中国农业科学 ›› 2021, Vol. 54 ›› Issue (11): 2319-2332.doi: 10.3864/j.issn.0578-1752.2021.11.006
蒯婕1(),李真1,2,汪波1,刘芳3,叶俊4,周广生1(
)
收稿日期:
2020-07-28
接受日期:
2020-09-07
出版日期:
2021-06-01
发布日期:
2021-06-09
联系方式:
蒯婕,E-mail:kuaijie@mail.hzau.edu.cn。
基金资助:
KUAI Jie1(),LI Zhen1,2,WANG Bo1,LIU Fang3,YE Jun4,ZHOU GuangSheng1(
)
Received:
2020-07-28
Accepted:
2020-09-07
Published:
2021-06-01
Online:
2021-06-09
摘要:
【目的】研究密度和行距配置对甘蓝型油菜苗期生长的影响及其与产量形成的关系,为进一步提高油菜产量、缩小产量差,明确密植油菜产量调控机制奠定理论基础。【方法】2016—2017年选用华杂62(常规株型,简称HZ62)、2017—2018年选用华杂62和品系1301(紧凑株型)设置密度15×104(D1)、30×104(D2)和45×104株/hm2(D3)为主区,行距15(R15)、25(R25)和35 cm(R35)为副区,研究不同密度和行距配置下,不同器官干物质累积和分配、茎秆和叶片碳氮代谢、根系活力和成熟期产量的变化。【结果】增加密度后,油菜个体生长受到明显抑制,表现为成熟期根颈粗、根干重、地上部干重以及株高均降低,有效分枝数减少,同一密度下缩小行距后降幅减小,D1、D2和D3密度条件下,在行距R25、R15和R15时各指标均表现最佳。与传统的密度行距配置(D1R25)相比,增加密度缩小行距(D3R15)后,2017—2018年,HZ62和1301两品种单株产量分别降低了57.14%和55.73%,但群体产量增加了21.55%和30.92%。相关性分析结果表明苗期叶片干物质分配率与单株产量呈极显著正相关关系,茎秆和根系干物质分配率与群体产量呈显著或极显著正相关关系。进一步分析苗期各器官生长指标发现,密度增加后,苗期叶片SPAD值、单株根系生物量、伤流量、根系活力均显著降低,而群体叶面积指数(LAI)和根系生物量显著增加;同一密度下,通过调节行距、减小株行距差异时,单株油菜叶片SPAD值、叶片和茎秆C/N、群体LAI及根系生物量增加,为成熟期产量奠定了基础。2017—2018年,与D1R25相比,D3R15处理下,HZ62茎秆C/N下降了22.95%,单株根系生物量、伤流量和活力分别降低了35.60%、16.07%和15.51%,叶片C/N和群体根系生物量则分别增加了16.11%和83.44%;1301茎秆C/N下降了19.71%、单株根系生物量、伤流量和活力分别降低了30.87%、22.63%和22.85%,叶片C/N和群体根系生物量则分别增加了14.84%和108.21%。【结论】本试验条件下,与传统密度行距配置相比,不同株型油菜参试品种在增加密度缩小行距后均能通过促进苗期单株叶片氮代谢,同时增加了苗期叶片SPAD值、群体光合叶面积、群体根系生物量,提高了根系活力实现增产。
蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响[J]. 中国农业科学, 2021, 54(11): 2319-2332.
KUAI Jie, LI Zhen, WANG Bo, LIU Fang, YE Jun, ZHOU GuangSheng. Effects of Density and Row Spacing on Seedling Traits of Rapeseed and Seed Yield[J]. Scientia Agricultura Sinica, 2021, 54(11): 2319-2332.
表2
密度和行距配置对油菜成熟期农艺性状的影响"
年份 Year | 品种 Variety | 密度 Density | 行距 Row Spacing | 根颈粗 Root crown diameter (mm) | 根干重 Root biomass (g/plant) | 株高 Plant height (cm) | 有效分枝起点 Branch height (cm) | 有效分枝数 Branch number | 地上部干重 Shoot biomass (g/plant) |
---|---|---|---|---|---|---|---|---|---|
2016—2017 | 华杂62 HZ62 | D1 | R15 | 16.19b | 14.37b | 188.6ab | 71.1f | 7.5a | 68.70c |
R25 | 16.84a | 16.11a | 193.8a | 77.0e | 7.2a | 79.00a | |||
R35 | 15.51c | 13.30c | 187.4ab | 79.3e | 6.5b | 74.69b | |||
D2 | R15 | 13.98d | 8.73d | 182.8bc | 85.3d | 6.1c | 50.12d | ||
R25 | 13.66d | 7.62e | 181.8bc | 86.7d | 6.0c | 48.30e | |||
R35 | 13.05e | 5.26f | 176.4c | 95.0b | 5.4d | 46.80f | |||
D3 | R15 | 12.07f | 4.92g | 175.6c | 86.7d | 6.1c | 40.20g | ||
R25 | 10.69g | 4.32h | 174.4c | 91.4c | 5.4d | 36.98h | |||
R35 | 10.65g | 4.52h | 173.5c | 101.1a | 5.0e | 36.90h | |||
方差分析 Variance analyses | |||||||||
FD | ** | ** | ** | ** | ** | ** | |||
FR | ** | ** | NS | ** | ** | ** | |||
FD×FR | ** | ** | NS | ** | ** | ** | |||
2017—2018 | 华杂62 HZ62 | D1 | R15 | 18.57c | 13.05b | 171.2b | 68.7d | 6.8c | 66.22c |
R25 | 21.74a | 13.91a | 179.6a | 67.7d | 8.3a | 87.72a | |||
R35 | 20.08b | 13.26b | 175.1ab | 69.2d | 7.4b | 77.29b | |||
D2 | R15 | 15.59d | 7.39c | 171.7b | 79.3c | 5.9d | 51.43d | ||
R25 | 14.67e | 6.65d | 159.5c | 78.5c | 5.5e | 43.58e | |||
R35 | 14.07f | 6.19d | 150.9d | 77.8c | 4.1g | 33.60fg | |||
D3 | R15 | 12.67g | 4.90e | 145.2de | 84.1b | 4.9f | 34.96f | ||
R25 | 12.09h | 4.65e | 143.4e | 85.1b | 4.0g | 32.93fg | |||
R35 | 12.48gh | 4.86e | 142.5e | 90.9a | 4.2g | 30.60h | |||
1301 | D1 | R15 | 16.83b | 5.99a | 161.6a | 61.0e | 8.0b | 66.38b | |
R25 | 18.08a | 6.04a | 163.9a | 59.3e | 8.3a | 75.20a | |||
R35 | 16.83b | 5.65b | 157.8b | 59.4e | 7.2c | 58.43c | |||
D2 | R15 | 14.82c | 5.08c | 157.6b | 74.1d | 6.8d | 46.01d | ||
R25 | 13.20d | 4.21d | 154.5bc | 86.6b | 5.5f | 43.70e | |||
R35 | 12.41e | 3.27e | 153.9bc | 81.8c | 6.0e | 37.19f | |||
D3 | R15 | 11.56f | 3.09e | 151.8cd | 88.4ab | 4.6g | 34.61g | ||
R25 | 10.87g | 2.73f | 148.5de | 90.6a | 4.3i | 32.30h | |||
R35 | 9.96h | 2.72f | 146.8e | 90.3a | 4.4h | 28.62i | |||
方差分析 Variance analyses | |||||||||
品种Variety (V) | ** | ** | ** | ** | ** | ** | |||
密度Density (D) | ** | ** | ** | ** | ** | ** | |||
行距Row spacing (R) | ** | ** | NS | ** | ** | ** | |||
品种×密度V×D | ** | ** | ** | ** | ** | ** | |||
品种×行距V×R | ** | ** | NS | ** | ** | ** | |||
密度×行距D×R | ** | ** | ** | ** | ** | ** | |||
品种×密度×行距V×D×R | ** | ** | ** | ** | ** | ** |
表3
不同时期单株干物质分配与产量的相关性"
指标 Indicators | 苗期 Seedling stage | 薹期Bolting stage | 花期Flowering stage | ||||||
---|---|---|---|---|---|---|---|---|---|
叶片Leaf | 茎秆Stem | 根系Root | 叶片Leaf | 茎秆Stem | 根系Root | 叶片Leaf | 茎秆Stem | 根系Root | |
单株产量 Yield per plant | 0.815** | -0.910** | -0.602** | 0.243 | 0.091 | -0.283 | 0.725** | -0.308 | -0.246 |
群体产量 Yield of population | -0.561** | 0.456* | 0.530** | -0.330 | -0.035 | 0.318 | -0.416* | -0.100 | 0.370 |
表4
苗期根系生物量、伤流量和根系活力"
年份 Year | 品种 Variety | 密度 Density | 行距 Row spacing | 单株根系生物量 Root biomass per plant (g) | 群体根系生物量 Root biomass of population (kg·hm-2) | 根系伤流量 Root bleeding sap (g/plant) | 根系活力 Root activity (μgTTF·g-1 FW·h-1) |
---|---|---|---|---|---|---|---|
2016—2017 | 华杂62 HZ62 | D1 | R15 | 2.45b | 334.5f | 2.99bc | 302.2bc |
R25 | 2.84a | 391.5e | 3.33a | 341.8a | |||
R35 | 2.16c | 291.9g | 3.11b | 313.6b | |||
D2 | R15 | 2.45b | 645.6b | 2.94cd | 294.4cd | ||
R25 | 2.39b | 609.2c | 2.42e | 251.0e | |||
R35 | 2.08cd | 537.9d | 2.28f | 235.6f | |||
D3 | R15 | 2.12c | 731.3a | 2.81d | 286.8d | ||
R25 | 1.99d | 657.8b | 2.38ef | 241.9ef | |||
R35 | 1.84e | 618.5c | 2.10g | 217.5g | |||
方差分析 Variance analyses | |||||||
FD | 292.40** | 1534.35** | 983.11** | 960.72** | |||
FR | 121.86** | 91.53** | 52.86** | 46.53** | |||
FD×FR | 25.32** | 16.41** | 29.59** | 29.12** | |||
2017—2018 | 华杂62 HZ62 | D1 | R15 | 2.47b | 352.4ghi | 3.40de | 343.0cd |
R25 | 2.81a | 417.8f | 4.01a | 402.9a | |||
R35 | 2.15de | 309.9ij | 3.75b | 377.0b | |||
D2 | R15 | 2.30c | 649.5cd | 3.24ef | 333.0d | ||
R25 | 2.29cd | 617.3de | 2.93hi | 302.4fg | |||
R35 | 2.12e | 595.7e | 2.64kl | 267.5ij | |||
D3 | R15 | 1.81f | 766.8a | 3.36de | 340.4cd | ||
R25 | 1.72fg | 716.9b | 2.77ijk | 280.9hi | |||
R35 | 1.68fg | 689.1bc | 2.19m | 222.9k | |||
1301 | D1 | R15 | 1.51hi | 183.3k | 3.30e | 330.3de | |
R25 | 1.58gh | 199.5k | 3.67bc | 376.5b | |||
R35 | 1.39ij | 170.7k | 3.51cd | 352.5c | |||
D2 | R15 | 1.48hi | 365.1g | 3.11fg | 314.6ef | ||
R25 | 1.43ij | 340.1ghij | 2.95gh | 297.0gh | |||
R35 | 1.33j | 304.4j | 2.52l | 261.9j | |||
D3 | R15 | 1.09k | 415.2f | 2.84hij | 290.5gh | ||
R25 | 0.96kl | 362.1gh | 2.75jk | 281.0hi | |||
R35 | 0.90l | 318.0hij | 2.17m | 221.3k | |||
方差分析 Variance analyses | |||||||
品种Variety (V) | ** | ** | * | * | |||
密度Density (D) | ** | ** | ** | ** | |||
行距Row spacing (R) | ** | ** | ** | ** | |||
品种×密度V×D | ** | ** | NS | NS | |||
品种×行距V×R | ** | NS | NS | * | |||
密度×行距D×R | ** | ** | ** | ** | |||
品种×密度×行距V×D×R | ** | ** | ** | ** |
[1] | FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2020. http://www.fao.org. |
[2] | 赵永国, 赵仕英, 程勇, 罗莉霞, 付桂萍, 郭瑞星, 黄振余, 马海清, 刘清云, 张学昆, 蔡俊松. 中国主产区油菜与加拿大油菜的品种产量比较. 中国油料作物学报, 2017,39(3):420-426. |
ZHAO Y G, ZHAO S Y, CHENG Y, LUO L X, FU G P, GUO R X, HUANG Z Y, MA H Q, LIU Q Y, ZHANG X K, CAI J S. Rapeseed yield comparison between China and Canada in national trials of main producing areas. Chinese Journal of Oil Crop Sciences, 2017,39(3):420-426. (in Chinese) | |
[3] |
WANG R, CHENG T, HU L Y. Effect of wide-narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Research, 2015,172:42-52.
doi: 10.1016/j.fcr.2014.12.005 |
[4] |
KUAI J, SUN Y, ZUO Q, HUANG H, LIAO Q, WU C, LU J, WU J, ZHOU G. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Scientific Reports, 2016,5(1):18835
doi: 10.1038/srep18835 |
[5] |
KUAI J, SUN Y, ZHOU M, ZHANG P, ZUO Q, WU J, ZHOU G. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Research, 2016,199:89-98.
doi: 10.1016/j.fcr.2016.09.025 |
[6] |
李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018,44(2):278-287.
doi: 10.3724/SP.J.1006.2018.00278 |
LI X Y, ZHOU M, WANG T, ZHANG L, ZHOU G S, KUAI J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agronomica Sinica, 2018,44(2):278-287. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00278 |
|
[7] | STAMP P, KIEL C. Root morphology of maize and its relationship to root lodging. Journal of Agronomy & Crop Science, 2008,168(2):113-118. |
[8] |
SNIDER J L, RAPER R L, SCHWAB E B. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench). Industrial Crops and Products, 2012,37(1):527-535.
doi: 10.1016/j.indcrop.2011.07.032 |
[9] |
XUE J, GOU L, ZHAO Y, YAO M, YAO H, TIAN J, ZHANG W. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 2016,188:133-141.
doi: 10.1016/j.fcr.2016.01.003 |
[10] | HEITHOLT J J, SASSENRATH-COLE G F. Inter-plant competition: growth responses to plant density and row spacing//STEWART J M, OOSTERHUIS D M, HEITHOLT J J, MAUNEY J R. eds. Physiology of Cotton. New York: Springer Dordrecht Heidelberg London, 2010. |
[11] |
HU Q, JIANG W Q, QIU S, XING Z Q, HU Y J, GUO B W, LIU G D, GAO H, ZHANG H C, WEI H Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. Journal of Integrative Agriculture, 2020,19(5):1197-1214.
doi: 10.1016/S2095-3119(19)62800-5 |
[12] |
FISCHER R A, MORENO RAMOS O H, ORTIZ MONASTERIO I, SAYRE K D. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crops Research, 2019,232:95-105.
doi: 10.1016/j.fcr.2018.12.011 |
[13] |
WIDDICOMBE W D, THELEN K D. Row width and plant density effects on corn grain production in the northern Corn Belt. Agronomy Journal, 2002,94:1020-1023.
doi: 10.2134/agronj2002.1020 |
[14] | GOBEZE Y L, CERONIO G M, VAN RENSBURG L D. Effect of row spacing and plant density on yield and yield component of maize (Zea mays L.) under irrigation. Journal of Agricultural Science & Technology B, 2012,2:263-271. |
[15] |
TURGUT I, DUMAN A, BILGILI U, ACIKGOZ E. Alternate row spacing and plant density effects on forage and dry matter yield of corn hybrids (Zea mays L.). Journal of Agronomy and Crop Science, 2005,191(2):146-151.
doi: 10.1111/jac.2005.191.issue-2 |
[16] |
SEITER S, ALTEMOSE C E, DAVIS M H. Forage soybean yield and quality responses to plant density and row distance. Agronomy Journal, 2004,96(4):966-970.
doi: 10.2134/agronj2004.0966 |
[17] |
BOQUET D J. Cotton in ultra-narrow row spacing: Plant density and nitrogen fertilizer rates. Agronomy Journal, 2005,97(1):279-287.
doi: 10.2134/agronj2005.0279 |
[18] | GARSIDE A L, BELL M J, ROBOTHAM B G. Row spacing and planting density effects on the growth and yield of sugarcane: 2. Strategies for the adoption of controlled traffic. Crop & Pasture Science, 2009,60(6):544-554. |
[19] | 闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群. 套作遮荫条件下烯效唑对大豆壮苗机理的研究. 中国油料作物学报, 2011,33(3):259-264. |
YAN Y H, YANG W J, ZHANG X Q, CHEN X L, CHEN Z Q. Improve soybean seeding growth by uniconazole under shading by corn in relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2011,33(3):259-264. (in Chinese) | |
[20] | 郑伟, 叶川, 肖国滨, 陈明, 李亚贞, 黄天宝, 肖小军, 刘小三, 朱昌. 油-稻共生期对谷林套播油菜苗期性状及产量形成的影响. 中国农业科学, 2015,48(21):4254-4263. |
ZHENG W, YE C, XIAO G B, CHEN M, LI Y Z, HUANG T B, XIAO X J, LIU X S, ZHU C. Effects of symbiotic period on seedling traits and yield components of interplanting rapeseed in rice. Scientia Agricultura Sinica, 2015,48(21):4254-4263. (in Chinese) | |
[21] |
COSTA C, DWYER L M, HAMILTON R I, HAMEL C, NANTAIS L, SMITH D L. A sampling method for measurement of large root systems with scanner-based image analysis. Agronomy Journal, 2000,92(4):621-627.
doi: 10.2134/agronj2000.924621x |
[22] | BRAR G, THIES W. Contribution of leaves, stem, siliques and seeds to dry matter accumulation in ripening seeds of rapeseed, Brassica napus L. Zeitschrift Fü Pflanzenphysiologie, 1977,82(1):1-13. |
[23] |
SEEBAUER J R, SINGLETARY G W, KRUMPELMAN P M, RUFFO M L, BELOW F E. Relationship of source and sink in determining kernel composition of maize. Journal of Experimental Botany, 2010,61(2):511-519.
doi: 10.1093/jxb/erp324 |
[24] |
GIRONDE A, ETIENNE P, TROUVERIE J, BOUCHEREAU A, LE CAHEREC F, LEPORT L, ORSEL M, NIOGRET M F, NESI N, CAROLE D, SOULAY F, MASCLAUX-DAUBRESSE C, AVICE J C. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biology, 2015,15(1):1-21.
doi: 10.1186/s12870-014-0410-4 |
[25] |
PAUL M J, FOYER C H. Sink regulation of photosynthesis. Journal of Experimental Botany, 2001,52(360):1383-1400.
doi: 10.1093/jexbot/52.360.1383 |
[26] |
HIZUKURI S, TAKEDA Y, MARUTA N. Molecular structural characteristics of rice starch. Carbohydrate Research, 1989,189:227-235.
doi: 10.1016/0008-6215(89)84099-6 |
[27] |
READ S M, NORTHCOTE D H. Minimization of variation in the response to different protein of the Coomassic Blue G dye - binding: assay to protein. Analytical Biochemistry, 1981,116(1):53-64.
doi: 10.1016/0003-2697(81)90321-3 |
[28] | 谢寅峰, 王莹, 张志敏, 尚旭岚, 杨万霞, 方升佐. 烯效唑对青钱柳试管苗生长及生理特性的影响. 植物资源与环境学报, 2010,19(4):50-55. |
XIE Y F, WANG Y, ZHANG Z M, SHANG X L, YANG W X, FANG S Z. Effects of uniconazole on growth and physiological characteristics of Cyclocarya paliurus plantlets. Journal of Plant Resources and Environment, 2010,19(4):50-55. (in Chinese) | |
[29] |
MARTINS N, GONÇALVES S, ROMANO A. Aluminum inhibits root growth and induces hydrogen peroxide accumulation in Plantago algarbiensis and P. almogravensis seedlings. Protoplasma, 2013. 250(6):1295-1302.
doi: 10.1007/s00709-013-0511-1 |
[30] |
LI X, ZUO Q, CHANG H, BAI G, ZHOU G. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Research, 2018,218:97-105.
doi: 10.1016/j.fcr.2018.01.013 |
[31] |
PARK S E, BENJAMIN L R, WATKINSON A R. The theory and application of plant competition models: an agronomic perspective. Annals of Botany, 2003,92(6):741-748.
doi: 10.1093/aob/mcg204 |
[32] |
ZHANG Z J, CHU G, LIU L J, WANG Z Q, WANG X M, ZHANG H, YANG J C, ZHANG J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 2013,150:9-18.
doi: 10.1016/j.fcr.2013.06.002 |
[33] |
魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008,34(1):119-125.
doi: 10.3724/SP.J.1006.2008.00119 |
WEI H Y, ZHANG H C, HANG J, DAI Q G, HUO Z Y, XU K, ZHANG S F, MA Q, ZHANG Q, ZHANG J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agronomica Sinica, 2008,34(1):119-125. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00119 |
|
[34] | 郑成岩, 于振文, 王西芝, 武同华. 灌水量和时期对高产小麦氮素积累,分配和转运及土壤硝态氮含量的影响. 植物营养与肥料学报, 2009,15(6):1324-1332. |
ZHENG C Y, YU Z W, WANG X Z, WU T H. Effects of irrigation amount and stage on nitrogen accumulation, distribution, translocation and soil-N content in high-yield wheat. Plant Nutrition and Fertilizer Science, 2009,15(6):1324-1332. (in Chinese) | |
[35] | 左青松, 刘浩, 蒯婕, 冯倩南, 冯云艳, 张含笑, 刘靖怡, 杨光, 周广生, 冷锁虎. 氮肥和密度对毯状苗移栽油菜碳氮积累、运转和利用效率的影响. 中国农业科学, 2016,49(18):3522-3531. |
ZUO Q S, LIU H, KUAI J, FENG Q N, FENG Y Y, ZHANG H X, LIU J Y, YANG G, ZHOU G S, LENG S H. Effects of nitrogen and planting density on accumulation, translocation and utilization efficiency of carbon and nitrogen transplanting rapeseed with blanket seedling. Scientia Agricultura Sinica, 2016,49(18):3522-3531. (in Chinese) | |
[36] | 时向东, 时映, 王瑞宝, 戴吉林, 夏开宝, 张庆刚. 稳定氮同位素示踪技术在烟草研究中的应用. 中国烟草学报, 2008,14(1):51-57. |
SHI X D, SHI Y, WANG R B, DAI J L, XIA K B, ZHANG Q G. Applications of stable nitrogen isotope on tobacco research. Acta Tabacaria Sinica, 2008,14(1):51-57. (in Chinese) | |
[37] |
左青松, 杨海燕, 冷锁虎, 曹石, 曾讲学, 吴江生, 周广生. 施氮量对油菜氮素积累和运转及氮素利用率的影响. 作物学报, 2014,40(3):511-518.
doi: 10.3724/SP.J.1006.2014.00511 |
ZUO Q S, YANG H Y, LENG S H, CAO S, ZENG J X, WU J S, ZHOU G S. Effects of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen use efficiency in rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2014,40(3):511-518. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00511 |
|
[38] |
VAMERALI T, SACCOMANI M, BONA S, MOSCA G, GUARISE M, GANIS A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil, 2003,255(1):157-167.
doi: 10.1023/A:1026123129575 |
[39] | ZHOU Y, YANG X W, ZHOU S M, WANG Y J, YANG R, XU F D, MEI J J, SHEN G Y, LI Q J, HE D X. Activities of key enzymes in root NADP-Dehydrogenase system and their relationships with root vigor and grain yield formation in wheat. Scientia Agricultura Sinica, 2018,51(11):2060-2071. |
[40] | 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018,51(8):142-150. |
YANG Y M, SUN Y M, JIA L L, JIA S L, MENG C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Scientia Agricultura Sinica, 2018,51(8):142-150. (in Chinese) | |
[41] | 郭小红, 王兴才, 孟田, 张惠君, 敖雪, 王海英, 谢甫绨. 中美大豆Ⅲ熟期组代表品种根系形态和活力的比较研究. 中国农业科学, 2015,48(19):3821-3833. |
GUO X H, WANG X C, MENG T, ZHANG H J, AO X, WANG H Y, XIE F D. Comparison of root morphological and activity of representative soybean cultivars(MG Ⅲ) developed in the USA and China. Scientia Agricultura Sinica, 2015,48(19):3821-3833. (in Chinese) | |
[42] | 杨光, 张惠君, 宋书宏, 王文斌, 敖雪, 谢甫绨. 超高产大豆根系相关性状的比较研究. 大豆科学, 2013,32(2):176-181. |
YANG G, ZHANG H J, SONG S H, WANG W B, AO X, XIE F D. Comparison on some root related traits of super-high-yielding soybean. Soybean Science, 2013,32(2):176-181. (in Chinese) | |
[43] | 张含彬, 任万军, 杨文钰, 氮肥处理下套作大豆根系建成与产量关系的研究. 中国土壤与肥料, 2007,2:46-49. |
ZHANG H B, REN W J, YANG W J. Relationship between root characteristics and yield formation in relay-planting soybean under the nitrogen application. Soil and Fertilizer Sciences China, 2007,2:46-49. (in Chinese) |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 路梦莉, 张雅婷, 任红, 王土金, 韩一鸣, 李文阳, 李从锋. 增密对春玉米籽粒胚乳淀粉粒度分布与黏度参数的影响[J]. 中国农业科学, 2023, 56(9): 1646-1657. |
[3] | 孙启滨, 王建楠, 李毅念, 何瑞银, 丁启朔. 大田不同播种间距单株小麦根长密度动态研究[J]. 中国农业科学, 2023, 56(8): 1456-1470. |
[4] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[5] | 刘梦洁, 梁飞, 李全胜, 田宇欣, 王国栋, 贾宏涛. 膜下滴灌与细流沟灌对玉米生长及产量的影响[J]. 中国农业科学, 2023, 56(8): 1515-1530. |
[6] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[7] | 林雨浓, 王泽昭, 陈燕, 朱波, 高雪, 张路培, 高会江, 徐凌洋, 蔡文涛, 李英豪, 李俊雅, 高树新. 不同筛选方法的低密度SNP集合填充准确性比较[J]. 中国农业科学, 2023, 56(8): 1585-1593. |
[8] | 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响[J]. 中国农业科学, 2023, 56(7): 1283-1294. |
[9] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
[10] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[11] | 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 胡文诗, 杨璐, 廖星, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响[J]. 中国农业科学, 2023, 56(6): 1074-1085. |
[12] | 汪月宁, 代红军, 贺琰, 魏强, 郭学良, 刘妍, 殷梦婷, 王振平. 基于转录组分析油菜素内酯对高温胁迫下酿酒葡萄花色苷合成及果实品质的调控机制[J]. 中国农业科学, 2023, 56(6): 1139-1153. |
[13] | 贾晓昀, 王士杰, 朱继杰, 赵红霞, 李妙, 王国印. 陆地棉高密度遗传图谱的构建及产量相关性状的QTL定位[J]. 中国农业科学, 2023, 56(4): 587-598. |
[14] | 范军强, 武军艳, 刘丽君, 马骊, 杨刚, 蒲媛媛, 李学才, 孙万仓. 甘蓝型冬油菜气孔特性与抗寒性的关系[J]. 中国农业科学, 2023, 56(4): 599-618. |
[15] | 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学, 2023, 56(4): 635-648. |
|