中国农业科学 ›› 2021, Vol. 54 ›› Issue (8): 1673-1683.doi: 10.3864/j.issn.0578-1752.2021.08.008
陈茜1(),刘英杰1,2,董勇浩1,刘金燕1,李炜1,徐蓬军1,臧云1,任广伟1()
收稿日期:
2020-07-01
接受日期:
2020-08-14
出版日期:
2021-04-16
发布日期:
2021-04-25
通讯作者:
任广伟
作者简介:
陈茜,E-mail: 基金资助:
CHEN Xi1(),LIU YingJie1,2,DONG YongHao1,LIU JinYan1,LI Wei1,XU PengJun1,ZANG Yun1,REN GuangWei1()
Received:
2020-07-01
Accepted:
2020-08-14
Online:
2021-04-16
Published:
2021-04-25
Contact:
GuangWei REN
摘要:
【目的】探明黄瓜花叶病毒(cucumber mosaic virus,CMV)侵染烟草对烟蚜(Myzus persicae)生长发育和行为的影响,研究CMV 2b基因在烟蚜与CMV互作中的作用。【方法】供试寄主植物为健康烟草和CMV侵染、CMV 2b基因缺失突变体(CMVΔ2b)侵染烟草,利用Y型嗅觉仪测定烟蚜对不同烟草寄主的选择趋向;利用刺吸电位图谱(electrical penetration graph,EPG)监测烟蚜取食行为,并结合寄主植物内总糖和游离氨基酸含量分析CMV侵染对烟蚜取食行为的影响;通过单株微虫笼记录蚜虫生命参数并分析CMV侵染烟草对烟蚜生长发育和繁殖的影响。【结果】CMV侵染烟草叶片中总糖含量显著低于健康烟草,而游离氨基酸的含量显著高于健康烟草和CMVΔ2b侵染烟草。CMVΔ2b侵染烟草中的苏氨酸、谷氨酸、甘氨酸、酪氨酸、组氨酸、精氨酸和脯氨酸含量显著高于其他处理烟草,缬氨酸和赖氨酸含量显著高于健康烟草;而CMV侵染烟草中的天冬氨酸含量显著低于其他处理烟草,其胱氨酸含量显著高于CMVΔ2b侵染烟草。相较于CMV侵染烟草,烟蚜对健康烟草和CMVΔ2b侵染烟草有着更强的选择趋向,而烟蚜对健康烟草与CMVΔ2b侵染烟草的选择行为无显著差异。CMV侵染烟草对烟蚜的生长发育和取食行为产生不利影响。烟蚜在CMV侵染烟草上的刺探行为(pd波)发生次数最多,韧皮部取食(E2波)的持续时间最短,且木质部吸食(G波)的发生频率显著高于健康烟草和CMVΔ2b侵染烟草,表明CMV侵染烟草不适宜烟蚜取食。烟蚜的生长特性试验表明CMV侵染烟草显著延长了烟蚜的若蚜历期,提高了2龄若蚜的死亡率,缩短了烟蚜的寿命,显著降低了烟蚜繁殖力。CMV侵染烟草上烟蚜的内禀增长率(r)和周限增长率(λ)均显著低于健康烟草和CMVΔ2b侵染烟草,CMV的侵染不利于烟蚜种群的增长。【结论】CMV侵染改变了烟草营养物质组成,CMV 2b基因的存在增加了烟蚜刺探频率,减少了烟蚜在烟株上的韧皮部取食;CMV侵染导致烟蚜若蚜历期延长、死亡率增加,烟蚜寿命和繁殖力均显著降低;CMV侵染降低了烟蚜的寄主适合度,促使蚜虫向新寄主植物转移,从而促进了病毒的扩散传播。
陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683.
CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae[J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
表1
不同烟草叶片中游离氨基酸含量"
游离氨基酸 Free amino acid | 健康烟草 Healthy tobacco | CMV侵染烟草 CMV-infected tobacco | CMVΔ2b 侵染烟草 CMVΔ2b-infected tobacco |
---|---|---|---|
天冬氨酸Aspartic acid | 1170.00±126.62a | 576.67±61.19b | 1230.00±92.37a |
苏氨酸Threonine | 786.67±91.34b | 750.00±109.70b | 2723.33±440.54a |
丝氨酸Serine | 636.67±126.67a | 590.00±70.24a | 930.00±104.40a |
谷氨酸Glutamic acid | 1960.00±292.63b | 1886.67±144.95b | 3030.00±135.77a |
甘氨酸Glycine | 10.00±0b | 20.00±5.77b | 70.00±10.00a |
丙氨酸Alanine | 253.33±8.82a | 246.67±26.03a | 263.33±12.02a |
缬氨酸Valine | 263.33±12.02b | 306.67±26.03ab | 356.67±29.63a |
蛋氨酸Methionine | 16.67±8.82a | 6.67±6.67a | 23.33±3.33a |
异亮氨酸Isoleucine | 53.33±3.33a | 60.00±5.78a | 50.00±3.77a |
亮氨酸Leucine | 70.00±5.77a | 76.67±8.82a | 76.67±8.82a |
酪氨酸Tyrosine | 63.33±3.33c | 96.67±6.67b | 133.33±12.02a |
苯丙氨酸Phenylalanine | 203.33±26.03a | 226.67±24.04a | 263.33±21.86a |
赖氨酸Lysine | 66.67±3.33b | 76.67±8.82ab | 100.00±11.54a |
组氨酸Histidine | 36.67±3.33b | 50.00±5.77b | 133.33±21.86a |
精氨酸Arginine | 26.67±6.67b | 26.67±3.33b | 56.67±6.67a |
脯氨酸Proline | 460.00±40.41b | 373.00±67.41b | 2763.33±316.88a |
色氨酸Tryptophane | 33.33±3.33a | 80.00±5.77a | 133.33±48.42a |
胱氨酸Cystine | 30.00±0ab | 33.33±6.67a | 16.67±3.33b |
表2
不同烟草寄主上的烟蚜取食EPG参数"
EPG参数 EPG parameter | 健康烟草 Healthy tobacco (n=15) | CMV侵染烟草 CMV-infected tobacco (n=15) | CMVΔ2b侵染烟草 CMVΔ2b-infected tobacco (n=15) | |
---|---|---|---|---|
1 | 第一次刺探发生时间Time to 1st probe from start of EPG (min) | 0.64±0.16a | 0.75±0.42a | 0.76±0.17a |
2 | 第一次E1波前刺探次数Number of probes to the 1st E1 | 20.40±6.69a | 14.00±2.60a | 15.33±4.05a |
3 | pd次数Number of probes | 197.73±9.53ab | 217.93±50.51a | 184.27±11.28b |
4 | np次数Number of np | 39.40±7.97a | 48.00±7.57a | 46.07±6.17a |
5 | np 持续时长Total duration of np (min) | 52.69±8.52a | 63.43±9.67a | 61.79±8.56a |
6 | 口针第一次到达韧皮部的时间Time to phloem from the start of EPG (min) | 87.72±31.03a | 67.05±8.22a | 79.89±14.70a |
7 | E1次数Number of E1 | 19.53±2.77a | 16.60±3.23a | 19.13±2.81a |
8 | E1持续总时长Total duration of E1 (min) | 58.31±6.58a | 69.64±8.09a | 62.00±6.83a |
9 | E1持续总时长/总记录时间Total duration of E1/total record time (%) | 16.20±1.83a | 16.56±2.25a | 17.22±1.90a |
10 | E2的次数Number of E2 | 13.67±2.37a | 9.27±2.45a | 14.73±2.72a |
11 | E2持续时长>10 min次数Number of sustained E2 (>10 min) | 0.80±0.24a | 0.33±0.16a | 1.00±0.29a |
12 | E2持续总时长Total duration of E2 (min) | 41.70±9.55ab | 19.15±5.30b | 42.93±8.81a |
13 | E2持续总时长/记录总时间Total duration of E2/total record time (%) | 11.59±2.65ab | 5.32±1.47b | 11.92±2.45a |
14 | E1+E2持续总时长Total duration of E (min) | 100.03±13.87a | 78.79±11.65a | 104.92±11.91a |
15 | 最长E2波时间Duration of the longest E2 (min) | 15.50±4.16a | 6.11±1.65b | 15.54±3.33a |
16 | G波持续总时间Duration of G (min) | 24.13±0.00a | 24.52±20.08a | 13.57±2.73b |
17 | 出现G波的蚜虫百分比Percentage of aphids showing waveform G (%) | 6.67b | 20.00a | 6.67b |
18 | C波持续总时长Total duration of C (min) | 208.51±10.37a | 213.59±11.85a | 191.85±10.95a |
19 | C波持续总时长/记录总时间Total duration of C/total record time (%) | 57.92±2.88a | 59.33±3.29a | 53.29±1.78a |
表3
不同烟草寄主上烟蚜的发育历期及寿命"
寄主植物 Host plant | 1龄若蚜 1st instar | 2龄若蚜 2nd instar | 3龄若蚜 3rd instar | 4龄若蚜 4th instar | 若蚜历期 Pre-adult period | 成虫期 Adult period | 寿命 Adult longevity |
---|---|---|---|---|---|---|---|
健康烟草 Healthy tobacco | 1.52±0.10b | 1.61±0.11b | 1.55±0.10b | 2.16±0.14a | 6.81±0.16b | 15.66±1.52a | 22.03±1.54a |
CMV侵染烟草 CMV-infected tobacco | 2.19±0.20a | 2.80±0.21a | 2.71±0.25a | 2.00±0.22a | 9.40±0.58a | 11.47±1.68a | 12.49±1.49b |
CMVΔ2b侵染烟草 CMVΔ2b-infected tobacco | 1.67±0.12b | 1.83±0.17b | 1.45±0.13b | 2.32±0.15a | 7.32±0.24b | 16.09±1.77a | 20.26±1.94a |
表4
不同烟草寄主上烟蚜的繁殖历期及繁殖力"
寄主植物 Host plant | 成虫繁殖前期 Adult pre-reproductive period (d) | 总繁殖前期 Total pre-reproductive period (d) | 繁殖期 Reproductive days (d) | 繁殖力(单雌产蚜量) Fecundity (number of nymphs produced by one female aphid) |
---|---|---|---|---|
健康烟草 Healthy tobacco | 0.88±0.16a | 7.69±0.21b | 10.66±1.19a | 24.66±3.44a |
CMV侵染烟草 CMV-infected tobacco | 1.17±0.35a | 10.33±0.88a | 9.25±1.40a | 12.13±2.93b |
CMVΔ2b侵染烟草 CMVΔ2b-infected tobacco | 0.81±0.19a | 8.00±0.32b | 10.86±1.17a | 19.32±2.86ab |
表5
不同烟草寄主上烟蚜的种群参数"
寄主植物 Host plant | 内禀增长率 Intrinsic rate of increase (r, d-1) | 周限增长率 Finite rate of increase (λ, d-1) | 净生殖率 Net reproductive rate (R0, offspring) | 平均世代周期 Mean generation time (T, d) | 总繁殖率 Gross reproduction rate (GRR) |
---|---|---|---|---|---|
健康烟草 Healthy tobacco | 0.25±0.01a | 1.28±0.02a | 23.91±3.39a | 12.95±0.32a | 34.73±2.95a |
CMV侵染烟草 CMV-infected tobacco | 0.11±0.02c | 1.11±0.02c | 5.20±1.58b | 15.65±1.36a | 27.78±7.18ab |
CMVΔ2b侵染烟草 CMVΔ2b-infected tobacco | 0.20±0.01b | 1.22±0.02b | 15.74±2.69a | 13.59±0.49a | 27.43±2.24b |
[1] | 朱贤朝, 王彦亭, 王智发. 中国烟草病害. 北京: 中国农业出版社, 2002: 76-89. |
ZHU X C, WANG Y T, WANG Z F. Tobacco Disease of China. Beijing: China Agriculture Press, 2002: 76-89. (in Chinese) | |
[2] |
GUO H, GU L, LIU F, CHEN F, GE F, SUN Y. Aphid-borne viral spread is enhanced by virus-induced accumulation of plant reactive oxygen species. Plant Physiology, 2019,179(1):143-155.
pmid: 30381318 |
[3] |
TUNGADI T, GROEN S C, MURPHY A M, PATE A E, IQBAL J, BRUCE T J A, CUNNIFFE N J, CARR J P. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virology Journal, 2017,14(1):91.
doi: 10.1186/s12985-017-0754-0 pmid: 28468686 |
[4] | MAUCK K E, DE MORAES C M, MESCHER M C. Evidence of local adaptation in plant virus effects on host-vector interactions. Integrative and Comparative Biology, 2014,54(2):193-209. |
[5] |
HILY J M, GARCIA A, MORENO A, PLAZA M, WILKINSON M D, FERERES A, FRAILE A, GARCIA-ARENAL F. The relationship between host lifespan and pathogen reservoir potential: An analysis in the system Arabidopsis thaliana-cucumber mosaic virus. PLoS Pathogens, 2014,10(11):e1004492.
pmid: 25375140 |
[6] | STAFFORD C A, WALKER G P, ULLMAN D E. Infection with a plant virus modifies vector feeding behavior. Proceedings of the National Academy of Science of the United States of America, 2011,108(23):9350-9355. |
[7] | MAUCK K E, DE MORAES C M, MESCHER M C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Science of the United States of America, 2010,107(8):3600-3605. |
[8] |
MAUCK K E, DE MORAES C M, MESCHER M C. Effects of cucumber mosaic virus infection on vector and non-vector herbivores of squash. Communicative and Integrative Biology, 2010,3(6):579-582.
doi: 10.4161/cib.3.6.13094 pmid: 21331245 |
[9] |
GADHAVE K R, DUTTA B, COOLONG T, SRINIVASAN R. A non-persistent aphid-transmitted Potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Scientific Reports, 2019,9:2503.
doi: 10.1038/s41598-019-39256-5 pmid: 30792431 |
[10] |
CASTEEL C L, YANG C, NANDURI A C, DE JONG H N, WHITHAM S A, JANDER G. The NIa-Pro protein of turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). The Plant Journal, 2014,77(4):653-663.
pmid: 24372679 |
[11] | KERSCH-BECKER M F, THALER J S. Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores. Oecologia, 2014,174(3):883-892. |
[12] |
LI H, LIU X, LIU X, MICHAUD J P, ZHI H, LI K, LI X, LI Z. Host plant infection by soybean mosaic virus reduces the fitness of its vector, Aphis glycines (Hemiptera: Aphididae). Journal of Economic Entomology, 2018,111(5):2017-2023.
pmid: 29945216 |
[13] |
NG J C, PERRY K L. Transmission of plant viruses by aphid vectors. Molecular Plant Pathology, 2004,5(5):505-511.
doi: 10.1111/j.1364-3703.2004.00240.x pmid: 20565624 |
[14] | STAFFORD C A, WALKER G P, ULLMAN D E. Hitching a ride: Vector feeding and virus transmission. Communicative and Integrative Biology, 2012,5(1):43-49. |
[15] | JIMÉNEZ J, GARZO E, ALBA-TERCEDOR J, MORENO A, FERERES A, WALKER G P. The phloem-pd: A distinctive brief sieve element stylet puncture prior to sieve element phase of aphid feeding behavior. Arthropod-Plant Interactions, 2020,14:67-78. |
[16] | ALVAREZ A E, GARZO E, VERBEEK M, VOSMAN B, DICKE M, TJALLINGII W F. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 2007,125(2):135-144. |
[17] | COLLAR J L, AVILLA C, FERERES A. New correlations between aphid stylet paths and nonpersistent virus transmission. Environmental Entomology, 1997,26(3):537-544. |
[18] | REN G W, WANG X F, CHEN D, WANG X W, FAN X J, LIU X D. Potato virus Y-infected tobacco affects the growth, reproduction, and feeding behavior of a vector aphid, Myzus persicae (Hemiptera: Aphididae). Applied Entomology and Zoology, 2015,50(2):239-243. |
[19] | LIU J Y, LIU Y J, DONKERSLEY P, DONG Y H, CHEN X, ZANG Y, XU P J, REN G W. Preference of the aphid Myzus persicae (Hemiptera: Aphididae) for tobacco plants at specific stages of potato virus Y infection. Archives of Virology, 2019,164(6):1567-1573. |
[20] | 姚敏, 张天奇, 田志超, 王源超, 陶小荣. 农杆菌介导的CMV侵染性克隆及2b缺失突变体构建. 中国农业科学, 2011,44(14):3060-3068. |
YAO M, ZHANG T Q, TIAN Z C, WANG Y C, TAO X R. Construction of Agrobacterium-mediated cucumber mosaic virus infectious cDNA clones and 2b deletion viral vector. Scientia Agricultura Sinica, 2011,44(14):3060-3068. (in Chinese) | |
[21] | SARRIA E, CID M, GARZO E, FERERES A. Excel Workbook for automatic parameter calculation of EPG data. Computers and Electronics in Agriculture, 2009,67(1/2):35-42. |
[22] | 臧连生, 刘银泉, 刘树生. 一种适合粉虱实验观察的新型微虫笼. 昆虫知识, 2005,42(3):329-331. |
ZANG L S, LIU Y Q, LIU S S. A new clip-cage for whitefly experimental studies. Chinese Bulletin of Entomology, 2005,42(3):329-331. (in Chinese) | |
[23] | CHI H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988,17(1):26-34. |
[24] | CHI H, LIU H. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 1985,24(2):225-240. |
[25] | KARIYAT R R, MAUCK K E, BALOGH C M, STEPHENSON A G, MESCHER M C, DE MORAES C M. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths. Proceedings of the Royal Society B: Biological Sciences, 2013,280(1757):20130020. |
[26] | MAXWELL D J, PARTRIDGE J C, ROBERTS N W, BOONHAM N, FOSTER G D. The effects of plant virus infection on polarization reflection from leaves. PLoS ONE, 2016,11(4):e0152836. |
[27] |
MAUCK K E, DE MORAES C M, MESCHER M C. Biochemical and physiological mechanisms underlying effects of cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant, Cell and Environment, 2014,37(6):1427-1439.
pmid: 24329574 |
[28] | DYER L A, PHILBIN C S, OCHSENRIDER K M, RICHARDS L A, MASSAD T J, SMILANICH A M, FORISTER M L, PARCHMAN T L, GALLAND L M, HURTADO P J, et al. Modern approaches to study plant-insect interactions in chemical ecology. Nature Reviews Chemistry, 2018,2(6):50-64. |
[29] | WU D, QI T, LI W X, TIAN H, GAO H, WANG J, GE J, YAO R, REN C, WANG X B, LIU Y, KANG L, DING S W, XIE D. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017,27(3):402-415. |
[30] | EIGENBRODE S D, DING H, SHIEL P, BERGER P H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings of the Royal Society of London B: Biological Sciences, 2002,269(1490):455-460. |
[31] | MAUCK K, BOSQUE-PÉREZ N A, EIGENBRODE S D, DE MORAES C M, MESCHER M C. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Functional Ecology, 2012,26(5):1162-1175. |
[32] |
WU J, LAN H, ZHANG Z F, CAO H H, LIU T X. Performance and transcriptional response of the green peach aphid Myzus persicae to the restriction of dietary amino acids. Frontiers in Physiology, 2020,11:487.
pmid: 32523545 |
[33] | 陈茜, 刘金燕, 徐蓬军, 刘英杰, 董勇浩, 臧云, 蔡宪杰, 任广伟. PVY侵染后烟草营养成分的变化及其对介体烟蚜生长发育的影响. 昆虫学报, 2020,63(2):181-190. |
CHEN X, LIU J Y, XU P J, LIU Y J, DONG Y H, ZANG Y, CAI X J, REN G W. Changes in the nutrient composition of tobacco plants after potato virus Y infection and their effects on the growth and development of the vector Myzus persicae (Hemiptera: Aphididae). Acta Entomologica Sinica, 2020,63(2):181-190. (in Chinese) | |
[34] | MARTIN B, COLLAR J L, TJALLINGII W F, FERERES A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. Journal of General Virology, 1997,78:2701-2705. |
[35] | POWELL G. Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. Journal of General Virology, 2005,86(2):469-472. |
[36] |
SHI X, GAO Y, YAN S, TANG X, ZHOU X, ZHANG D, LIU Y. Aphid performance changes with plant defense mediated by cucumber mosaic virus titer. Virology Journal, 2016,13:70.
doi: 10.1186/s12985-016-0524-4 pmid: 27103351 |
[37] | 王佳, 王亚峰, 蒲颇, 陈媛, 刘映红. 烟草感染两种病毒对烟蚜种群增长、寄主选择与传毒的影响. 西南大学学报 (自然科学版), 2017,39(3):23-27. |
WANG J, WANG Y F, PU P, CHEN Y, LIU Y H. Effect of two viruses infecting tobacco on population growth, host plant selection and virus transmission efficiency of aphids. Journal of Southwest University (Natural Science Edition), 2017,39(3):23-27. (in Chinese) | |
[38] | ZIEBELL H, MURPHY A M, GROEN S C, TUNGADI T, WESTWOOD J H, LEWSEY M G, MOULIN M, KLECZKOWSKI A, SMITH A G, STEVENS M, POWELL G, CARR J P. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Scientific Reports, 2011,1:187. |
[39] |
TUNGADI T, DONNELLY R, QING L, IQBAL J, MURPHY A M, PATE A E, CUNNIFFE N J, CARR J P. Cucumber mosaic virus 2b proteins inhibit virus-induced aphid resistance in tobacco. Molecular Plant Pathology, 2020,21(2):250-257.
doi: 10.1111/mpp.12892 pmid: 31777194 |
[40] | CASTLE S J, BERGER P H. Rates of growth and increase of Myzus persicae on virus-infected potatoes according to type of virus-vector relationship. Entomologia Experimentalis et Applicata, 1993,69(1):51-60. |
[41] |
MAUCK K E, DE MORAES C M, MESCHER M C. Infection of host plants by cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani. Scientific Reports, 2015,5:10963.
doi: 10.1038/srep10963 pmid: 26043237 |
[1] | 裴悦宏,李凤巍,刘维娜,温玉霞,朱鑫,田绍锐,樊光进,马小舟,孙现超. 本氏烟半胱氨酸蛋白酶基因家族特征及其在TMV侵染中的功能[J]. 中国农业科学, 2022, 55(21): 4196-4210. |
[2] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
[3] | 张承启,廖露露,齐永霞,丁克坚,陈莉. 禾谷镰孢核孔蛋白基因FgNup42的功能分析[J]. 中国农业科学, 2021, 54(9): 1894-1903. |
[4] | 侯彤瑜,郝婷丽,王海江,张泽,吕新. 棉花生长发育模型及其在我国的研究和应用进展[J]. 中国农业科学, 2021, 54(6): 1112-1126. |
[5] | 徐翔,解屹,宋丽云,申莉莉,李莹,王勇,刘明宏,刘东阳,王小彦,赵存孝,王凤龙,杨金广. 高效靶向降解烟草花叶病毒核酸的dsRNA筛选与大量制备[J]. 中国农业科学, 2021, 54(6): 1143-1153. |
[6] | 刘昌云,李欣羽,田绍锐,王靖,裴悦宏,马小舟,樊光进,汪代斌,孙现超. 番茄SlN-like的克隆、表达与抗病毒功能[J]. 中国农业科学, 2021, 54(20): 4348-4357. |
[7] | 何云川,王新谱,洪波,张婷婷,周雪飞,贾彦霞. 四种杀虫剂LC25对Q型烟粉虱成虫取食行为的影响[J]. 中国农业科学, 2021, 54(2): 324-333. |
[8] | 魏艳侠,李卓然,张斌,苑瑜瑾,于玮玮,常若葵,王远宏. 贝莱斯芽孢杆菌LJ02中植物免疫蛋白的筛选及其功能[J]. 中国农业科学, 2021, 54(16): 3451-3460. |
[9] | 赵雪,王锋,王文静,刘晓峰,卞士权,刘艳华,刘新民,杜咏梅,张忠锋,张洪博. 烟草PR3b转录后剪切元件NRSE1与GUS融合表达后的可变剪切[J]. 中国农业科学, 2020, 53(8): 1524-1531. |
[10] | 贾海燕,宋丽云,徐翔,解屹,张超群,刘天波,赵存孝,申莉莉,王杰,李莹,王凤龙,杨金广. 不同温度下TMV侵染枯斑三生烟的LncRNA差异表达[J]. 中国农业科学, 2020, 53(7): 1381-1396. |
[11] | 石田培,王欣悦,侯浩宾,赵志达,尚明玉,张莉. 基于全转录组测序的绵羊胚胎不同发育阶段 骨骼肌circRNA的分析与鉴定[J]. 中国农业科学, 2020, 53(3): 642-657. |
[12] | 向顺雨,王靖,谢中玉,施焕,曹哲,江龙,马小舟,汪代斌,张帅,黄进,孙现超. 一种新型银纳米颗粒的制备及其抑制烟草赤星病菌的机制[J]. 中国农业科学, 2020, 53(14): 2885-2896. |
[13] | 卞书迅,韩晓蕾,袁高鹏,张利义,田义,张彩霞,丛佩华. 苹果U6启动子的克隆及功能分析[J]. 中国农业科学, 2019, 52(23): 4364-4373. |
[14] | 李飞鸿,侯应军,李雪涵,余心怡,渠慎春. 苹果赤霉素氧化酶基因MdGA2ox8的克隆及功能分析[J]. 中国农业科学, 2018, 51(22): 4339-4351. |
[15] | 张在宝,李婉杰,李九丽,张弛,胡梦辉,程琳,袁红雨. 植物RNA结合蛋白研究进展[J]. 中国农业科学, 2018, 51(21): 4007-4019. |
|