中国农业科学 ›› 2021, Vol. 54 ›› Issue (15): 3279-3294.doi: 10.3864/j.issn.0578-1752.2021.15.012
王昊(),尹莲,刘洁霞,贾丽丽,丁旭,沈迪,冯凯,徐志胜,熊爱生()
收稿日期:
2020-09-09
接受日期:
2020-12-18
出版日期:
2021-08-01
发布日期:
2021-08-10
通讯作者:
熊爱生
作者简介:
王昊,E-mail: 基金资助:
WANG Hao(),YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng()
Received:
2020-09-09
Accepted:
2020-12-18
Online:
2021-08-01
Published:
2021-08-10
Contact:
AiSheng XIONG
摘要:
【目的】 研究类胡萝卜素裂解双加氧酶基因AgCCD4在不同颜色芹菜中的基因型及相对表达量,结合类胡萝卜素含量测定,分析AgCCD4对芹菜组织中类胡萝卜素积累的影响,为进一步研究CCD亚家族基因在不同颜色芹菜组织着色中的作用奠定基础。【方法】 采用同源比对法检索芹菜基因组中的CCD家族基因AgCCD4。从‘津南实芹’‘黄太极’‘紫杆一号’和‘赛雪’4种不同颜色芹菜中分别克隆获得芹菜类胡萝卜素裂解双加氧酶基因AgCCD4。对芹菜AgCCD4的蛋白氨基酸序列组成、蛋白质理化性质、亲缘关系、空间结构等进行分析,预测其保守结构域和二级结构以及建立三级结构模型。采用荧光定量PCR技术检测AgCCD4在不同颜色芹菜不同组织中的表达水平。采用超高效液相色谱(UPLC)对4种颜色芹菜的叶片、叶柄和根中叶黄素和β-胡萝卜素的含量进行测定。采用农杆菌介导的瞬时表达转化法,研究AgCCD4蛋白在烟草表皮细胞中的亚细胞定位。【结果】 序列分析结果表明AgCCD4包含1个长度为1 779 bp的开放阅读框(ORF),编码592个氨基酸。‘赛雪’中AgCCD4的核苷酸序列与其他品种相比存在18个碱基和9个氨基酸位点的差异,蛋白质相对分子质量分别为65.07 kD和65.12 kD,等电点分别为6.03和5.95。进化树分析表明,芹菜AgCCD4与菊科的向日葵和莴苣CCD4进化关系较近。AgCCD4蛋白的二级结构中包含多个α-螺旋和无规则卷曲,三级结构主要以β-折叠为主。亚细胞定位分析表明AgCCD4是一个定位在叶绿体上的蛋白。对4种颜色芹菜叶片、叶柄和根中叶黄素和β-胡萝卜素的含量进行测定,结果显示芹菜根中均未检测到叶黄素和β-胡萝卜素,叶片中叶黄素和β-胡萝卜素含量均以‘津南实芹’最高,分别为1 102.58 μg∙g-1 DW和241.92 μg∙g-1 DW,‘紫杆一号’最低,分别为57.12 μg∙g-1 DW和45.65 μg∙g-1 DW。在叶柄中,仅在‘黄太极’中检测到β-胡萝卜素,叶黄素也只在‘津南实芹’和‘黄太极’中被检测到。荧光定量PCR结果显示,AgCCD4在芹菜叶片中表达量最高,在根中最低。‘紫杆一号’和‘赛雪’叶片中AgCCD4的相对表达量相似,都显著高于‘津南实芹’和‘黄太极’。【结论】 本研究从4种颜色芹菜中分别克隆得到AgCCD4,其中‘赛雪’的基因序列和其他品种存在差异,其蛋白均含有RPE65保守结构域。AgCCD4表达量在芹菜不同组织中具有显著差异。芹菜中AgCCD4表达量与类胡萝卜素含量呈负相关。植物体中类胡萝卜素的含量和种类影响植株的颜色变化,AgCCD4可能通过降解类胡萝卜素来调控芹菜组织着色。
王昊,尹莲,刘洁霞,贾丽丽,丁旭,沈迪,冯凯,徐志胜,熊爱生. 类胡萝卜素裂解双加氧酶基因AgCCD4调控芹菜不同组织的着色[J]. 中国农业科学, 2021, 54(15): 3279-3294.
WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors[J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
表1
AgCCD4启动子区顺式作用元件特性"
顺式元件 cis-element | 序列 Sequence | 元件数量 Number of cis-element | 功能 Function |
---|---|---|---|
ACE | CTAACGTATT | 1 | 光调控元件 Cis-acting element involved in light responsiveness |
ARE | AAACCA | 1 | 厌氧诱导必需顺式作用元件 Cis-acting regulatory element essential for the anaerobic induction |
Box 4 | ATTAAT | 2 | 光应答部分保守DNA模块 Part of a conserved DNA module involved in light responsiveness |
CAAT-box | CAAT/CCAAT/CAAAT | 42 | 启动子和增强子区域的共同顺式作用元件 Common cis-acting element in promoter and enhancer regions |
ERE | ATTTTAAA | 6 | 乙烯应答元件 Ethylene responsive element |
F-box | CTATTCTCATT | 1 | 赤霉素响应元件 Gibberellin response element |
GT1-motif | GGTTAA | 1 | 光响应要素 Light responsive element |
RY-element | CATGCATG | 1 | 顺式作用的调控要素涉及种子特异性调控 Cis-acting regulatory element involved in seed-specific regulation |
STRE | AGGGG | 3 | 渗透压胁迫应答元件 Osmotic stress response element |
TC-rich repeats | GTTTTCTTAC | 1 | 顺式作用元素参与防御和应激反应 Cis-acting element involved in defense and stress responsiveness |
TCT-motif | TCTTAC | 3 | 光响应元件的一部分Part of a light responsive element |
WUN-motif | AAATTACT | 1 | 创伤诱导响应元件 Trauma induced response element |
表2
芹菜与其他植物CCD4蛋白氨基酸组成成分及理化性质分析"
植物 Plant | 氨基酸数Number of amino acid | 理论分子质量 Relative molecular mass (kD) | 等电点 pI | 氨基酸比例 Ratio of amino acid (%) | 总平均疏水性Grand average of hydrophobicity | |||
---|---|---|---|---|---|---|---|---|
脂肪族Aliphatic | 芳香族Aromatic | 酸性Positive | 碱性Negative | |||||
芹菜 Apium graveolens | ||||||||
赛雪 Saixue | 592 | 65.07 | 6.03 | 19 | 10 | 12 | 11 | -0.269 |
津南实芹 Jinnan Shiqin | 592 | 65.12 | 5.95 | 19 | 10 | 12 | 11 | -0.297 |
胡萝卜 Daucus carota | 588 | 64.68 | 6.21 | 19 | 10 | 12 | 11 | -0.284 |
哥伦比亚锦葵 Herrania umbratica | 606 | 66.72 | 6.55 | 21 | 9 | 12 | 11 | -0.224 |
矮牵牛 Petunia hybrida | 603 | 66.01 | 6.25 | 20 | 10 | 12 | 11 | -0.223 |
烟草 Nicotiana tabacum | 601 | 65.99 | 7.16 | 20 | 10 | 13 | 11 | -0.218 |
枸杞 Lycium chinense | 599 | 65.71 | 6.34 | 20 | 9 | 13 | 11 | -0.252 |
欧洲甜樱桃 Prunus avium | 597 | 65.70 | 6.21 | 20 | 10 | 12 | 11 | -0.238 |
银白杨 Populus alba | 611 | 66.64 | 6.26 | 21 | 9 | 12 | 11 | -0.189 |
黄连木 Pistacia vera | 616 | 67.69 | 6.44 | 21 | 9 | 12 | 10 | -0.176 |
甘薯 Ipomoea batatas | 594 | 67.66 | 5.76 | 21 | 9 | 12 | 11 | -0.171 |
中华辣椒 Capsicum chinense | 603 | 66.04 | 6.34 | 21 | 9 | 12 | 11 | -0.248 |
杨梅 Morella rubra | 623 | 68.40 | 6.72 | 20 | 9 | 13 | 11 | -0.259 |
向日葵 Helianthus annuus | 592 | 64.80 | 5.70 | 20 | 10 | 12 | 12 | -0.155 |
莴苣 Lactuca sativa | 592 | 65.36 | 6.05 | 19 | 10 | 13 | 11 | -0.263 |
山杜鹃 Rhododendron kaempferi | 600 | 65.65 | 6.17 | 20 | 10 | 12 | 11 | -0.187 |
克莱门柚 Citrus clementina | 603 | 66.45 | 6.87 | 21 | 9 | 13 | 11 | -0.236 |
芜菁 Brassica rapa | 595 | 65.60 | 6.19 | 21 | 9 | 13 | 12 | -0.230 |
盐芥 Eutrema salsugineum | 602 | 66.41 | 7.02 | 21 | 8 | 14 | 11 | -0.255 |
蓖麻 Ricinus communis | 618 | 68.07 | 6.85 | 21 | 9 | 12 | 11 | -0.133 |
[1] | 应初衍. 植物着色色素的代谢. 植物生理学通讯, 1985(6):1-7, 31. |
YING C Y. Metabolism of pigmented pigments in plants. Plant Physiology Communications, 1985(6):1-7, 31. (in Chinese) | |
[2] | 由淑贞, 杨洪强. 类胡萝卜素裂解双加氧酶及其生理功能. 西北植物学报, 2008, 28(3):630-637. |
YOU S Z, YANG H Q. Carotenoid cleavage dioxygenases and their physiological function. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(3):630-637. (in Chinese) | |
[3] |
TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x |
[4] | 刘玉成, 张超, 董彬, 赵宏波. 高等植物CCD亚家族基因研究进展. 农业生物技术学报, 2019, 27(4):720-734. |
LIU Y C, ZHANG C, DONG B, ZHAO H B. Advances of CCD subfamily in higher plants. Journal of Agricultural Biotechnology, 2019, 27(4):720-734. (in Chinese) | |
[5] | 韦艳萍, 庞欣, 刘云飞, 李志邈, 叶青静, 王荣青, 阮美颖, 姚祝平, 周国治, 杨悦俭, 万红建. 植物类胡萝卜素裂解氧化酶研究进展. 核农学报, 2014, 28(11):2071-2078. |
WEI Y P, PANG X, LIU Y F, LI Z M, YE Q J, WANG R Q, RUAN M Y, YAO Z P, ZHOU G Z, YANG Y J, WAN H J. Research progress of carotenoid cleavage oxygenases in plants. Journal of Nuclear Agricultural Sciences, 2014, 28(11):2071-2078. (in Chinese) | |
[6] |
SCHMIDT H, KURTZER R, EISENREICH W, SCHWAB W. The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. The Journal of Biological Chemistry, 2006, 281(15):9845-9851.
doi: 10.1074/jbc.M511668200 |
[7] |
VOGEL J T, TAN B C, MCCARTY D R, KLEE H J. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. The Journal of Biological Chemistry, 2008, 283(17):11364-11373.
doi: 10.1074/jbc.M710106200 |
[8] |
OHMIYA A. Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnology, 2009, 26(4):351-358.
doi: 10.5511/plantbiotechnology.26.351 |
[9] |
AHRAZEM O, TRAPERO A, GÓMEZ M D, RUBIO-MORAGA A, GÓMEZ-GÓMEZ L. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: A deeper study in Crocus sativus and its allies. Genomics, 2010, 96(4):239-250.
doi: 10.1016/j.ygeno.2010.07.003 |
[10] | FLOSS D S, WALTER M H. Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signaling & Behavior, 2009, 4(3):172-175. |
[11] |
UMEHARA M, HANADA A, YOSHIDA S, AKIYAMA K, ARITE T, KAMIYA N T, MAGOME H, KAMIYA Y, SHIRASU K, YONEYAMA K, KYOZUKA J, YAMAGUCHI S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210):195-200.
doi: 10.1038/nature07272 |
[12] |
RUBIO A, RAMBLA J L, SANTAELLA M, GÓMEZ M D, ORZAEZ D, GRANELL A, GÓMEZ-GÓMEZ L. Cytosolic and plastoglobule- targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. The Journal of Biological Chemistry, 2008, 283(36):24816-24825.
doi: 10.1074/jbc.M804000200 |
[13] | ROTTET S, DEVILLERS J, GLAUSER G, DOUET V, BESAGNI C, KESSLER F. Identification of plastoglobules as a site of carotenoid cleavage. Frontiers in Plant Science, 2016, 7:1855. |
[14] |
OHMIYA A, KISHIMOTO S, AIDA R, YOSHIOKA S, SUMITOMO K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology, 2006, 142(3):1193-1201.
doi: 10.1104/pp.106.087130 |
[15] |
CAMPBELL R, DUCREUX L J M, MORRIS W L, MORRIS J A, SUTTLE J C, RAMSAY G, BRYAN G J, HEDLEY P E, TAYLOR M A. The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato. Plant Physiology, 2010, 154(2):656-664.
doi: 10.1104/pp.110.158733 |
[16] |
BABA S A, JAIN D, ABBAS N, ASHRAF N. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. Journal of Plant Physiology, 2015, 189:114-125.
doi: 10.1016/j.jplph.2015.11.001 |
[17] |
LI M Y, HOU X L, WANG F, TAN G F, XU Z S, XIONG A S. Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology, 2018, 38(2):172-183.
doi: 10.1080/07388551.2017.1312275 |
[18] | 沈迪, 陈龙正, 陶建平, 刘洁霞, 冯凯, 尹莲, 徐志胜, 熊爱生. 芹菜bZIP转录因子基因AgbZIP16的逆境响应分析. 植物生理学报, 2019, 55(12):1817-1826. |
SHEN D, CHEN L Z, TAO J P, LIU J X, FENG K, YIN L, XU Z S, XIONG A S. Stress response analysis of AgbZIP16, a bZIP transcription factor gene, in Apium graveolens. Plant Physiology Journal, 2019, 55(12):1817-1826. (in Chinese) | |
[19] | 尹莲, 刘洁霞, 陈龙正, 沈迪, 段奥奇, 冯凯, 徐志胜, 熊爱生. 芹菜AgHAT4的克隆与表达模式分析. 园艺学报, 2020, 47(1):143-152. |
YIN L, LIU J X, CHEN L Z, SHEN D, DUAN A Q, FENG K, XU Z S, XIONG A S. Cloning and expression profiles analysis of AgHAT4 gene in Apium graveolens. Acta Horticulturae Sinica, 2020, 47(1):143-152. (in Chinese) | |
[20] | LI M Y, FENG K, HOU X L, JIANG Q, XIONG A S. The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Horticulture Research, 2020, 7(1):223-253. |
[21] | FENG K, HOU X L, LI M Y, JIANG Q, XU Z S, LIU J X, XIONG A S. CeleryDB: A genomic database for celery. Database (Oxford), 2018: bay070. |
[22] |
FENG K, LIU J X, XING G M, SUN S, LI S, DUAN A Q, WANG F, LI M Y, XU Z S, XIONG A S. Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ, 2019, 7:e7925.
doi: 10.7717/peerj.7925 |
[23] |
PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29(9):e45.
doi: 10.1093/nar/29.9.e45 |
[24] | 李静文, 马静, 却枫, 王枫, 徐志胜, 熊爱生. 芹菜中类胡萝卜素合成相关番茄红素ε-环化酶基因AgLCYE的克隆与表达分析. 园艺学报, 2018, 45(2):341-350. |
LI J W, MA J, QUE F, WANG F, XU Z S, XIONG A S. Cloning and expression profiles analysis of carotenoid biosynthesis related gene AgLCYE from celery. Acta Horticulturae Sinica, 2018, 45(2):341-350.(in Chinese) | |
[25] |
MA J, XU Z S, TAN G F, WANG F, XIONG A S. Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars. Acta Biochimica et Biophysica Sinica, 2017, 49(9):817-826.
doi: 10.1093/abbs/gmx081 |
[26] |
LI T, WANG Y H, HUANG Y, LIU J X, XING G M, SUN S, LI S, XU Z S, XIONG A S. A novel plant protein-disulfide isomerase participates in resistance response against the TYLCV in tomato. Planta, 2020, 252(2):25.
doi: 10.1007/s00425-020-03430-1 |
[27] | 刘晓丛, 曾丽, 张邀月, 彭勇政, 陶懿伟, 王梦茹. 万寿菊类胡萝卜素裂解双加氧酶基因CCD4b的克隆与表达分析. 上海交通大学学报(农业科学版), 2018, 36(2):1-8, 21. |
LIU X C, ZENG L, ZHANG Y Y, PENG Y Z, TAO Y W, WANG M R. Cloning and expression analysis of carotenoid cleavage dioxygenase gene CCD4b in Tagetes erecta L. Journal of Shanghai Jiao Tong University (Agricultural Science), 2018, 36(2):1-8, 21. (in Chinese) | |
[28] | 王赞, 岳川, 曹红利, 郭雅玲. 茶树CsCCD1和CsCCD4基因的克隆和表达分析. 西北植物学报, 2018, 38(9):1605-1612. |
WANG Z, YUE C, CAO H L, GUO Y L. Cloning and expression analysis of CsCCD1 and CsCCD4 gene in tea plant (Camellia sinensis). Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(9):1605-1612. (in Chinese) | |
[29] | 岳远征, 王晰, 丁文杰, 李娅, 刘家伟, 王良桂. 长筒石蒜类胡萝卜素裂解双加氧酶基因LlCCD4的克隆与表达. 分子植物育种, 2019, 17(3):796-802. |
YUE Y Z, WANG X, DING W J, LI Y, LIU J W, WANG L G. Cloning and expression of carotenoid cleavage dioxygenase 4 gene (LlCCD4) in Lycoris radiata. Molecular Plant Breeding, 2019, 17(3):796-802. (in Chinese) | |
[30] | 陶静静. 蜡梅八氢番茄红素脱氢酶基因CpPds的克隆与表达分析[D]. 重庆: 西南大学, 2013. |
TAO J J. Cloning and expression analysis of CpPds from Chimonanthus praecox Link[D]. Chongqing: Southwest University, 2013. (in Chinese) | |
[31] | 张朋. 小麦TaD27和TaCCD8基因克隆与表达分析[D]. 杨凌: 西北农林科技大学, 2016. |
ZHANG P. Cloning and expression of TaD27 and TaCCD8 in wheat[D]. Yangling: Northwest A&F University, 2016. (in Chinese) | |
[32] | 王晓云, 陈蓉, 张恩慧. 栀子类胡萝卜素剪切双加氧酶基因GjCCD4的克隆与原核表达. 生物技术, 2016, 26(1):34-41. |
WANG X Y, CHEN R, ZHANG E H. Cloning and prokaryotic expression of carotenoid cleavage dioxygenase gene 4 from Gardenia jasminoid. Biotechnology, 2016, 26(1):34-41. (in Chinese) | |
[33] | ROTTET S, DEVILLERS J, GLAUSER G, DOUET V, BESAGNI C, KESSLER F. Identification of plastoglobules as a site of carotenoid cleavage. Frontiers in Plant Science, 2016, 7:1855. |
[34] |
ZHOU Q Q, LI Q C, LI P, ZHANG S T, LIU C, JIN J J, CAO P J, YANG Y X. Carotenoid cleavage dioxygenases: identification, expression, and evolutionary analysis of this gene family in tobacco. International Journal of Molecular Sciences, 2019, 20(22):5796.
doi: 10.3390/ijms20225796 |
[35] |
TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x |
[36] | TADMOR Y, KING S, LEVI A, DAVIS A, MEIR A, WASSEMAN B, HIRSCHBERG J, LEWINSOHN E. Comparative fruit colouration in watermelon and tomato. Food Research Internationa, 2005, 38(8):837-841. |
[37] | WANG S B, TIAN S L, SHAH S N M, PAN B G, DIAO W P, GONG Z H. Cloning and characterization of the CarbcL gene related to chlorophyll in pepper (Capsicum annuum L.) under fruit shade stress. Frontiers in Plant Science, 2015, 6:850. |
[38] |
QI Y Y, LOU Q A, QUAN Y H, LIU Y L, WANG Y J. Flower-specific expression of the Phalaenopsis flavonoid 3', 5'-hydoxylase modifies flower color pigmentation in Petunia and Lilium. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115(2):263-273.
doi: 10.1007/s11240-013-0359-2 |
[39] |
GAO J M, SUN X M, ZONG Y A, YANG S P, WANG L H, LIU B L. Functional MYB transcription factor gene HtMYB2 is associated with anthocyanin biosynthesis in Helianthus tuberosus L. BMC Plant Biology, 2020, 20(1):247.
doi: 10.1186/s12870-020-02463-8 |
[40] |
WEN L, WANG Y Q, DENG Q X, HONG M, SHI S, HE S S, HUANG Y, ZHANG H, PAN C P, YANG Z W, CHI Z H, YANG Y M. Identifying a carotenoid cleavage dioxygenase (CCD4) gene controlling yellow/white fruit flesh color of “piqiutao” (white fruit flesh) and its mutant (yellow fruit flesh). Plant Molecular Biology Reporter, 2020, 38(4):513-520.
doi: 10.1007/s11105-020-01213-2 |
[41] |
URESHINO K, NAKAYAMA M, MIYAJIMA I. Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in Azalea petals. Euphytica, 2016, 207(2):401-417.
doi: 10.1007/s10681-015-1557-2 |
[42] |
TAN G F, MA J, ZHANG X Y, XU Z S, XIONG A S. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery. Plant Science, 2017, 263:31-38.
doi: 10.1016/j.plantsci.2017.07.001 |
[43] |
FENG K, XU Z S, LIU J X, LI J W, WANG F, XIONG A S. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). Planta, 2018, 247(6):1363-1375.
doi: 10.1007/s00425-018-2870-5 |
[44] | 谭国飞, 王枫, 马静, 张馨月, 熊爱生. 紫色与非紫色芹菜花青素和芹菜素含量及合成基因表达分析. 园艺学报, 2017, 44(7):1327-1334. |
TAN G F, WANG F, MA J, ZHANG X Y, XIONG A S. Analysis of anthocyanin and apigenin contents and the expression profiles of biosynthesis-related genes in the purple and non-purple varieties of celery. Acta Horticulturae Sinica, 2017, 44(7):1327-1334.(in Chinese) | |
[45] |
RUBIO A, RAMBLA J L, SANTAELLA M, GÓMEZ M D, ORZAEZ D, GRANELL A, GÓMEZ-GÓMEZ L. Cytosolic and plastoglobule- targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. The Journal of Biological Chemistry, 2008, 283(36):24816-24825.
doi: 10.1074/jbc.M804000200 |
[46] |
ZHENG X J, XIE Z Z, ZHU K J, XU Q A, DENG X X, PAN Z Y. Isolation and characterization of carotenoid cleavage dioxygenase 4 genes from different Citrus species. Molecular Genetics and Genomics, 2015, 290(4):1589-1603.
doi: 10.1007/s00438-015-1016-8 |
[47] |
ZHANG B, LIU C, WANG Y Q, YAO X A, WANG F, WU J S, KING G J, LIU K D. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. The New Phytologist, 2015, 206(4):1513-1526.
doi: 10.1111/nph.2015.206.issue-4 |
[48] |
BRANDI F, BAR E, MOURGUES F, HORVÁTH G, TURCSI E, GIULIANO G, LIVERANI A, TARTARINI S, LEWINSOHN E, ROSATI C. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 2011, 11:24.
doi: 10.1186/1471-2229-11-24 |
[49] | 曾祥玲. 桂花TPS和CCD功能分析及其对花瓣色香形成的影响研究[D]. 武汉: 华中农业大学, 2016. |
ZENG X L. Research of TPS and CCD function analysis and their influence on petal color and scent in Osmanthus fragrans Lour[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese) | |
[50] | 刘晓丛, 曾丽, 刘国锋, 彭勇政, 陶懿伟, 张邀月, 王梦茹. 万寿菊类胡萝卜素裂解双加氧酶基因CCD1克隆与表达分析. 中国农业科学, 2017, 50(10):1930-1940. |
LIU X C, ZENG L, LIU G F, PENG Y Z, TAO Y W, ZHANG Y Y, WANG M R. Cloning and expression analysis of carotenoid cleavage dioxygenase 1 (CCD1) gene in Tagetes erecta L. Scientia Agricultura Sinica, 2017, 50(10):1930-1940. (in Chinese) | |
[51] | 田芳, 姚兆群, 陈美秀, 徐瑛, 赵思峰. 番茄独脚金内酯合成关键基因CCD7、CCD8 RNA沉默载体的构建. 湖北农业科学, 2016, 55(21):5668-5671. |
TIAN F, YAO Z Q, CHEN M X, XU Y, ZHAO S F. Construction of strigolactones key genes CCD7, CCD8 of tomato RNA silencing expression vector. Hubei Agricultural Sciences, 2016, 55(21):5668-5671. (in Chinese) | |
[52] |
GAO J P, ZHANG T, XU B X, JIA L, XIAO B G, LIU H, LIU L J, YAN H, XIA Q Y. CRISPR/Cas9-Mediated mutagenesis of carotenoid cleavage dioxygenase 8 (CCD8) in tobacco affects shoot and root architecture. International Journal of Molecular Sciences, 2018, 19(4):1062.
doi: 10.3390/ijms19041062 |
[1] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[2] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[3] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[4] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[5] | 郝艳,李晓颍,叶茂,刘亚婷,王天宇,王海静,张立彬,肖啸,武军凯. ‘21世纪’桃与‘久脆’桃及其杂交后代果实挥发性成分特征分析[J]. 中国农业科学, 2022, 55(22): 4487-4499. |
[6] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[7] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
[8] | 金梦娇,刘博,王抗抗,张广忠,钱万强,万方浩. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应[J]. 中国农业科学, 2022, 55(12): 2347-2359. |
[9] | 袁景丽,郑红丽,梁先利,梅俊,余东亮,孙玉强,柯丽萍. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1846-1855. |
[10] | 束婧婷,姬改革,单艳菊,章明,巨晓军,刘一帆,屠云洁,盛中伟,唐燕飞,蒋华莲,邹剑敏. IGF1-PI3K-Akt信号通路相关基因在黄羽肉鸡肌肉和肝脏中的表达[J]. 中国农业科学, 2021, 54(9): 2027-2038. |
[11] | 赵珂,郑林,杜美霞,龙俊宏,何永睿,陈善春,邹修平. 柑橘SAR及其信号转导基因CsSABP2在黄龙病菌侵染中的响应特征[J]. 中国农业科学, 2021, 54(8): 1638-1652. |
[12] | 赵乐,杨海丽,李佳璐,杨永恒,张蓉,程文强,成磊,赵永聚. TETs与细胞程序性死亡相关基因在山羊妊娠早期输卵管及子宫角的表达[J]. 中国农业科学, 2021, 54(4): 845-854. |
[13] | 朱芳芳,董亚辉,任真真,王志勇,苏慧慧,库丽霞,陈彦惠. 过表达ZmIBH1-1提高玉米苗期抗旱性[J]. 中国农业科学, 2021, 54(21): 4500-4513. |
[14] | 岳盈肖,何近刚,赵江丽,闫子茹,程玉豆,武肖琦,王永霞,关军锋. 窖藏和冷藏条件下鸭梨挥发性物质及其相关基因表达分析[J]. 中国农业科学, 2021, 54(21): 4635-4649. |
[15] | 刘昌云,李欣羽,田绍锐,王靖,裴悦宏,马小舟,樊光进,汪代斌,孙现超. 番茄SlN-like的克隆、表达与抗病毒功能[J]. 中国农业科学, 2021, 54(20): 4348-4357. |
|