中国农业科学 ›› 2021, Vol. 54 ›› Issue (12): 2523-2537.doi: 10.3864/j.issn.0578-1752.2021.12.004
张志兴1,2(),敏秀梅1,宋果1,陈花1,许海龙1,林文雄1,2(
)
收稿日期:
2020-08-11
接受日期:
2021-01-05
出版日期:
2021-06-16
发布日期:
2021-06-24
通讯作者:
林文雄
作者简介:
张志兴,E-mail:基金资助:
ZHANG ZhiXing1,2(),MIN XiuMei1,SONG Guo1,CHEN Hua1,XU HaiLong1,LIN WenXiong1,2(
)
Received:
2020-08-11
Accepted:
2021-01-05
Online:
2021-06-16
Published:
2021-06-24
Contact:
WenXiong LIN
摘要:
【目的】籽粒灌浆对水稻产量及品质的形成至关重要。14-3-3蛋白是一种信号转导调节因子,在植物生长发育中发挥着重要调控作用。本研究通过分析14-3-3蛋白家族在籽粒灌浆过程中的基因表达模式及其互作靶蛋白,从而揭示其在籽粒灌浆过程中的功能。【方法】利用实时荧光定量PCR(qRT-PCR)技术分析水稻14-3-3基因家族在籽粒灌浆过程中的表达变化模式,并从中选取GF14b及GF14e进行后续的蛋白功能分析。利用KEGG数据库对GF14b及GF14e蛋白功能motif位点进行分析;构建GST-GF14b及GST-GF14e表达载体,利用亲和层析技术分别钓取籽粒中与GF14b及GF14e互作的靶蛋白,并借助LC-MS/MS对靶蛋白进行鉴定。采用GST pull-down方法验证靶蛋白与GF14b及GF14e间的蛋白互作关系。利用Kinasephos在线程序对靶蛋白的Ser和Thr磷酸化位点进行预测;采用MapMan 3.6.0软件对靶蛋白的功能及参与的代谢过程进行分析。在籽粒灌浆期(花后15 d),分别喷施25×10-6mol·L-1 ABA,10×10-6mol·L-1 IAA,100×10-6mol·L-1 GA,50×10-6mol·L-1 ZR和 2×10-4mol·L-1 BR,研究外源激素处理对籽粒灌浆过程中GF14b,GF14e及其互作靶基因表达的影响。【结果】14-3-3家族基因中,除GF14h外,其余7个家族成员在水稻籽粒中均有表达,其中GF14b及GF14e在籽粒灌浆过程中的表达水平较高且变化幅度较大。通过蛋白序列分析发现,GF14b与GF14e间具有3个相同,2个差异的motif功能位点。通过亲和层析试验,在籽粒中共鉴定到59个与GF14b和72个与GF14e互作的靶蛋白,其中有43个靶蛋白与2个成员均有互作,分别有16个和29个靶蛋白与GF14b和GF14e特异结合。随机选取2个靶蛋白进行体外蛋白互作验证,结果表明靶蛋白SUS3与GF14b和GF14e均存在互作关系,而靶蛋白PSA仅与GF14e有相互作用关系,验证了亲和层析结果的准确性。蛋白功能的分析表明,GF14b和GF14e通过与靶蛋白的结合,共同参与了籽粒灌浆过程中蔗糖转化、淀粉合成、糖酵解、TCA循环等碳代谢途径。同时,GF14b及GF14e还具有特异的调控功能,其中GF14b与核酸代谢及物质转运密切相关,而GF14e与C1代谢中的关键蛋白存在互作。此外,大部分靶蛋白均鉴定到具有潜在的Ser和Thr磷酸化位点。外源激素处理下,籽粒中GF14b和GF14e上调表达,而与淀粉合成代谢相关的靶基因(SUS2、 AGPS、AGPL、PPDK2、SBE)大部分呈下调表达的趋势。【结论】14-3-3基因家族成员GF14b和GF14e在水稻籽粒灌浆过程中的表达变化幅度较大,且会响应激素浓度的改变,并通过蛋白互作的形式负调控淀粉合成代谢相关基因的表达,从而对水稻籽粒淀粉的合成起到重要的调控作用。
张志兴,敏秀梅,宋果,陈花,许海龙,林文雄. 14-3-3蛋程中的互作靶蛋白鉴定及其对外源激素的响应[J]. 中国农业科学, 2021, 54(12): 2523-2537.
ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage[J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
表1
试验中用到的qRT-PCR和PCR的引物"
基因 Gene | Accession No. | 正向引物序列 Forward primer sequence (5′-3′) | 反向引物序列 Reverse primer sequence (5′-3′) |
---|---|---|---|
Primer for qRT-PCR | |||
GF14a | LOC_Os08g37490 | AGCCATGAAGGAGCTGTCGC | GCTCATCCTCAGGCTTGGTT |
GF14b | LOC_Os04g38870 | GCTTGAATCCCACCTTGTC | AATGTCCTGAGCAGCCTTG |
GF14c | LOC_Os08g33370 | CGTTTGACGAAGCCATCTCC | CTAGTAGAACAGGAGAAGAATC |
GF14d | LOC_Os11g34450 | TGCTCTCGCAGATTTGGCTC | ATCCCCAGGCTCTTTTGGAG |
GF14e | LOC_Os02g36974 | GATATTGCCCTGGCAGAGTTG | GAGATATCGGAAGTCCACAGC |
GF14f | LOC_Os03g50290 | AGCAGCTGAGAACACTCTTG | CAGCAATAGCATCGTCGAAC |
GF14g | LOC_Os01g11110 | AGCGACGACCTCGTCTACAT | TGACTCTCCTTGCCCTTTGT |
GF14h | LOC_Os11g39540 | TTATGGCCTATCAGGCTTGG | TTCTCCTTCAGGAGCTGCAT |
AGPS | LOC_Os08g25734 | TTACTGGGAAGACATTGGTACC | CTCCCATGAGTAATGAGTCCTC |
AGPL | LOC_Os01g44220 | GGAAAGATTGAATATTGGGGGC | TCAGAGGAAAGAGTTGAACTCC |
SBE | LOC_Os02g32660 | GATCAGTATGAAGGAGGACTGG | ACCTACTAATGCTGCAGAATGT |
SUS2 | LOC_Os06g09450 | GGAGAAAACCAAATACCCCAAC | CAGTGTGATTCATGGCGATAAG |
PPDK2 | LOC_Os03g31750 | CTAGCGGAATTCTTCTCGTTTG | CAAATGCCCACCTCTAAATCAG |
β-actin | LOC_4333919 | CTGCGGGTATCCATGAGACT | GCAATGCCAGGGAACATAGT |
Primer for PCR | |||
GF14b | LOC_Os04g38870 | TTTTTTGGATTCATGTCGGCACAGGCGGAGCTTTCC | TATATATACTCGAGCTGCCCCTCGCTGGAGTCGCGCTT |
GF14e | LOC_Os02g36974 | TTTCGAATTCATGTCGCAGCCTGCTGAGCTTTCCC | TTTCTCGAGCTGTCCATCTCCTGATTCGCCCTTGT |
SUS3 | LOC_Os07g42490 | TCCGAATTCATGGGGGAAACTACTGGAGAACGTGC | TTTTCTCGAGTTTGGTGGAGGCCTCTCCCTCAATG |
PSA | LOC_Os02g12650 | GGGGGGGAATTCATGCATGGCTTCTACAGAAGTGTG | GAGCTCGAGGTGGTCGTGAGAAATTTCCTTGAGGAC |
表3
水稻籽粒中与14-3-3家族成员GF14b和GF14e互作的靶蛋白"
登入号 Accession numbera | 蛋白名称 Protein name | 细胞定位 Localizationb | 预测的磷酸化位点 Predicted phosphorylated sitec | 互作结合 Interaction withd | ||
---|---|---|---|---|---|---|
Serine (S) | Threonine (T) | GF14b | GF14e | |||
01 Sugar conversion and starch synthesis | ||||||
LOC_Os01g44220 | ADP-glucose pyrophosphorylase large subunit (AGPL) | Chloroplast | 0 | 1 | id | id |
LOC_Os03g28330 | Sucrose synthase 1 (SUS1) | Cytoplasm | 5 | 4 | id | id |
LOC_Os06g09450 | Sucrose synthase 2 (SUS2) | Chloroplast | 3 | 4 | id | id |
LOC_Os07g42490 | Sucrose synthase 3 (SUS3) | Chloroplast | 5 | 5 | id | id |
LOC_Os05g33570 | Pyruvate, phosphate dikinase 1 (PPDK1) | Chloroplast | 5 | 4 | id | id |
LOC_Os03g31750 | Pyruvate, phosphate dikinase 2 (PPDK2) | Cytoplasm | 7 | 3 | id | id |
LOC_Os03g55090 | Alpha-1,4 glucan phosphorylase (GP) | Cytoplasm | 12 | 3 | id | id |
LOC_Os06g51084 | 1,4-alpha-glucan-branching enzyme (GBE) | Chloroplast | 12 | 3 | id | id |
LOC_Os02g32660 | Starch branching enzyme (SBE) | Chloroplast. | 9 | 2 | id | id |
LOC_Os08g25734 | Glucose-1-phosphate adenylyltransferase small subunit (AGPS) | Chloroplast | 7 | 1 | id | id |
02 Photosynthesis | ||||||
LOC_Os01g31690 | Oxygen-evolving enhancer protein 1 (OEE1) | Chloroplast | 3 | 0 | id | id |
LOC_Os07g04840 | PsbP (PSBP) | Chloroplast | 2 | 0 | id | |
LOC_Os12g19470 | Ribulose bisphosphate carboxylase small chain (RBCS) | Chloroplast | 4 | 1 | id | |
LOC_Os10g21268 | Ribulose bisphosphate carboxylase large chain (RBCL) | Cytoplasm | 1 | 1 | id | id |
LOC_Os12g10580 | Ribulose bisphosphate carboxylase large chain (RBCL) | Chloroplast | 4 | 2 | id | |
LOC_Os06g04270 | Putative transketolase (TK) | Chloroplast | 7 | 4 | id | |
03 Glycolysis | ||||||
LOC_Os01g67860 | Fructose-bisphosphate aldolase (FBA) | Cytoplasm | 4 | 1 | id | id |
LOC_Os08g02120 | Fructokinase-2 (FRK2) | Cytoplasm | 0 | 1 | id | id |
LOC_Os05g33380 | Fructose-bisphosphate aldolase cytoplasmic isozyme (FBA) | Cytoplasm | 3 | 2 | id | id |
LOC_Os03g03720 | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) | Mitochondrion | 0 | 0 | id | |
LOC_Os08g03290 | Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1) | Mitochondrion | 2 | 2 | id | id |
LOC_Os04g40950 | Glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2) | Mitochondrion | 0 | 2 | id | id |
LOC_Os02g38920 | Glyceraldehyde-3-phosphate dehydrogenase 3 (GAPDH3) | Cytoplasm | 0 | 2 | id | id |
LOC_Os03g50480 | Phosphoglucomutase (PGM) | Chloroplast | 8 | 3 | id | id |
LOC_Os06g45710 | Phosphoglycerate kinase (PGK) | Cytoplasm | 3 | 3 | id | id |
LOC_Os02g07260 | Phosphoglycerate kinase (PGK) | Mitochondrion | 3 | 4 | id | id |
LOC_Os05g41640 | Phosphoglycerate kinase (PGK) | Chloroplast | 3 | 1 | id | id |
LOC_Os09g38030 | UDP-glucose pyrophosphorylase (UGP) | Cytoplasm | 3 | 6 | id | id |
LOC_Os02g02560 | UTP--glucose-1-phosphate uridylyltransferase (UGPU) | Cytoplasm | 5 | 3 | id | |
04 Amino acid metabolism | ||||||
LOC_Os01g55540 | Aspartate aminotransferase (ASAT) | Mitochondrion | 2 | 2 | id | id |
LOC_Os02g14110 | Aspartate aminotransferase (ASAT) | Chloroplast | 1 | 1 | id | |
LOC_Os10g25130 | Alanine aminotransferase (ALAT) | Cytoplasm | 2 | 2 | id | id |
LOC_Os12g42876 | 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase 1 (MLG1) | Chloroplast | 6 | 1 | id | id |
登入号 Accession numbera | 蛋白名称 Protein name | 细胞定位 Localizationb | 预测的磷酸化位点 Predicted phosphorylated sitec | 互作结合 Interaction withd | ||
Serine (S) | Threonine (T) | GF14b | GF14e | |||
LOC_Os04g55720 | D-3-phosphoglycerate dehydrogenase (PGDH) | Chloroplast | 5 | 2 | id | |
LOC_Os08g09250 | Lactoylglutathione lyase (GLX-I) | Cytoplasm | 0 | 1 | id | |
05 nucleotide metabolism | ||||||
LOC_Os10g41410 | Nucleoside diphosphate kinase (NDK) | Chloroplast | id | |||
06 TCA | ||||||
LOC_Os10g33800 | Malate dehydrogenase (MDH) | Cytoplasm | 3 | 1 | id | id |
LOC_Os08g09200 | Aconitate hydratase protein (AHP) | Chloroplast | 5 | 0 | id | |
07 Fermentation | ||||||
LOC_Os08g43190 | Sorbitol dehydrogenase (SDH) | Cytoplasm | 4 | 1 | id | id |
08 Protein synthesis | ||||||
LOC_Os02g32030 | Elongation factor (EF) | Nucleus | 10 | 2 | id | id |
LOC_Os01g53900 | Elongation factor (EF) | Cytoplasm | 4 | 5 | id | |
LOC_Os04g02820 | Elongation factor (EF) | Nucleus | 10 | 2 | id | |
LOC_Os03g08010 | Elongation factor 1-alpha (EFA1) | Cytoplasm | 2 | 2 | id | id |
LOC_Os06g37440 | Elongation factor 1-gamma 3 (EFG3) | Chloroplast | id | |||
LOC_Os11g21990 | Expressed protein (EP) | Nucleus | 2 | 3 | id | |
LOC_Os06g48750 | DEAD-box ATP-dependent RNA helicase (DEAD) | Nucleus | id | |||
LOC_Os01g13430 | Importin-alpha re-exporter (IAE) | Cytoplasm | 30 | 8 | id | |
LOC_Os09g07510 | HEAT repeat family protein (HR) | Cytoplasm | 9 | 2 | id | |
LOC_Os08g39140 | Heat shock protein 81-1 (HSP81-1) | Cytoplasm | 5 | 3 | id | id |
LOC_Os09g30412 | Heat shock protein 81-2 (HSP81-2) | Cytoplasm | 2 | 2 | id | id |
LOC_Os08g06100 | O-methyltransferase 1 (ROMT-9) | Cytoplasm | 0 | 2 | id | id |
LOC_Os07g42950 | 40S ribosomal protein S6 (RPS6) | Cytoplasm | 6 | 5 | id | |
LOC_Os02g01280 | T-complex protein (TCP) | Chloroplast | 6 | 4 | id | |
LOC_Os06g02380 | T-complex protein (TCP) | Chloroplast | 9 | 3 | id | |
LOC_Os03g64210 | T-complex protein (TCP) | Chloroplast | 0 | 0 | id | id |
09 Transporters | ||||||
LOC_Os02g10800 | Mitochondrial carrier protein (MCP) | Chloroplast | 2 | 2 | id | |
LOC_Os01g25065 | Putative ATPase beta subunit (ATPG) | Mitochondrion | 3 | 2 | id | |
LOC_Os11g47970 | AAA-type ATPase family protein (AAA) | Cytoplasm | 3 | 4 | id | |
10 Disease and defense | ||||||
LOC_Os11g47760 | DnaK family protein (DNAK) | Cytoplasm | 6 | 7 | id | id |
LOC_Os12g14070 | DnaK family protein (DNAK) | Chloroplast | 7 | 8 | id | id |
LOC_Os03g16860 | DnaK family protein (DNAK) | Cytoplasm | 6 | 5 | id | |
LOC_Os02g02410 | DnaK family protein (DNAK) | Mitochondrion | 12 | 8 | id | id |
LOC_Os08g09770 | DnaK family protein (DNAK) | Mitochondrion | 6 | 7 | id | |
LOC_Os11g09280 | Protein disulfide isomerase-like 1-1 (PDIL1-1) | Endoplasmic reticulum | 3 | 3 | id | |
登入号 Accession numbera | 蛋白名称 Protein name | 细胞定位 Localizationb | 预测的磷酸化位点 Predicted phosphorylated sitec | 互作结合 Interaction withd | ||
Serine (S) | Threonine (T) | GF14b | GF14e | |||
11 Signal transduction | ||||||
LOC_Os02g36974 | 14-3-3-like protein GF14-e (GF14e) | Cytoplasm | 5 | 2 | id | id |
LOC_Os03g50290 | 14-3-3-like protein GF14-f (GF14f) | Cytoplasm | 2 | 0 | id | id |
LOC_Os04g38870 | 14-3-3-like protein GF14-b (GF14b) | Cytoplasm | 6 | 2 | id | id |
LOC_Os08g33370 | 14-3-3-like protein GF14-c (GF14c) | Cytoplasm | 2 | 1 | id | id |
LOC_Os08g37490 | 14-3-3-like protein GF14-a (GF14a) | Cytoplasm | 2 | 0 | id | id |
LOC_Os11g34450 | 14-3-3-like protein GF14-d (GF14d) | Cytoplasm | 5 | 1 | id | |
12 Cell growth and division | ||||||
LOC_Os02g12650 | Puromycin-sensitive aminopeptidase (PSA) | Cytoplasm | 6 | 2 | id | |
LOC_Os08g30810 | Puromycin-sensitive aminopeptidase (PSA) | Cytoplasm | 5 | 4 | id | |
LOC_Os02g02890 | Peptidyl-prolyl cis-trans isomerase (CYP2) | Mitochondrion | 3 | 4 | id | |
LOC_Os01g59790 | ADP-ribosylation factor 1 (ARF1) | Mitochondrion | 0 | 0 | id | |
LOC_Os03g51600 | Tubulin alpha-1 chain (TUBA1) | Mitochondrion | 6 | 1 | id | |
LOC_Os05g34170 | Tubulin beta-6 chain (TUBB6) | Cytoplasm | 6 | 2 | id | id |
LOC_Os06g46000 | Tubulin beta-3 chain (TUBB3) | Cytoplasm | 5 | 3 | id | |
LOC_Os11g14220 | Tubulin alpha-2 chain (TUBA2) | Cytoplasm | 7 | 1 | id | |
LOC_Os12g44350 | Actin-1 (ACTIN1) | Cytoplasm | 2 | 3 | id | |
LOC_Os03g50885 | Actin-1 (ACTIN1) | Cytoplasm | 4 | 2 | id | |
LOC_Os11g06390 | Actin-7 (ACTIN7) | Cytoplasm | 7 | 2 | id | |
LOC_Os10g36650 | Actin-2 (ACTIN2) | Cytoplasm | 7 | 2 | id | |
LOC_Os01g73310 | Putative actin (ACTIN) | Cytoplasm | 5 | 2 | id | |
LOC_Os05g01600 | Actin-97(ACTIN97) | Cytoplasm | 5 | 2 | id | |
13 C1-metabolism | ||||||
LOC_Os09g27420 | Formate--tetrahydrofolate ligase (FTL) | Chloroplast | 10 | 5 | id | |
LOC_Os06g29180 | Formate dehydrogenase 1 (FDH1) | Mitochondrion | 0 | 3 | id | |
14 Unknown classification | ||||||
LOC_Os03g49190 | Oleosin 18 kDa (OLE18) | Cytoplasm | 1 | 0 | id | |
LOC_Os06g49650 | Harpin-induced protein 1 domain containing (HIP1) | Nucleus | 3 | 1 | id |
[1] | THOMAS D, GUTHRIDGE M, WOODCOCK J, LOPEZ A. 14-3-3 protein signaling in development and growth factor responses. Current Topics in Developmental Biology, 2005,67:285-303. |
[2] |
COBLITZ B, SHIKANO S, WU M, GABELLI S B, COCKRELL L M, SPIEKER M, HANYU Y, FU H, AMZEL L M, LI M. C-terminal recognition by 14-3-3 proteins for surface expression of membrane receptors. Journal of Biological Chemistry, 2005,280(43):36263-36272.
doi: 10.1074/jbc.M507559200 |
[3] | DENISON F C, PAUL A L, ZUPANSKA A K, FERL R J. 14-3-3 proteins in plant physiology. Seminars in Cell & Developmental Biology, 2011,22(7):720-727. |
[4] | WIILSON R S, SWATEK K N, THELEN J J. Regulation of the Regulators: Post-translational modifications, subcellular, and spatiotemporal distribution of plant 14-3-3 proteins. Frontiers in Plant Science, 2016,7:611. |
[5] |
HIMMELBACH A, YANG Y, GRILL E. Relay and control of abscisic acid signaling. Current Opinion in Plant Biology, 2003,6(5):470-479.
doi: 10.1016/S1369-5266(03)00090-6 |
[6] |
YIN Y H, VAFEADOS D, TAO Y, YOSHIDA S, ASAMI T, CHORY J. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005,120(2):249-259.
doi: 10.1016/j.cell.2004.11.044 |
[7] |
YAO Y, DU Y, JIANG L, LIU J Y. Interaction between ACC synthase 1 and 14-3-3 proteins in rice: a new insight. Biochemistry-Moscow, 2007,72(9):1003-1007.
doi: 10.1134/S000629790709012X |
[8] |
DIAZ C, KUSANO M, SULPICE R, ARAKI M, REDESTIG H, SAITO K, STITT M, SHIN R. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes. BMC Systems Biology, 2011,5(1):192.
doi: 10.1186/1752-0509-5-192 |
[9] |
SWATEK K N, GRAHAM K, AGRAWAL G K, THELEN J J. The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed. Journal of Proteome Research, 2011,10(9):4076-4087.
doi: 10.1021/pr200263m |
[10] |
DOU Y, LIU X, YIN Y, HAN S, LU Y, LIU Y, HAO D. Affinity chromatography revealed insights into unique functionality of two 14-3-3 protein species in developing maize kernels. Journal of Proteomics, 2015,114:274-286.
doi: 10.1016/j.jprot.2014.10.019 |
[11] | 宋健民, 戴双, 李豪圣, 刘爱峰, 程敦公, 楚秀生, TETLOW I J, Michael J E. 小麦胚乳 14-3-3 蛋白的表达及其淀粉体淀粉合成酶的互作. 作物学报, 2009,35(8):1445-1450. |
SONG J M, DAI S, LI H S, LIU A F, CHENG D G, CHU X S, TETLOW I J, Michael J E. Expression of a wheat endosperm 14-3-3 protein and its interactions with starch biosynthetic enzymes in amyloplasts. Acta Agronomica Sinica, 2009,35(8):1445-1450. (in Chinese) | |
[12] |
YANG J C, ZHANG J H. Grain-filling problem in 'super' rice. Journal of Experimental Botany, 2010,61(1):1-4.
doi: 10.1093/jxb/erp348 |
[13] | 康国章, 王永华, 郭天财, 朱云集, 官春云. 植物淀粉合成的调控酶. 遗传, 2006,28(1):110-116. |
KANG G Z, WANG Y H, GUO T C, ZHU Y J, GUAN C Y. Key enzymes in strach synthesis in plants. Hereditas(Beijing), 2006,28(1):110-116. (in Chinese) | |
[14] | 黄锦文, 梁康迳, 梁义元, 林文雄. 不同类型水稻籽粒灌浆过程内源激素含量变化的研究. 中国生态农业学报, 2003,11(2):11-13. |
HUANG J W, LIANG K J, LIANG Y Y, LIN W X. Changes of endogenous hormone contents during grain development in different types of rice. Chinese Journal of Eco-Agriculture, 2003,11(2):11-13. (in Chinese) | |
[15] |
ZHANG H, LI H W, YUAN L M, WANG Z Q, YANG J C, ZHANG J H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012,63(1):215-227.
doi: 10.1093/jxb/err263 |
[16] |
YANG J C, ZHANG J H, WANG Z Q, LIU K, WANG P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany, 2006,57(1):149-160.
doi: 10.1093/jxb/erj018 |
[17] | 杨建昌, 王志琴, 朱庆森, 苏宝林. ABA 与 GA 对水稻籽粒灌浆的调控. 作物学报, 1999,25(3):341-348. |
YANG J C, WANG Z Q, ZHU Q S, SU B L. Regulation of ABA and GA to the grain filling of rice. Acta Agronomica Sinica, 1999,25(3):341-348.(in Chinese) | |
[18] | ZHANG Z X, CHEN J, LIN S S, LI Z, CHENG R H, FANG C X, CHEN H F, LIN W X. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Science, 2012,185(1):259-273. |
[19] | ZHANG Z X, ZHAO H, HUANG F L, LONG J F, SONG G, LIN W X. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice (Oryza sativa L.). The Plant Journal, 2019,99:344-358. |
[20] | YOU C, ZHU H, XU B, HUANG W, WANG S, DING Y, LIU Z, LI G, CHEN L, DING C, TANG S. Effect of removing superior spikelets on grain filling of inferior spikelets in rice. Frontiers in Plant Science, 2016,7:1161. |
[21] |
CHEN F, LI Q, SUN L, HE Z. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Research, 2006,13:53-63.
doi: 10.1093/dnares/dsl001 |
[22] | YAO Y, DU Y, JIANG L, LIU J. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza Sativa. Journal of Biochemistry and Molecular Biology, 2007,40(3):349-357. |
[23] |
YASHVARDHINI N, BHATTACHARYA S, CHAUDHURI S, SENGUPTA D N. Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress. Planta, 2018,247:229-253.
doi: 10.1007/s00425-017-2779-4 |
[24] |
YANG J C, ZHANG J H, WANG Z Q, ZHU Q S. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation, 2003,41:185-195.
doi: 10.1023/B:GROW.0000007503.95391.38 |
[25] |
ZHANG H, TAN G L, YANG L N, YANG J C, ZHANG J H, ZHAO B H. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiology and Biochemistry, 2009,47(3):195-204.
doi: 10.1016/j.plaphy.2008.11.012 |
[26] | 李赞堂, 王士银, 姜雯宇, 张帅, 张少斌, 徐江. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制. 作物学报, 2018,44(4):581-590. |
LI Z T, WANG S Y, JIANG W Y, ZHANG S, ZHANG S B, XU J. Physiological mechanisms of promoting source, sink, and grain filling by 24-epibrassinolide (EBR) applied at panicle initiation stage of rice. Acta Agronomica Sinica, 2018,44(4):581-590. (in Chinese) | |
[27] |
ALEXANDER R D, MORRIS P C. A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics, 2006,6:1886-1896.
doi: 10.1002/(ISSN)1615-9861 |
[28] |
LIU J, SUN X, LIAO W, ZHANG J, LIANG J, XU W. Involvement of OsGF14b adaptation in the drought resistance of rice plants. Rice, 2019,12:82.
doi: 10.1186/s12284-019-0346-2 |
[29] |
PURWESTRI Y A, OGAKI Y, TAMAKI S, TSUJI H, SHIMAMOTO K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant and Cell Physiology, 2009,50(3):429-438.
doi: 10.1093/pcp/pcp012 |
[30] |
MANOSALVA P M, BRUCE M, LEACH J E. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. The Plant Journal, 2011,68(5):777-787.
doi: 10.1111/j.1365-313X.2011.04728.x |
[31] |
YAFFE M B, RITTINGER K, VOLINIA S, CARON P R, AITKEN A, LEFFERS H, GAMBLIN S J, SMERDON S J, CANTLEY L C. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell, 1997,91(7):961-971.
doi: 10.1016/S0092-8674(00)80487-0 |
[32] |
FU H, SUBRAMANIAN R R, MASTERS S C. 14-3-3 proteins: Structure, function, and regulation. Annual Review of Pharmacology and Toxicology, 2000,40(1):617-647.
doi: 10.1146/annurev.pharmtox.40.1.617 |
[33] |
DE BOER A H, VAN KLEEFF P J, GAO J. Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma, 2013,250(2):425-440.
doi: 10.1007/s00709-012-0437-z |
[34] | ZHU G H, YE N H, YANG J C, PENG X X, ZHANG J H. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. Journal of Experimental Botany , 2011,11(62):3907-3916. |
[35] |
SEHNKE P C, FERL R J. Plant metabolism: Enzyme regulation by 14-3-3 proteins. Current Biology, 1996,6(11), 1403-1405.
doi: 10.1016/S0960-9822(96)00742-7 |
[36] |
CHUANG H J, SEHNKE P C, FERL R J. The 14-3-3 proteins: Cellular regulators of plant metabolism. Trends in Plant Science, 1999,4(9):367-371.
doi: 10.1016/S1360-1385(99)01462-4 |
[37] | SEHNKE P C, CHUNG H J, WU K, FERL R J. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proceedings of the National Academy of Sciences of the United States, 2001,98(2):765-770. |
[38] |
BUSTOS D M, IGLESIAS A A. Phosphorylated non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from heterotrophic cells of wheat interacts with 14-3-3 proteins. Plant Physiology, 2003,133(4):2081-2088.
doi: 10.1104/pp.103.030981 |
[39] |
ISHIDA S, FUKAZAWA J, YUASA T, TAKAHASHI Y. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator repression of shoot growth by gibberellins. The Plant Cell, 2004,16(10):2641-2651.
doi: 10.1105/tpc.104.024604 |
[40] |
ISHIDA S, YUASA T, NAKATA M, TAKAHASHI Y. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor repression of shoot growth in response to gibberellins. The Plant Cell, 2008,20(12):3273-3288.
doi: 10.1105/tpc.107.057489 |
[41] | AITKEN A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Seminars in Cell & Developmental Biology, 2011,22(7):673-680. |
[42] | OBSIOVA V, SILHAN J, BOURA E, TEISINGER J, OBSIL T. 14-3-3 proteins: a family of versatile molecular regulators. Physiological Research, 2008,57(3):S11-S21 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 范延艮,王域,刘富浩,赵秀秀,向勤锃,张丽霞. 茶树CsHIPP26.1互作蛋白的筛选与验证[J]. 中国农业科学, 2022, 55(8): 1630-1641. |
[6] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[7] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[8] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[9] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[10] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[11] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[12] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[13] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[14] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[15] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
|