6364.2010.24.014 |
|
[23] |
KÜÇÜKYILMAZ K, ERKEK R, BOZKURT M. The effects of boron supplementation of layer diets varying in calcium and phosphorus concentrations on performance, egg quality, bone strength and mineral constituents of serum, bone and faeces. British Poultry Science, 2014, 55(6): 804-816. doi:10.1080/00071668.2014.975782.
doi: 10.1080/00071668.2014.975782 pmid: 25330040 |
[24] |
WANG S, CHEN W, ZHANG H X, RUAN D, LIN Y C. Influence of particle size and calcium source on production performance, egg quality, and bone parameters in laying ducks. Poultry Science, 2014, 93(10): 2560-2566. doi:10.3382/ps.2014-03962.
doi: 10.3382/ps.2014-03962 |
[25] |
KIM C H, PAIK I K, KIL D Y. Effects of increasing supplementation of magnesium in diets on productive performance and eggshell quality of aged laying hens. Biological Trace Element Research, 2013, 151(1): 38-42. doi:10.1007/s12011-012-9537-z.
doi: 10.1007/s12011-012-9537-z pmid: 23111950 |
[26] |
BELKAMEH M M, SEDGHI M, AZARFAR A. The effect of different levels of dietary magnesium on eggshell quality and laying hen's performance. Biological Trace Element Research, 2021, 199(4): 1566-1573. doi:10.1007/s12011-020-02259-9.
doi: 10.1007/s12011-020-02259-9 |
[27] |
ZAMANI A, RAHMANI H R, POURREZA J. Supplementation of a corn-soybean meal diet with manganese and zinc improves eggshell quality in laying hens. Pakistan Journal of Biological Sciences, 2005, 8(9): 1311-1317. doi:10.3923/pjbs.2005.1311.1317.
doi: 10.3923/pjbs.2005.1311.1317 |
[28] |
ZHANG Y N, ZHANG H J, WANG J, YUE H Y, QI X L, WU S G, QI G H. Effect of dietary supplementation of organic or inorganic zinc on carbonic anhydrase activity in eggshell formation and quality of aged laying hens. Poultry Science, 2017, 96(7): 2176-2183. doi:10.3382/ps/pew490.
doi: 10.3382/ps/pew490 pmid: 28204703 |
[29] |
MIN Y N, LIU F X, QI X, JI S, MA S X, LIU X, WANG Z P, GAO Y P. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poultry Science, 2018, 97(10): 3587-3593. doi:10.3382/ps/pey203.
doi: 10.3382/ps/pey203 pmid: 29860354 |
[30] |
XIAO J F, ZHANG Y N, WU S G, ZHANG H J, YUE H Y, QI G H. Manganese supplementation enhances the synthesis of glycosaminoglycan in eggshell membrane: a strategy to improve eggshell quality in laying hens. Poultry Science, 2014, 93(2): 380-388. doi:10.3382/ps.2013-03354.
doi: 10.3382/ps.2013-03354 pmid: 24570460 |
[31] | 武书庚. 日粮中不同硫酸铜和柠檬酸铜添加水平及其组合对产蛋鸡生产性能及蛋品质的影响[D]. 北京: 中国农业科学院, 2001. |
WU S G. Effect of dietary supplementation of cupric salphate and citrate and their combination on performance and egg quality of laying hens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2001. (in Chinese) | |
[32] | 张亚男, 王晶, 武书庚, 张海军, 齐广海. 微量元素和饲料添加剂调控蛋壳品质的研究进展. 动物营养学报, 2016, 28(10): 3015-3024. |
ZHANG Y N, WANG J, WU S G, ZHANG H J, QI G H. Research progress of microelement and feed additives on eggshell quality regulation. Chinese Journal of Animal Nutrition, 2016, 28(10): 3015-3024. (in Chinese) | |
[33] | 吕娜, 吕林, 廖秀冬, 张丽阳, 罗绪刚. 低磷浓度下原代培养肉鸡鸡胚十二指肠上皮细胞对磷吸收及相关转运载体表达的研究. 动物营养学报, 2019, 31(9): 4186-4193. |
LÜ N, LÜ L, LIAO X D, ZHANG L Y, LUO X G. Phosphorus absorption and related transporter expression under low phosphorus concentrations in primarily cultured duodenal epithelial cells of broiler embryos. Chinese Journal of Animal Nutrition, 2019, 31(9): 4186-4193. (in Chinese) | |
[34] | 初晓娜, 汪以真, 刘光富, 朱连勤. 高磷日粮对肉用仔鸡体组织磷和镁含量的影响. 中国畜牧杂志, 2004, 40(10): 15-16, 18. |
CHU X N, WANG Y Z, LIU G F, ZHU L Q. Effect of high - phosphorus diet on the Ca, P, Mg content in the broiler body tissue. Chinese Journal of Animal Science, 2004, 40(10): 15-16, 18. (in Chinese) | |
[35] |
FENG J, ZHANG H J, WU S G, QI G H, WANG J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens. BMC Genomics, 2020, 21(1): 770. doi:10.1186/s12864-020-07177-7.
doi: 10.1186/s12864-020-07177-7 pmid: 33167850 |
[36] |
HINCKE M T, NYS Y, GAUTRON J, MANN K, RODRIGUEZ- NAVARRO A B, MCKEE M D. The eggshell: structure, composition and mineralization. Frontiers in Bioscience (Landmark Edition), 2012, 17(4): 1266-1280. doi:10.2741/3985.
doi: 10.2741/3985 |
[37] |
ROBERTS J R. Factors affecting egg internal quality and egg shell quality in laying hens. The Journal of Poultry Science, 2004, 41(3): 161-177. doi:10.2141/jpsa.41.161.
doi: 10.2141/jpsa.41.161 |
[38] |
RODRÍGUEZ-NAVARRO A B, MARIE P, NYS Y, HINCKE M T, GAUTRON J. Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 2015, 190(3): 291-303. doi:10.1016/j.jsb.2015.04.014.
doi: 10.1016/j.jsb.2015.04.014 |
[39] |
MARIE P, LABAS V, BRIONNE A, HARICHAUX G, HENNEQUET- ANTIER C, RODRIGUEZ-NAVARRO A B, NYS Y, GAUTRON J. Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during the primary events of mineralization and the active calcification phase. Journal of Proteomics, 2015, 126: 140-154. doi:10.1016/j.jprot.2015.05.034.
doi: 10.1016/j.jprot.2015.05.034 |
[40] | 冯嘉. 蛋鸡产蛋后期鸡蛋蛋壳超微结构特征的形成机理与营养调控[D]. 北京: 中国农业科学院, 2021. |
FENG J. Mechanism of eggshell ultrastructure formation and nutritional modulation in the late phase production of laying hens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese) | |
[41] | 张亚男, 陈伟, 阮栋, 郑春田. 基质蛋白对蛋壳品质的调控. 动物营养学报, 2019, 31(1): 24-31. |
ZHANG Y N, CHEN W, RUAN D, ZHENG C T. Regulation of matrix proteins on eggshell quality. Chinese Journal of Animal Nutrition, 2019, 31(1): 24-31. (in Chinese) |
[1] | 李菲菲, 廉雪菲, 尹韬, 常媛媛, 金燕, 马小川, 陈岳文, 叶丽, 李云松, 卢晓鹏. 柑橘果实囊衣发育与化渣性的形成[J]. 中国农业科学, 2023, 56(2): 333-344. |
[2] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[3] | 马玲玲,冯嘉,王晶,齐广海,马友彪,武书庚,张海军,邱凯. 海兰褐蛋鸡产蛋高峰至后期蛋壳品质的变化特征[J]. 中国农业科学, 2021, 54(17): 3766-3779. |
[4] | 刘东尧,闫振华,陈艺博,杨琴,贾绪存,李鸿萍,董朋飞,王群. 增温对玉米茎秆生长发育、抗倒性和产量的影响[J]. 中国农业科学, 2021, 54(17): 3609-3622. |
[5] | 张彬,李萌,刘晶,王俊杰,侯思宇,李红英,韩渊怀. 绿小米和白小米谷子籽粒叶绿素合成途径结构基因的表达分析[J]. 中国农业科学, 2020, 53(12): 2331-2339. |
[6] | 吴杨,高慧纯,张必弦,张海玲,王全伟,刘鑫磊,栾晓燕,马岩松. 24-表油菜素内酯对盐碱胁迫下大豆生育、生理及细胞超微结构的影响[J]. 中国农业科学, 2017, 50(5): 811-821. |
[7] | 邵瑞鑫,李蕾蕾,郑会芳,信龙飞,苏小雨,冉午玲,杨青华. 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响[J]. 中国农业科学, 2016, 49(2): 251-259. |
[8] | 刘自刚,孙万仓,方彦,李学才,杨宁宁,武军艳,曾秀存,王月. 夜间低温对白菜型冬油菜光合机构的影响[J]. 中国农业科学, 2015, 48(4): 672-682. |
[9] | 秦玉芝1, 邢铮1, 邹剑锋2, 何长征1, 李炎林1, 熊兴耀1, 3. 持续弱光胁迫对马铃薯苗期生长和光合特性的影响[J]. 中国农业科学, 2014, 47(3): 537-545. |
[10] | 姜淑贞,孙华,黄丽波,杨在宾,王淑静,刘法孝,F. Chi. 不同水平玉米赤霉烯酮对断奶仔猪血清代谢产物和肝肾组织病理学影响[J]. 中国农业科学, 2014, 47(18): 3708-3715. |
[11] | 刘月兰, 于振文, 张永丽, 石玉, 王东 . 拔节期和开花期不同土层深度测墒补灌对北方小麦 旗叶叶绿体超微结构和荧光特性的影响[J]. 中国农业科学, 2014, 47(14): 2751-2761. |
[12] | 肖华贵, 杨焕文, 饶勇, 杨斌, 朱英, 张文龙. 甘蓝型油菜黄化突变体的叶绿体超微结构、 气孔特征参数及光合特性[J]. 中国农业科学, 2013, 46(4): 715-727. |
[13] | 刘朝营, 许自成, 邵惠芳, 宋朝鹏, 杨杰, 耿宗泽, 赵爽, 张丽英. 不同成熟度烟叶密集烘烤过程中细胞超微结构的变化[J]. 中国农业科学, 2012, 45(24): 4988-4997. |
[14] | 秦浩然, 和绍禹, 吴杰, 李继莲. 东方蜜蜂微孢子虫对密林熊蜂的致病机理[J]. 中国农业科学, 2012, 45(22): 4697-4704. |
[15] | 李科明, 张永军, 吴孔明, 郭予元. 中红侧沟茧蜂触角超微结构[J]. 中国农业科学, 2012, 45(17): 3522-3530. |
|