中国农业科学 ›› 2019, Vol. 52 ›› Issue (15): 2604-2615.doi: 10.3864/j.issn.0578-1752.2019.15.005

• 植物保护 • 上一篇    下一篇

撕裂蜡孔菌对黄瓜蔓枯病的防治作用及促生增产效果

白如霞,曾汇文,范倩,殷洁,隋宗明,袁玲()   

  1. 西南大学资源环境学院,重庆400716
  • 收稿日期:2018-12-25 接受日期:2019-02-23 出版日期:2019-08-01 发布日期:2019-08-06
  • 通讯作者: 袁玲
  • 作者简介:白如霞,E-mail:18306038510@163.com
  • 基金资助:
    国家重点基础研究发展计划“973”计划(2013CB127405);重庆市社会事业与民生保障科技创新专项(cstc2017shms-xdny80084);重庆市科委社会民生类重点研发项目(cstc2018jscx-mszdX0011)

Effects of Ceriporia lacerata on Gummy Stem Blight Control, Growth Promotion and Yield Increase of Cucumbers

BAI RuXia,ZENG HuiWen,FAN Qian,YIN Jie,SUI ZongMing,YUAN Ling()   

  1. College of Resources and Environment, Southwest University, Chongqing 400716
  • Received:2018-12-25 Accepted:2019-02-23 Online:2019-08-01 Published:2019-08-06
  • Contact: Ling YUAN

摘要:

【目的】明确撕裂蜡孔菌(Ceriporia lacerata)对黄瓜的防病、促生作用,为农药、肥料减施增效提供依据。【方法】以自主分离的撕裂蜡孔菌HG2011新菌株为供试菌,采用Bonnet液体培养基制备撕裂蜡孔菌发酵液(C. lacerata fermentation broth,CLB),另利用蛭石、玉米粉和谷壳等制备撕裂蜡孔菌固体菌剂(C. lacerata solid agent,CLA),通过拮抗、对峙培养、盆栽试验和田间试验,研究撕裂蜡孔菌对甜瓜球腔菌(Mycosphaerella melonis)引起的黄瓜蔓枯病的防治作用,以及对黄瓜生长发育、养分吸收、土壤酶活性、黄瓜产量和果实品质的影响。【结果】在拮抗试验中,培养第6天50% CLB对甜瓜球腔菌的抑制率为32.39%,与甲基托布津(thiophanate methyl,TM)作用相当。在对峙培养试验中,甜瓜球腔菌生长受到撕裂蜡孔菌抑制,撕裂蜡孔菌则继续生长至完全覆盖甜瓜球腔菌,使之变形、萎缩和消失。在盆栽试验中,喷病菌孢子液(pathogen inoculation,PI)处理的发病率为36.67%,病情指数为38.40。与PI相比,CLB可显著降低蔓枯病的发病率和病情指数,其相对防治效果为79.69%,同样与甲基托布津(75.57%)相当。与常规施化肥(CF)相比,施用CLB可促进黄瓜植株生长,提高生物量、根系活力和叶绿素含量,分别提高了5.87%—21.45%、36.50%—38.83%和10.54%—19.80%;黄瓜植株养分吸收量分别增加45.24%—69.05%(氮)、20.51%—43.59%(磷)和19.88%—38.51%(钾);土壤脲酶、酸性磷酸酶、过氧化氢酶、纤维素酶、脱氢酶和蛋白酶活性增强,增加幅度分别为8.73%—35.84%、7.55%—10.74%、25.32%—26.49%、186.21%—279.23%、47.99%—76.51%和49.00%—100.00%,施用高量(150 mL)CLB处理的效果优于低量(75 mL)CLB处理的效果。在田间试验中,与常规施肥相比,常规施肥与固体菌剂配施(CF+CLA10)与减肥处理与固体菌剂配施(75% CF+CLA10)均显著提高了黄瓜单株结果数、产量和游离氨基酸含量,增幅分别为13.61%、13.87%、71.54%(CF+CLA10)和11.51%、11.71%、54.37%(75% CF+CLA10),此外,75% CF+CLA10处理显著降低了硝酸盐含量,降幅为14.93%。【结论】撕裂蜡孔菌HG2011可抑制甜瓜球腔菌生长。喷施CLB能防治黄瓜蔓枯病,降低发病率和病情指数,提高防治效果;盆栽施加CLB可提高土壤酶活性,促进黄瓜幼苗吸收养分,使黄瓜健康生长。田间施用CLA可增加黄瓜产量,提高黄瓜果实游离氨基酸含量,降低硝酸盐含量,改善品质,益于实现减肥增效。撕裂蜡孔菌HG2011能分解木质素和纤维素,在作物秸秆中生长迅速,利用该生物菌剂制作堆肥可兼具防病、促生效果。

关键词: 撕裂蜡孔菌, 甜瓜球腔菌, 黄瓜, 蔓枯病, 防治作用, 促生

Abstract:

【Objective】The objective of this study is to clarify the effects of Ceriporia lacerata on plant disease control and growth promotion, and to provide a basis for reducing the application of chemical pesticides and fertilizers.【Method】A new self-isolated C. lacerata (fungal strain HG2011) was grown in Bonnet liquid medium and mixture made of vermiculite, maize powder, and rice husk, respectively, to produce culture broth (CLB) and solid inoculant (CLA). CLB and CLA were prepared and conduced to evaluate the effect of C. lacerata on the antagonistic activity against Mycosphaerella melonis, control of gummy stem blight, vegetative growth of cucumber seedlings, yield of cucumbers, soil enzyme activity, and quality of cucumbers with the method of antagonistic assay, confront culture, greenhouse pot experiments, and field experiments, respectively.【Result】In the antagonistic assay, the inhibition rate of 50% CLB against M. melonis was 32.39% in agar medium at the 6th day, which was similar to that of thiophanate methyl (TM). In the confront culture assay, C. lacerata HG2011 inhibited the growth of M. melonis, this antagonistic fungus could cover M. melonis colonies and make the hyphae deformed, shrunken and disappeared. In greenhouse pot experiments, the incidence of pathogen inoculation (PI) treatment was 36.67% and the disease index was 38.40. Compared with PI, CLB could significantly reduce the incidence and disease index of gummy stem blight, and the relative control efficacy was 79.69%, which was also similar to that of TM (75.57%). Compared with single conventional fertilization (CF), the application of CLB could promote the seedling growth, increase the biomass, root activity and chlorophyll content in leaves by 5.87%-21.45%, 36.50%-38.83% and 10.54%-19.80%, respectively. The nutrient uptake by cucumber seedlings increased by 45.24%-69.05% (nitrogen), 20.51%-43.59% (phosphorus), and 19.88%-38.51% (potassium), respectively. The activities of urease, acid phosphatase, catalase, cellulase, dehydrogenase, and protease increased by 8.73%-35.84%, 7.55%-10.74%, 25.32%-26.49%, 186.21%-279.23%, 47.99%-76.51% and 49.00%-100.00%. The effect of high dose (150 mL) CLB treatment was better than that of low dose (75 mL) CLB treatment. In field experiments, application of CLA on the basis of CF (CF+CLA10) increased fruit quantity of plant by 13.61%, yield by 13.87%, and free amino acids content by 71.54%. Application of CLA on the basis of reducing 25% CF (75% CF+CLA10) increased fruit quantity of plant by 11.51%, yield by 11.71%, and free amino acids content by 54.37%. In addition, compared with CF, 75% CF+CLA10 significantly decreased nitrate content by 14.93%. 【Conclusion】 C. lacerata HG2011 strain can inhibit hyphal growth of M. melonis. Spraying CLB can control gummy stem blight, reduce the incidence and disease index, and improve the control efficacy. Pot application of CLB can increase the activity of soil enzyme, promote the absorption of nutrients by cucumber seedlings, and make the healthy growth of cucumber. Field application of CLA can increase the yield of cucumber and the content of free amino acids in fruits, reduce the content of nitrate content and improve the quality, which is beneficial to reduce application and increase efficiency of chemical fertilizer. C. lacerata HG2011 strain can decompose lignin and cellulose, and grow rapidly in crop straw. Composting with this biological agent can both prevent disease and promote growth.

Key words: Ceriporia lacerata, Mycosphaerella melonis, cucumber, gummy stem blight, control efficacy, growth promotion