[1] |
TANKSLEY S D. Mapping polygenes. Annual Review of Genetics, 1993,27(1):205-233.
doi: 10.1146/annurev.ge.27.120193.001225
|
[2] |
YANO M. Genetic and molecular dissection of naturally occurring variation. Current Opinion in Plant Biology, 2001,4(2):130-135.
doi: 10.1016/S1369-5266(00)00148-5
|
[3] |
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007,39(5):623-630.
doi: 10.1038/ng2014
|
[4] |
SHOMURA A, IZAWA T, EBANA K, EBITANI T, KANEGAE H, KONISHI S, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008,40(8):1023-1028.
doi: 10.1038/ng.169
|
[5] |
WENG J F, GU S H, WAN X Y, GAO H, GUO T, SU N, LEI C L, ZHANG X, CHENG Z J, GUO X P, WANG J L, JIANG L, ZHAI H Q, WAN J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008,18(12):1199-1209.
doi: 10.1038/cr.2008.307
|
[6] |
LI Y B, FAN C C, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI X H, XIAO J H, HE Y Q, ZHANG Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011,43(12):1266-1269.
doi: 10.1038/ng.977
|
[7] |
XU C J, LIU Y, LI Y B, XU X D, XU C G, LI X H, XIAO J H, ZHANG Q F. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015,66(9):2611-2623.
doi: 10.1093/jxb/erv058
|
[8] |
WANG S K, WU K, YUAN Q B, LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012,44(8):950-954.
doi: 10.1038/ng.2327
|
[9] |
WANG S K, LI S, LIU Q, WU K, ZHANG J Q, WANG S S, WANG Y, CHEN X B, ZHANG Y, GAO C X, WANG F, HUANG H X, FU X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015,47(8):949-954.
doi: 10.1038/ng.3352
|
[10] |
TONG H N, CHU C C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends in Plant Science, 2018,23(11):1016-1028.
doi: 10.1016/j.tplants.2018.08.007
|
[11] |
PLANAS-RIVEROLA A, GUPTA A, BETEGÓN-PUTZE I, BOSCH N, IBAÑES M, CAÑO-DELGADO A I. Brassinosteroid signaling in plant development and adaptation to stress. Development,2019,146, dev151894.
|
[12] |
SAKAMOTO T, MORINAKA Y, OHNISHI T, SUNOHARA H, FUJIOKA S, UEGUCHI-TANAKA M, MIZUTANI M, SAKATA K, TAKATSUTO S, YOSHIDA S, TANAKA H, KITANO H, MATSUOKA M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 2006,24(1):105-109.
doi: 10.1038/nbt1173
|
[13] |
HONG Z, UEGUCHI-TANAKA M, UMEMURA K, UOZU S, FUJIOKA S, TAKATSUTO S, YOSHIDA S, ASHIKARI M, KITANO H, MATSUOKA M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell, 2003,15(12):2900-2910.
doi: 10.1105/tpc.014712
|
[14] |
TANABE S, ASHIKARI M, FUJIOKA S, TAKATSUTO S, YOSHIDA S, YANO M, YOSHIMURA A, KITANO H, MATSUOKA M, FUJISAWA Y, KATO H, IWASAKI Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant Cell, 2005,17(3):776-790.
doi: 10.1105/tpc.104.024950
|
[15] |
HONG Z, UEGUCHI-TANAKA M, SHIMIZU-SATO S, INUKAI Y, FUJIOKA S, SHIMADA Y, TAKATSUTO S, AGETSUMA M, YOSHIDA S, WATANABE Y, UOZU S, KITANO H, ASHIKARI M, MATSUOKA M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal, 2002,32(4):495-508.
doi: 10.1046/j.1365-313X.2002.01438.x
|
[16] |
LIU X, FENG Z M, ZHOU C L, REN Y K, MOU C L, WU T, YANG C Y, LIU S J, JIANG L, WAN J M. Brassinosteroid (BR) biosynthetic gene lhdd10 controls late heading and plant height in rice (Oryza sativa L.). Plant Cell Reports, 2016,35(2):357-368.
doi: 10.1007/s00299-015-1889-3
|
[17] |
YAMAMURO C, IHARA Y, WU X, NOGUCHI T, FUJIOKA S, TAKATSUTO S, ASHIKARI M, KITANO H, MATSUOKA M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 2000,12(9):1591-1605.
doi: 10.1105/tpc.12.9.1591
|
[18] |
MORINAKA Y, SAKAMOTO T, INUKAI Y, AGETSUMA M, KITANO H, ASHIKARI M, MATSUOKA M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology, 2006,141:924-931.
doi: 10.1104/pp.106.077081
|
[19] |
CHE R H, TONG H N, SHI B H, LIU Y Q, FANG S R, LIU D P, XIAO Y H, HU B, LIU L C, WANG H R, ZHAO M F, CHU C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2015,2(1):15195.
doi: 10.1038/nplants.2015.195
|
[20] |
TONG H N, LIU L C, JIN Y, DU L, YIN Y H, QIAN Q, ZHU L H, CHU C C. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell, 2012,24(6):2562-2577.
doi: 10.1105/tpc.112.097394
|
[21] |
SUN L J, LI X J, FU Y C, ZHU Z F, TAN L B, LIU F X, SUN X Y, SUN X W, SUN C Q. GS6, a member of the gras gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology, 2013,55(10):938-949.
doi: 10.1111/jipb.12062
|
[22] |
QIAO S L, SUN S Y, WANG L L, WU Z H, LI C X, LI X M, WANG T, LENG L N, TIAN W S, LU T G, WANG X L. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. The Plant Cell, 2017,29(2):292-309.
doi: 10.1105/tpc.16.00611
|
[23] |
AYA K, HOBO T, SATO-IZAWA K, UEGUCHI-TANAKA M, KITANO H, MATSUOKA M. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant and Cell Physiology, 2014,55(5):897-912.
doi: 10.1093/pcp/pcu023
|
[24] |
HIRANO K, YOSHIDA H, AYA K, KAWAMURA M, HAYASHI M, HOBO T, SATO-IZAWA K, KITANO H, UEGUCHI-TANAKA M, MATSUOKA M. SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice. Molecular Plant, 2017,10(4):590-604.
doi: 10.1016/j.molp.2016.12.013
|
[25] |
TONG H N, CHU C C. Physiological analysis of brassinosteroid responses and sensitivity in rice. Methods in Molecular Biology, 2017,1564:23-29.
|
[26] |
LICHTENTHALER H K, WELLBURN A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1983,11(5):591-592.
doi: 10.1042/bst0110591
|
[27] |
MCCOUCH S R, KOCHERT G, YU Z H, WANG Z Y, KHUSH G S, COFFMANW R, TANKLEY S D. Molecular mapping of rice chromosomes. The Oretical and Applied Genet, 1988,76(6):815-829.
|
[28] |
LI J T, ZHAO Y, CHU H W, WANG L K, FU Y R, LIU P, UPADHYAYA N, CHEN C L, MOU T M, FENG Y Q, KUMAR P, XU J. SHOEBOX modulates root meristem size in rice through dose-dependent effects of gibberellins on cell elongation and proliferation. PLoS Genetics, 2015,11(8):e1005464.
doi: 10.1371/journal.pgen.1005464
|
[29] |
WU K, WANG S S, SONG W Z, ZHANG J Q, WANG Y, LIU Q, YU J P, YE Y F, LI S, CHEN J F, ZHAO Y, WANG J, WU X K, WANG M Y, ZHANG Y J, LIU B M, WU Y J, HARBERD N P, FU X D. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020,367(6478): eaaz2046.
|