中国农业科学 ›› 2020, Vol. 53 ›› Issue (18): 3665-3678.doi: 10.3864/j.issn.0578-1752.2020.18.004
李颖(),赵继浩,李金融,钱必长,刘兆新,高芳,杨东清(
),李向东(
)
收稿日期:
2019-12-30
接受日期:
2020-02-26
出版日期:
2020-09-16
发布日期:
2020-09-25
通讯作者:
杨东清,李向东
作者简介:
李颖,E-mail: 基金资助:
LI Ying(),ZHAO JiHao,LI JinRong,QIAN BiChang,LIU ZhaoXin,GAO Fang,YANG DongQing(
),LI XiangDong(
)
Received:
2019-12-30
Accepted:
2020-02-26
Online:
2020-09-16
Published:
2020-09-25
Contact:
DongQing YANG,XiangDong LI
摘要:
【目的】土柱栽培条件下,研究外源细胞分裂素(6-BA)对花生不同生育时期淹水胁迫下根系呼吸酶活性、内源激素含量及荚果产量的影响,为提高淹水胁迫下花生抗性及采用外源激素调控花生生长提供理论依据。【方法】选用山花108为试验材料,以全生育时期正常水分管理(CK)为对照,设置苗期(V3)、花针期(R3)、结荚期(R5)、饱果期(R7)4个淹水时期,于淹水10 d后喷施15 mg·L-1的6-苄基腺嘌呤(6-BA),共9个喷施组合处理,即全生育时期正常水分管理(CK)、苗期淹水(V3-W)、苗期淹水后喷施外源细胞分裂素(V3-S)、花针期淹水(R3-W)、花针期淹水后喷施外源细胞分裂素(R3-S)、结荚期淹水(R5-W)、结荚淹水后喷施外源细胞分裂素(R5-S)、饱果期淹水(R7-W)、饱果期淹水后喷施外源细胞分裂素(R7-S)。处理后每隔5 d,取样测定根系无氧呼吸酶、有氧呼吸酶活性,内源激素含量,根系干重及根长密度等指标。【结果】淹水显著降低了20—60 cm土层的根系干重及根长密度。淹水结束后,V3-W处理20—40 cm土层无根系。2018与2019生长季,R3-S处理20—60 cm土层根系干重及根长密度比R3-W处理平均提高5.15%和8.59%。淹水提高了根系乙醇脱氢酶(ADH)、乳酸脱氢酶(LDH)活性,降低了苹果酸脱氢酶(MDH)活性。淹水结束后,V3-W处理ADH和LDH活性分别提高了12.49倍和18.99倍,而MDH活性降低了65.15%。与CK相比,2018与2019生长季V3-W、R3-W、R5-W、R7-W处理ABA含量分别平均提高了22.71%、15.81%、10.57%、5.64%,而喷施6-BA显著降低了R3时期ABA含量,较R3-W处理降低了7.60%。淹水降低了根系ZR含量,淹水结束后,2018与2019生长季V3-W、R3-W、R5-W、R7-W分别较CK平均降低了16.84%、15.61%、15.35%、8.51%;喷施6-BA增加了R3时期ZR含量,较R3-W处理增加了5.47%。淹水显著降低R5时期单株结果数与单株产量,2018年分别下降38.39%和30.43%;2019年分别下降31.60%和25.06%。R3时期在2018与2019生长季喷施6-BA后分别较R3-W处理增产5.38%、6.91%。【结论】淹水后喷施外源6-BA通过降低根源ABA含量,增加ZR含量,提高根系ADH、MDH活性,降低LDH活性,增强根系呼吸性能;提高叶片叶绿素含量与光合速率,增加叶片的光合生产能力,从而增加干物质积累与转运,最终提高产量。
李颖,赵继浩,李金融,钱必长,刘兆新,高芳,杨东清,李向东. 外源6-BA对不同生育时期淹水花生根系生长和荚果产量的影响[J]. 中国农业科学, 2020, 53(18): 3665-3678.
LI Ying,ZHAO JiHao,LI JinRong,QIAN BiChang,LIU ZhaoXin,GAO Fang,YANG DongQing,LI XiangDong. Effects of Exogenous 6-BA on Root Growth and Pod Yield of Flooded Peanut at Different Growth Stages[J]. Scientia Agricultura Sinica, 2020, 53(18): 3665-3678.
表3
外源6-BA对不同生育时期淹水胁迫下花生产量及产量构成因素的影响"
年份 Year | 处理 Treatment | 单株结果数 Pods number per plant | 百果重 Weight per 100 kernel (g) | 双果仁率 Double kernel rate (%) | 单株产量 Pod mass per plant (g) | 出仁率 Kernel rate (%) |
---|---|---|---|---|---|---|
2018 | CK | 20.47a | 135.49a | 66.30a | 27.05a | 68.46a |
V3-W | 18.33d | 129.85abc | 61.77bc | 23.80c | 67.61a | |
V3-S | 20.39bc | 133.27a | 62.98ab | 25.06b | 67.93a | |
R3-W | 16.67e | 126.51bcd | 55.70d | 22.17d | 66.22abc | |
R3-S | 17.33e | 131.92ab | 58.28cd | 23.43c | 65.87abc | |
R5-W | 14.17g | 122.24d | 55.48d | 18.82e | 68.34a | |
R5-S | 15.67f | 124.92cd | 55.79d | 19.62e | 67.13ab | |
R7-W | 19.67c | 129.35abc | 64.66ab | 24.70b | 62.05c | |
R7-S | 20.33bc | 130.17abc | 64.95ab | 25.15b | 62.49bc | |
2019 | CK | 18.20a | 148.85a | 65.40a | 27.21a | 67.55a |
V3-W | 17.83a | 146.84ab | 63.65ab | 26.17a | 66.95a | |
V3-S | 18.00a | 150.28a | 64.44a | 27.05a | 67.52a | |
R3-W | 15.33abc | 137.55bc | 55.51c | 22.60bc | 64.90abc | |
R3-S | 16.83ab | 145.51ab | 58.50bc | 24.43ab | 65.42ab | |
R5-W | 14.83c | 131.11c | 57.97bc | 19.39c | 59.07d | |
R5-S | 15.25bc | 136.90bc | 58.54bc | 20.88c | 61.71bcd | |
R7-W | 17.25a | 147.02ab | 56.53c | 25.37ab | 60.83cd | |
R7-S | 17.33a | 148.00a | 56.73c | 25.73ab | 61.05bcd |
[1] | 郭洪海, 杨丽萍, 李新华, 杨萍, 万书波. 黄淮海区域花生生产与品质特征的研究. 中国生态农业学报, 2010,18(6):1233-1238. |
GUO H H, YANG L P, LI X H, YANG P, WAN S B. Characteristics of production and quality of peanut in Huang-Huai-Hai region. Chinese Journal of Eco-Agriculture, 2010,18(6):1233-1238. (in Chinese) | |
[2] | 万书波. 中国花生栽培学, 上海: 上海科技出版社, 2003. |
WAN S B. Chinese Peanut Cultivation. Shanghai: Shanghai Science and Technology Press, 2003. (in Chinese) | |
[3] |
SHABALA S, WHITE R G, DJORDJEVICM A, RUAN Y L, MATHESIUS U. Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Functional Plant Biology, 2016,43(2):87-104.
doi: 10.1071/FP15252 pmid: 32480444 |
[4] |
WANG Y H, HU W L, ZHANG X L, LI L X, KANG G Z, FENG W, ZHU Y J, WANG C Y, GUO T C. Effects of cultivation patterns on winter wheat root growth parameters and grain yield. Field Crops Research, 2014,156(2):208-218.
doi: 10.1016/j.fcr.2013.11.017 |
[5] | HEŘMANSKÁ A, STŘEDA T, CHLOUPEK O. Improved wheat grain yield by a new method of root selection. Agronomy for Sustainable Development, 2015,35(1):195-202. |
[6] |
YORDANOVA R Y, POPOVA L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiologiae Plantarum, 2007,29:535-541.
doi: 10.1007/s11738-007-0064-z |
[7] |
CAPON S J, JAMES C S, WILLIAMS L. Responses to flooding and drying in seedlings of a common Australian desert floodplain shrub: Muehlenbeckia florulenta Meisn. Environmental and Experimental Botany, 2009,66(2):178-185.
doi: 10.1016/j.envexpbot.2009.02.012 |
[8] |
KOMATSU S, DESCHAMPS T, HIRAGA S, KATO M, CHIBA M, HASHIGUCHI A, TOUGOU M, SHIMAMURA S, YASUE H. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Molecular Biology, 2011,77(3):309-322.
doi: 10.1007/s11103-011-9812-y |
[9] |
DU H Y, LIU D X, LIU H P, KURTENBACH R. Relationship between polyamines and anaerobic respiration of wheat seedling root under water-logging stress. Russian Journal of Plant Physiology, 2018,65(6):874-881.
doi: 10.1134/S1021443718060055 |
[10] |
SAKAKIBARA H. Cytokinins: activity, biosynthesis and translocation. Annual Review of Plant Biology, 2006,57:431-449.
doi: 10.1146/annurev.arplant.57.032905.105231 pmid: 16669769 |
[11] |
BLATT M R, THIEL G. Hormonal control of ion channel gating. Annual Review of Plant Physiology and Plant Molecular Biology, 1993,44(1):543-567.
doi: 10.1146/annurev.pp.44.060193.002551 |
[12] |
ASHRAF M, ARFAN M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus us under waterlogging. Biologia Plantarum, 2005,49:459-462.
doi: 10.1007/s10535-005-0029-2 |
[13] | 胡朝晖, 杨丽霞, 宋涛平, 彭新凯, 李玲. 水分胁迫对花生幼苗叶片内源激素含量的影响. 中国农学通报, 2009,25(17):133-136. |
HU Z H, YANG L X, SONG T P, PENG X K, LI L. The effect of water stress on endogenous phytohormones content in peanut ( Arachis hypogaea L.) leaves. Chinese Agricultural Science Bulletin, 2009,25(17):133-136. (in Chinese) | |
[14] | 李迎春. 河竹对淹水环境的生理生态响应特征[D]. 北京: 中国林业科学研究院, 2017. |
LI Y C. Eco-physiological responses of phyllostachys rivalis to waterlogging[D]. Beijing: Chinese Academy of Forestry, 2017. (in Chinese) | |
[15] |
任佰朝, 朱玉玲, 李霞, 范霞, 董树亭, 赵斌, 刘鹏, 张吉旺. 大田淹水对夏玉米光合特性的影响. 作物学报, 2015,41(2):329-338.
doi: 10.3724/SP.J.1006.2015.00329 |
REN B Z, ZHU Y L, LI X, FAN X, DONG S T, ZHAO B, LIU P, ZHANG J W. Effects of waterlogging on photosynthetic characteristics of summer maize under field conditions. Acta Agronomica Sinica, 2015,41(2):329-338. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00329 |
|
[16] |
BOOTE K J. Growth stages of peanut ( Arachis hypogaea L.). Peanut Science, 1982,9(1):35-40.
doi: 10.3146/i0095-3679-9-1-11 |
[17] |
WATER I, MORELL S, GREENWAY H, COLMER T D. Effects of anoxia on wheat seedlings: Ⅱ. Influence of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels. Journal of Experimental Botany, 1991,42(11):1437-1447.
doi: 10.1093/jxb/42.11.1437 |
[18] | BERGMEGER H U. Methods of Enzymatic Analysis. Weinheim: Verlag Chemse, 1983. |
[19] | 薛应龙. 植物生理学实验手册, 上海: 上海科学技术出版社, 1985. |
XUE Y L. Plant Physiology Experiment Manual. Shanghai: Shanghai Science and Technology Press, 1985. (in Chinese) | |
[20] | 杨建昌, 王志琴, 朱庆森, 苏宝林. ABA与GA对水稻籽粒灌浆的调控. 作物学报, 1999,25(3):341-348. |
YANG J C, WANG Z Q, ZHU Q S, SU B L. Regulation of ABA and GA to the grain filling of rice. Acta Agronomica Sinica, 1999,25(3):341-348. (in Chinese) | |
[21] |
ZENG Y, WU Y, WAYNE T A, KAREN E K. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiology, 1998,116(4):1573-1583.
doi: 10.1104/pp.116.4.1573 pmid: 9536076 |
[22] | 陈强, 郭修武, 胡艳丽, 毛志泉. 淹水对甜樱桃根系呼吸强度和呼吸酶活性的影响. 应用生态学报, 2008,19(7):1462-1466. |
CHEN Q, GUO X W, HU Y L, MAO Z Q. Effects of waterlogging on root respiration in tensity and respiratory enzyme activities of sweet cherry. Chinese Journal of Applied Ecology, 2008,19(7):1462-1466. (in Chinese) | |
[23] |
VAN DONGEN, JOORT T, LICAUSI, FRANCESCO. Oxygen sensing and signaling. Annual Review of Plant Biology, 2015,66(1):345-367.
doi: 10.1146/annurev-arplant-043014-114813 |
[24] |
僧珊珊, 王群, 李潮海, 刘天学, 赵龙飞. 淹水胁迫下不同玉米品种根结构及呼吸代谢差异. 中国农业科学, 2012,45(20):4141-4148.
doi: 10.3864/j.issn.0578-1752.2012.20.003 |
SENG S S, WANG Q, LI C H, LIU T X, ZHAO L F. Difference in root structure and respiration metabolism between two maize cultivars under waterlogging stress. Scientia Agricultura Sinica, 2012,45(20):4141-4148. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.20.003 |
|
[25] | 张凤, 王媛媛, 张佳蕾, 杨传婷, 杨晓康, 顾学花, 李艳红, 李向东. 不同生育时期淹水对花生生理性状及产量、品质的影响. 花生学报, 2012,41(2):1-7. |
ZHANG F, WANG Y Y, ZHANG J L, YANG C T, YANG X K, GU X H, LI Y H, LI X D. Effects of water-logging at different growing periods on physiological characteristics, pod yield and kernel quality of peanut. Journal of Peanut Science, 2012,41(2):1-7. (in Chinese) | |
[26] | 潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展. 生态学杂志, 2012,31(10):2662-2672. |
PAN L, XUE L. Plant physiological mechanisms in adapting to waterlogging stress. Chinese Journal of Ecology, 2012,31(10):2662-2672. (in Chinese) | |
[27] | 汪贵斌, 曹福亮, 张晓燕, 张往祥. 涝渍胁迫对不同树种生长和能量代谢酶活性的影响. 应用生态学报, 2010,21(3):590-596. |
WANG G B, CAO F L, ZHANG X Y, ZHANG W X. Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species. Chinese Journal of Applied Ecology, 2010,21(3):590-596. (in Chinese) | |
[28] | PANDEY G. Mechanism of Plant Hormone Signaling Under Stress. Hoboken, New Jersey: John Wiley & Sons, 2017. |
[29] |
TRAPET P, KULIK A, LAMOTTE O. NO signaling in plant immunity: A tale of messengers. Phytochemistry, 2015,112:72-79.
doi: 10.1016/j.phytochem.2014.03.015 pmid: 24713571 |
[30] |
WANG Y Y, FRANK P M, EVA W N. Near-optimal control of nonstandard singularly perturbed system. Automatica, 1994,30(2):277-292.
doi: 10.1016/0005-1098(94)90030-2 |
[31] |
DAVIES W J, KUDOYAROVA G, HARTUNG W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. Journal of Plant Growth Regulation, 2005,24(4):285-295.
doi: 10.1007/s00344-005-0103-1 |
[32] |
ZHANG F Q, WANG Y S, LOU Z P. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 2007,67(1):44-50.
doi: 10.1016/j.chemosphere.2006.10.007 pmid: 17123580 |
[33] |
TAKATSUKA H, UMEDA M. ABA inhibits root cell elongation through repressing the cytokinin signaling. Plant Signaling & Behavior, 2019,14(3):e1578632.
doi: 10.1080/15592324.2019.1578632 pmid: 30741075 |
[34] |
JIAO Y, SUN L, SONG Y. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca 2+ signalling and auxin response of roots in Arabidopsis . Journal of Experimental Botany, 2013,64(14):4183-4192.
doi: 10.1093/jxb/ert228 pmid: 23963673 |
[35] | POSPĺŠLOVÁ J. Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica (Prague), 2003,41(1):49-56. |
[36] |
刘敬然, 刘佳杰, 孟亚利, 王友华, 陈兵林, 张国伟, 周治国. 外源6-BA和ABA对不同播种期棉花产量和品质及其棉铃对位叶光合产物的影响. 作物学报, 2013,39(6):1078-1088.
doi: 10.3724/SP.J.1006.2013.01078 |
LIU J R, LIU J J, MENG Y L, WANG Y H, CHEN B L, ZHANG G W, ZHOU Z G. Effect of 6-BA and ABA applications on yield, quality and photosynthate contents in the subtending leaf of cotton with different planting dates. Acta Agronomica Sinica, 2013,39(6):1078-1088. (in Chinese)
doi: 10.3724/SP.J.1006.2013.01078 |
|
[37] |
SASIDHARAN R, HARTMAN S, LIU Z. Signal dynamics and interactions during flooding stress. Plant Physiology, 2018,176(2):1106-1117.
doi: 10.1104/pp.17.01232 pmid: 29097391 |
[38] |
WILKINSON S, KUDOYAROVA G R, VESELOV D S, ARKHIPOA T N, DAVIES W J. Plant hormone interactions: innovative targets for crop breeding and management. Journal of Experimental Botany, 2012,63(9):3499-3509.
doi: 10.1093/jxb/ers148 |
[39] |
于奇, 冯乃杰, 王诗雅, 左官强, 郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响. 作物学报, 2019,45(7):1080-1089.
doi: 10.3724/SP.J.1006.2019.84160 |
YU Q, FENG N J, WANG S Y, ZUO G Q, ZHENG D F. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress. Acta Agronomica Sinica, 2019,45(7):1080-1089. (in Chinese)
doi: 10.3724/SP.J.1006.2019.84160 |
|
[40] |
ARAKI H, HAMADA A, HOSSAIN M A, TAKAHASHI T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research, 2012,137:27-36.
doi: 10.1016/j.fcr.2012.09.006 |
[41] |
YEUNG E, BAILEY-SERRES J, SASIDHARAN R. After the deluge: plant revival post-flooding. Trends in Plant Science, 2019,24(5):443-454.
doi: 10.1016/j.tplants.2019.02.007 pmid: 30857921 |
[42] | 刘义玲, 李天来, 孙周平, 顾丰颖, 何雨. 根际CO2浓度升高对网纹甜瓜光合特性及产量和品质的影响. 应用生态学报, 2013,24(10):2871-2877. |
LIU Y L, LI T L, SUN Z P, GU F Y, HE Y. Effects of elevated rhizosphere CO2 concentration on the photosynthetic characteristics, yield, and quality of muskmelon. Chinese Journal of Applied Ecology. 2013,24(10):2871-2877. (in Chinese) | |
[43] | 杜厚江, 王小燕, 赵晓宇. 6-BA对小麦开花期渍害的缓减效应. 麦类作物学报, 2014,34(12):1672-1676. |
DU H J, WANG X Y, ZHAO X Y. Effects of 6-BA on alleviating grain yield loss of wheat by waterlogging at anthesis. Journal of Triticeae Crops, 2014,34(12):1672-1676. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 李旭飞,杨盛迪,李松琦,刘海楠,裴茂松,韦同路,郭大龙,余义和. 葡萄VlCKX4表达特性分析与转录调控预测[J]. 中国农业科学, 2023, 56(1): 144-155. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[12] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[13] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|