中国农业科学 ›› 2021, Vol. 54 ›› Issue (16): 3417-3427.doi: 10.3864/j.issn.0578-1752.2021.16.005
费帅鹏1,2(),禹小龙2,兰铭2,李雷2,夏先春2,何中虎2,3,肖永贵2()
收稿日期:
2020-11-18
接受日期:
2021-04-08
出版日期:
2021-08-16
发布日期:
2021-08-24
通讯作者:
肖永贵
作者简介:
费帅鹏,E-mail: 基金资助:
FEI ShuaiPeng1,2(),YU XiaoLong2,LAN Ming2,LI Lei2,XIA XianChun2,HE ZhongHu2,3,XIAO YongGui2()
Received:
2020-11-18
Accepted:
2021-04-08
Online:
2021-08-16
Published:
2021-08-24
Contact:
YongGui XIAO
摘要:
【目的】利用2种灌溉处理下不同发育阶段的冬小麦冠层高光谱信息,通过机器学习方法对小麦籽粒产量进行估测精度研究,明确产量最佳估测模型,对于育种工作有着重要应用价值。【方法】以黄淮麦区207个主栽小麦品种为材料,于2018—2019和2019—2020年度连续2个生长季在河南省新乡基地的正常灌溉和节水处理下种植,并调查开花期、灌浆前期和灌浆中期的冠层高光谱数据,分别以6种机器学习方法和集成方法建立光谱指数产量估测模型。【结果】2种灌溉处理下,3个生育期各光谱指数均与产量呈极显著相关(P<0.0001),且表现出较高的遗传力(0.61-0.85),主要受遗传因素控制。在正常灌溉处理下,与传统机器学习方法表现最佳的模型相比,集成学习方法在3个生育期的平均决定系数(R2) 分别由0.610、0.611和0.640提高至0.649、0.612和0.675,平均均方根误差 (RMSE) 分别降低至0.607、0.612和0.593 t·hm-2;节水处理下,3个生育期的平均R2分别由0.461、0.408和0.452提高至0.467、0.433和0.498,平均RMSE分别降低至0.519、0.559和0.504 t·hm-2。【结论】利用集成方法将不同模型估测结果进行结合,能够有效地提高产量估测精度,2种灌溉处理下均在灌浆中期估测精度最佳,可为冬小麦育种工作中产量估测提供参考。
费帅鹏,禹小龙,兰铭,李雷,夏先春,何中虎,肖永贵. 基于高光谱遥感和集成学习方法的冬小麦产量估测研究[J]. 中国农业科学, 2021, 54(16): 3417-3427.
FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method[J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
表1
本研究选用的光谱指数"
光谱指数 Spectral index | 名称 Name | 公式 Formula |
---|---|---|
NDVI[ | 归一化光谱指数 Normalized difference vegetation index | $\frac{R_{800}-R_{670}}{R_{800}+R_{670}}$ |
MCARI[ | 修正叶绿素吸收比指数 Modified chlorophyll absorption ratio index | $\left[\left(R_{702}-R_{671}\right)-0.2\left(R_{702}-R_{549}\right)\right] \times \frac{R_{702}}{R_{671}}$ |
NDRE[ | 归一化红边光谱指数 Normalized difference red edge | $\frac{R_{790}-R_{720}}{R_{790}+R_{720}}$ |
GNDVI[ | 绿色归一化光谱指数 Green normalized difference vegetation index | $\frac{R_{750}-R_{550}}{R_{750}+R_{550}}$ |
MSR[ | 修正红边比值指数 Modified simple ratio index | $\frac{R_{750} / R_{705}-1}{\sqrt{R_{750} / R_{705}+1}}$ |
NDRSR[ | 归一化红边简单比值指数 Normalized difference red-edge simple ratio | $\frac{R_{872}-R_{712}}{R_{872}+R_{712}}$ |
MTVI[ | 修正三角光谱指数 Modified triangular vegetation index | 1.2[1.2(R800-R500)-2.6(R670-R550)] |
MTCI2[ | MERIS陆地叶绿素指数2 MERIS terrestrial chlorophyll index 2 | $\frac{R_{754}-R_{709}}{R_{709}+R_{681}}$ |
MNDVI[ | 修正归一化光谱指数 Modified normalized difference vegetation index | $\frac{R_{750}-R_{705}}{R_{750}+R_{705}-2 R_{445}}$ |
RDVI[ | 重归一化光谱指数 Renormalized difference vegetation index | $\frac{R_{800}-R_{670}}{\sqrt{R_{800}+R_{670}}}$ |
VDI[ | 植被干指数 Vegetation dry index | $\frac{R_{970}-R_{900}}{R_{970}+R_{900}}$ |
CI[ | 叶绿素指数 Chlorophyll index | (R749-R720)-(R701-R672) |
VREI[ | 沃格尔曼红边指数 Vogelmann red edge index | $\frac{R_{742}}{R_{722}}$ |
ARVI[ | 大气抗性光谱指数 Atmospherically resistant vegetation index | $\frac{R_{872}-\left[R_{661}-\left(R_{488}-R_{661}\right)\right]}{R_{872}+\left[R_{661}-\left(R_{488}-R_{661}\right)\right]}$ |
NDMI[ | 归一化物质指数 Normalized difference matter index | $\frac{R_{1649}-R_{1792}}{R_{1649}+R_{1792}}$ |
表2
正常灌溉处理下光谱指数与产量相关性分析和光谱指数遗传力"
光谱指数 Spectral index | 开花期Flowering | 灌浆前期Early grain filling | 灌浆中期Mid grain filling | |||
---|---|---|---|---|---|---|
|r| | H2 | |r| | H2 | |r| | H2 | |
NDVI | 0.50*** | 0.83 | 0.53*** | 0.75 | 0.66*** | 0.74 |
MCARI | 0.61*** | 0.85 | 0.65*** | 0.85 | 0.69*** | 0.82 |
NDRE | 0.71*** | 0.81 | 0.65*** | 0.79 | 0.72*** | 0.78 |
GNDVI | 0.68*** | 0.82 | 0.63*** | 0.78 | 0.71*** | 0.77 |
MSR | 0.65*** | 0.80 | 0.62*** | 0.76 | 0.70*** | 0.76 |
NDRSR | 0.72*** | 0.82 | 0.67*** | 0.79 | 0.73*** | 0.79 |
MTVI | 0.59*** | 0.77 | 0.60*** | 0.73 | 0.63*** | 0.75 |
MTCI2 | 0.63*** | 0.83 | 0.59*** | 0.80 | 0.68*** | 0.80 |
MNDVI | 0.62*** | 0.83 | 0.63*** | 0.76 | 0.69*** | 0.83 |
RDVI | 0.60*** | 0.77 | 0.62*** | 0.77 | 0.66*** | 0.78 |
VDI | 0.45*** | 0.84 | 0.43*** | 0.80 | 0.62*** | 0.83 |
CI | 0.61*** | 0.82 | 0.59*** | 0.79 | 0.64*** | 0.81 |
VREI | 0.69*** | 0.81 | 0.65*** | 0.75 | 0.72*** | 0.76 |
ARVI | 0.52*** | 0.79 | 0.54*** | 0.73 | 0.65*** | 0.73 |
NDMI | 0.53*** | 0.80 | 0.56*** | 0.63 | 0.61*** | 0.77 |
表3
节水处理下光谱指数与产量相关性分析和光谱指数遗传力"
光谱指数 Spectral index | 开花期 Flowering | 灌浆前期 Early grain filling | 灌浆中期 Mid grain filling | |||
---|---|---|---|---|---|---|
|r| | H2 | |r| | H2 | |r| | H2 | |
NDVI | 0.48*** | 0.63 | 0.42*** | 0.69 | 0.53*** | 0.65 |
MCARI | 0.57*** | 0.64 | 0.49*** | 0.70 | 0.56*** | 0.68 |
NDRE | 0.56*** | 0.67 | 0.48*** | 0.78 | 0.55*** | 0.73 |
GNDVI | 0.54*** | 0.66 | 0.41*** | 0.73 | 0.54*** | 0.71 |
MSR | 0.55*** | 0.65 | 0.43*** | 0.74 | 0.52*** | 0.69 |
NDRSR | 0.57*** | 0.68 | 0.49*** | 0.79 | 0.55*** | 0.73 |
MTVI | 0.45*** | 0.64 | 0.46*** | 0.68 | 0.49*** | 0.68 |
MTCI2 | 0.50*** | 0.62 | 0.45*** | 0.71 | 0.50*** | 0.66 |
MNDVI | 0.52*** | 0.64 | 0.49*** | 0.67 | 0.51*** | 0.71 |
RDVI | 0.49*** | 0.66 | 0.47*** | 0.65 | 0.50*** | 0.67 |
VDI | 0.59*** | 0.69 | 0.61*** | 0.68 | 0.58*** | 0.73 |
CI | 0.48*** | 0.64 | 0.49*** | 0.74 | 0.52*** | 0.74 |
VREI | 0.55*** | 0.68 | 0.48*** | 0.68 | 0.52*** | 0.69 |
ARVI | 0.49*** | 0.61 | 0.42*** | 0.71 | 0.51*** | 0.68 |
NDMI | 0.44*** | 0.73 | 0.49*** | 0.66 | 0.50*** | 0.72 |
表4
次级模型建模过程各模型系数平均值"
模型 Model | 正常灌溉处理 Full irrigation treatment | 节水处理 Limited irrigation treatment | ||||
---|---|---|---|---|---|---|
开花期 Flowering | 灌浆前期 Early grain filling | 灌浆中期 Mid grain filling | 开花期 Flowering | 灌浆前期 Early grain filling | 灌浆中期 Mid grain filling | |
ANN | -4.53 | 0.43 | -0.59 | -4.10 | -2.81 | 0.93 |
GP | 0.24 | 0.26 | -1.85 | 2.10 | 0.77 | 0.86 |
MLR | 1.91 | -0.19 | 4.51 | -2.14 | -0.14 | -2.02 |
RF | 0.84 | -0.30 | -7.30 | -0.47 | 0.02 | -0.37 |
RR | 6.13 | 0.61 | 4.32 | 3.20 | 4.06 | 3.28 |
SVM | -3.41 | 0.42 | 2.34 | 2.43 | -0.56 | -1.59 |
[1] |
HERNANDEZ J, LOBOS G A, MATUS I, DEL POZO A, SILVA P, GALLEGUILLOS M. Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L. ) grown under three water regimes. Remote Sensing, 2015, 7(2):2109-2126.
doi: 10.3390/rs70202109 |
[2] |
MONTESINOS-LÓPEZ O A, MONTESINOS-LÓPEZ A, CROSSA J, DELOS G, CAMPOS , ALVARADO G, SUCHISMITA M, RUTKOSKI J, GONZÁLEZ-PÉREZ L, BURGUEÑO J. Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data. Plant Methods, 2017, 13:4.
doi: 10.1186/s13007-016-0154-2 |
[3] |
HASSAN M A, YANG M, RASHEED A, YANG G, REYNOLDS M, XIA X, XIAO Y, HE Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, 2019, 282:95-103.
doi: 10.1016/j.plantsci.2018.10.022 |
[4] |
HASSAN M A, YANG M, RASHEED A, JIN X, XIA X, XIAO Y, HE Z. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sensing, 2018, 10(6):809.
doi: 10.3390/rs10060809 |
[5] |
GITELSON A A, PENG Y, ARKEBAUER T J, SCHEPERS J. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment, 2014, 144:65-72.
doi: 10.1016/j.rse.2014.01.004 |
[6] | BOLTON D K, FRIEDL M A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural & Forest Meteorology, 2013, 173:74-84. |
[7] | 李岚涛, 李静, 明金, 汪善勤, 任涛, 鲁剑巍. 冬油菜叶面积指数高光谱监测最佳波宽与有效波段研究. 农业机械学报, 2018, 49(2):156-165. |
LI L T, LI J, MING J, WANG S Q, REN T, LU J W. Selection optimization of hyperspectral bandwidth and effective wavelength for predicting leaf areaindex in winter oilseed rape. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2):156-165. (in Chinese) | |
[8] |
SHAH S H, ANGEL Y, HOUBORG R, ALI S, MCCABE M F. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sensing, 2019, 11:920.
doi: 10.3390/rs11080920 |
[9] |
BREIMANL. Random forests. Machine Learning, 2001, 45:5-32.
doi: 10.1023/A:1010933404324 |
[10] | SAIN, STEPHAN R. The nature of statistical learning theory. Technometrics, 1996, 38:409. |
[11] |
BRADLEY J B. Neural networks: A comprehensive foundation. Information Processing & Management, 1995, 31:786.
doi: 10.1016/0306-4573(95)90003-9 |
[12] |
WANG L, ZHOU X, ZHU X, DONG Z, GUO W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal, 2016, 4:212-219.
doi: 10.1016/j.cj.2016.01.008 |
[13] |
YUAN H, YANG G, LI C, WANG Y, LIU J, YU H, FENG H, XU B, ZHAO X, YANG X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sensing, 2017, 9:309.
doi: 10.3390/rs9040309 |
[14] |
JIN X, XU X, SONG X, LI Z, WANG J, GUO W. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agronomy Journal, 2013, 105:1385-1392.
doi: 10.2134/agronj2013.0088 |
[15] |
FENG L, ZHANG Z, MA Y, DU Q, WILLIAMS P, DREWRY J, LUCK B. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning. Remote Sensing, 2020, 12(12):2028.
doi: 10.3390/rs12122028 |
[16] |
WOLPERT D H. Stacked generalization. Neural Networks, 1992, 5:241-259.
doi: 10.1016/S0893-6080(05)80023-1 |
[17] |
TING K M, WITTEN I H. Issues in stacked generalization. Journal of Artificial Intelligence Research, 1999, 10:271-289.
doi: 10.1613/jair.594 |
[18] | FU P, MEACHAM-HENSOLD K, GUAN K, BERNACCHI C J. Hyperspectral leaf reflectance as proxy for photosynthetic capacities: An ensemble approach based on multiple machine learning algorithms. Frontiers in Plant Science, 2019, 10. |
[19] |
HEALEY S P, COHEN W B, YANG Z, KENNETH BREWER C, BROOKS E B, GORELICK N, HERNANDEZ A J, HUANG C, JOSEPH HUGHES M, KENNEDY R E, LOVELAND T R, MOISEN G G, SCHROEDER T A, STEHMAN S V, VOGELMANN J E, WOODCOCK C E, YANG L, ZHU Z. Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment, 2018, 204:717-728.
doi: 10.1016/j.rse.2017.09.029 |
[20] | WILLIAMSCK, RASMUSSENCE. Gaussian processes for machine learning. Cambridge, CA: MIT Press, 2006. |
[21] |
MCDONALD G C. Ridge regression. Wiley Interdisciplinary Reviews Computational Statistics, 2009, 1:93-100.
doi: 10.1002/wics.v1:1 |
[22] |
LIANG L, DI L P, ZHANG L P, DENG M X, QIN Z H, ZHAO S H, LIN H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 2015, 165:123-134.
doi: 10.1016/j.rse.2015.04.032 |
[23] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81(2/3):337-354.
doi: 10.1016/S0034-4257(02)00010-X |
[24] |
DAUGHTRY C S T, WALTHALL C L, KIM M S, DE COLSTOUN E B, MCMURTREY J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 2000, 74:229-239.
doi: 10.1016/S0034-4257(00)00113-9 |
[25] |
RODRIGUEZ D, FITZGERALD G J, BELFORD R, CHRISTENSEN L K. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Australian Journal of Agricultural Research, 2006, 57:781-789.
doi: 10.1071/AR05361 |
[26] |
GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58:289-298.
doi: 10.1016/S0034-4257(96)00072-7 |
[27] | GITELSON A A, VINA A, CIGANDA V, RUNDQUIST D C, ARKEBAUER T J. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 2005, 32:1-4. |
[28] |
HABOUDANE D, MILLER J R, PATTEY E, ZARCO-TEJADA P J, STRACHAN I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90:337-352.
doi: 10.1016/j.rse.2003.12.013 |
[29] |
DASH J, CURRAN P J. Evaluation of the meris terrestrial chlorophyll index (MTCI). Advances in Space Research, 2007, 39:100-104.
doi: 10.1016/j.asr.2006.02.034 |
[30] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81:337-354.
doi: 10.1016/S0034-4257(02)00010-X |
[31] |
ROUJEAN J L, BREON F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 1995, 51:375-384.
doi: 10.1016/0034-4257(94)00114-3 |
[32] |
PENUELAS J, FILELLA I, BIEL C S, SERRANO L, SAVE R. The Reflectance at the 950-970 Nm region as an indicator of plant water status. International Journal of Remote Sensing, 1993, 14(10):1887-1905.
doi: 10.1080/01431169308954010 |
[33] |
GUPTA R K, VIJAYAN D, PRASAD T S. New hyperspectral vegetation characterization parameters. Advances in Space Research, 2001, 28(1):201-206.
doi: 10.1016/S0273-1177(01)00346-5 |
[34] | VOGELMANN J, ROCK B, MOSS D. Red edge spectral measurements from sugar maple leaves. Remote Sensing. 1993, 14:1563-1575. |
[35] |
KAUFMAN Y J, TANRE D. Atmospherically resistant vegetation index (ARVI) for eos-modis. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30:261-270.
doi: 10.1109/36.134076 |
[36] |
WANG L, HUNT E R, JR, QU J J, HAO X, DAUGHTRY C S T. Towards estimation of canopy foliar biomass with spectral reflectance measurements. Remote Sensing of Environment, 2011, 115(3):836-840.
doi: 10.1016/j.rse.2010.11.011 |
[37] | 周志华. 机器学习.第一版. 北京: 清华大学出版社, 2016: 181-182. |
ZHOU Z H. Machine Learning.1st edition. Beijing: Tsinghua University Press, 2016: 181-182. (in Chinese) | |
[38] | 邓威, 郭钇秀, 李勇, 朱亮, 刘定国. 基于特征选择和Stacking集成学习的配电网网损估测. 电力系统保护与控制, 2020, 48:108-115. |
DENG W, GUO Y X, LI Y, ZHU L, LIU D G. Power losses prediction based on feature selection and Stacking integrated learning. Power System Protection and Control, 2020, 48:108-115. (in Chinese) | |
[39] |
JULIANE B, ANDREAS B, SIMON B, JANIS B, SILAS E, GEORG B. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-Based RGB imaging. Remote Sensing, 2014, 6(11):10395-10412.
doi: 10.3390/rs61110395 |
[40] |
ZOU X C, MOTTUS M. Sensitivity of common vegetation indices to the canopy structure of field crops. Remote Sensing, 2017, 9:994.
doi: 10.3390/rs9100994 |
[41] |
FENG L, LI Y, WANG Y, DU Q. Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble learning algorithm: The ST-Stacking model. Atmospheric Environment, 2020, 223:117242.
doi: 10.1016/j.atmosenv.2019.117242 |
[42] |
FRAME J, MERRILEES D W. The effect of tractor wheel passes on herbage production from diploid and tetraploid ryegrass swards. Grass and Forage Science, 1996, 51:13-20.
doi: 10.1111/gfs.1996.51.issue-1 |
[43] | VAN D L, M J, POLLEY E C, HUBBARDAE. Super learner. Statistical Applications in Genetics & Molecular Biology, 2007, 6(1):25. |
[44] | 陈智芳, 宋妮, 王景雷, 孙景生. 基于高光谱遥感的冬小麦叶水势估测模型. 中国农业科学, 2017, 50(5):871-880. |
CHEN Z F, SONG N, WANG J L, SUN J S. Leaf water potential estimating models of winter wheat based on hyperspectral remote sensing. Scientia Agricultura Sinica, 2017, 50(5):871-880. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[8] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[9] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[10] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[11] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
|