中国农业科学 ›› 2022, Vol. 55 ›› Issue (12): 2372-2383.doi: 10.3864/j.issn.0578-1752.2022.12.009
崔帅1(),刘烁然2,王寅1(),夏晨真1,焉莉1,冯国忠1,高强1()
收稿日期:
2021-04-07
接受日期:
2021-08-26
出版日期:
2022-06-16
发布日期:
2022-06-23
通讯作者:
王寅,高强
作者简介:
崔帅,E-mail: 基金资助:
CUI Shuai1(),LIU ShuoRan2,WANG Yin1(),XIA ChenZhen1,YAN Li1,FENG GuoZhong1,GAO Qiang1()
Received:
2021-04-07
Accepted:
2021-08-26
Online:
2022-06-16
Published:
2022-06-23
Contact:
Yin WANG,Qiang GAO
摘要:
【目的】 明确吉林省旱地土壤有效硫含量状况及其分布差异,为区域作物合理施硫提供依据。【方法】 采集吉林省不同生态区8种主要土壤类型的232个表层(0—20 cm)土壤样品,利用地统计学方法分析有效硫含量的空间分布特征,比较不同类型土壤有效硫含量差异,并建立土壤有效硫和有机质、全氮的相关关系。【结果】 吉林省旱地土壤有效硫含量为5.8—40.7 mg·kg-1,均值为18.1 mg·kg-1,所有样本中缺硫和潜在缺硫的比例分别为27.2%和20.7%。空间分布上,土壤有效硫含量总体呈自东向西逐渐下降趋势,相应的缺硫发生率自东向西逐渐上升。东、中、西三大生态区的土壤有效硫含量均值(缺硫或潜在缺硫发生率)分别为22.3 mg·kg-1(24.2%)、18.1 mg·kg-1(40.0%)和14.3 mg·kg-1(75.6%)。主要分布于东部湿润山区的白浆土、暗棕壤有效硫含量均值分别为22.1和22.0 mg·kg-1,缺硫或潜在缺硫样本分别占15.2%和28.3%;中部半湿润平原区的黑土、冲积土和草甸土有效硫含量均值分别为18.8、17.1和16.2 mg·kg-1,缺硫或潜在缺硫样本占比分别为37.9%、63.5%和55.5%;西部半干旱平原区的黑钙土、风沙土和盐碱土有效硫含量均值分别为11.9、14.0和13.9 mg·kg-1,缺硫或潜在缺硫风险较高,分别占比73.6%、73.3%和75.5%。回归分析结果显示,吉林省旱地土壤有效硫和土壤有机质、土壤全氮均呈显著的对数相关关系,随着土壤有机质和土壤全氮含量增加,土壤有效硫含量也随之提升。【结论】 吉林省旱地土壤有效硫含量在不同区域和土壤类型之间存在显著差异,硫素缺乏现象也较为普遍,47.9%的土壤样本存在缺硫或潜在缺硫问题,特别是中西部地区的风沙土、盐碱土和黑钙土缺硫风险较高,在土壤培肥和作物管理中应注重硫素的补充。
崔帅,刘烁然,王寅,夏晨真,焉莉,冯国忠,高强. 吉林省旱地土壤有效硫含量及其与土壤有机质和全氮的关系[J]. 中国农业科学, 2022, 55(12): 2372-2383.
CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen[J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
表1
吉林省不同生态区耕层的土壤有效硫含量统计结果"
主要生态区 Region | 土壤有效硫 Available <BOLD>S</BOLD><BOLD> (</BOLD>mg·kg-1<BOLD>)</BOLD> | |||
---|---|---|---|---|
样本数 Sample number | 变幅 Range | 平均值±标准差 Mean±SD | 变异系数 CV (%) | |
东部湿润山区 Eastern humid mountainous area, EHMA | 70 | 10.8-40.7 | 22.2 ± 7.7 a | 34.7 |
中部半湿润平原区 Central semi-humid plain area, CSPA | 80 | 5.8-29.7 | 18.1 ± 6.6 b | 36.7 |
西部半干旱平原区 Western semi-arid plain area, WSPA | 82 | 6.1-35.9 | 14.0 ± 7.2 c | 49.8 |
全省Total | 232 | 5.8-40.7 | 18.1 ± 7.8 | 43.2 |
表2
吉林省不同生态区耕层的土壤有机质和全氮含量"
主要生态区 Region | 样本数 Sample number | 土壤全氮 Total N (g·kg-1) | 土壤有机质Organic matter (g·kg-1) | ||||
---|---|---|---|---|---|---|---|
变幅 Range | 平均值±标准差 Mean ± SD | 变异系数 CV(%) | 变幅 Range | 平均值±标准差 Mean ± SD | 变异系数 CV(%) | ||
东部湿润山区EHMA | 70 | 0.5-2.0 | 1.2±0.35 b | 68.9 | 8.0-44.8 | 24.2±8.5 a | 35.0 |
中部半湿润平原区CSPA | 80 | 0.8-1.9 | 1.43±0.5 a | 35.4 | 15.3-39.2 | 25.1±5.1 a | 20.0 |
西部半干旱平原区WSPA | 82 | 0.5-1.4 | 1.05±0.42 c | 40.3 | 4.2-21.1 | 11.4±4.2 b | 37.1 |
全省Total | 232 | 0.5-2.0 | 1.24±0.32 | 25.5 | 4.2-44.8 | 20.0±8.8 | 43.9 |
[1] | 张艳松, 张艳, 于汶加, 张世洋, 刘璇, 刘艳飞. 中国硫资源供需形势分析及对策建议. 中国矿业, 2014, 23(8): 11-14. |
ZHANG Y S, ZHANG Y, YU W J, ZHANG S Y, LIU X, LIU Y F. Supply and demand situation of sulfur resources in China and relevant industry development countermeasure. China Mining Magazine, 2014, 23(8): 11-14. (in Chinese) | |
[2] | 中国统计局. 中国统计年鉴 2020. 北京: 中国统计出版社, 2020. |
Bureau of Statistics of China Province. China Statistical Yearbook 2020. Beijing: China Statistics Press, 2020. (in Chinese) | |
[3] |
KOPRIVOVA A, KOPRIVA S. Sulfur metabolism and its manipulation in crops. Journal of Genetics and Genomics, 2016, 43(11): 623-629.
doi: 10.1016/j.jgg.2016.07.001 |
[4] | KOPRIVOVA A, KOPRIVA S. The importance of having sulfur. Journal of Genetics & Genomics, 2016: S1673852716300947. |
[5] |
FATMA M, ASGHER M, MASOOD A, KHAN N A. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environmental and Experimental Botany, 2014, 107: 55-63.
doi: 10.1016/j.envexpbot.2014.05.008 |
[6] | NAZAR R, KHAN N A, ANJUM N A. ATP-sulfurylase activity, photosynthesis, and shoot dry mass of mustard (Brassica juncea L.) cultivars differing in sulfur accumulation capacity. Photosynthetica, 2008, 46(2): 279. |
[7] |
CHEN Y C, HUERTA A J. Effects of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. Journal of Plant Nutrition, 1997, 20(7/8): 845-856.
doi: 10.1080/01904169709365300 |
[8] |
IQBAL N, KHAN N A, NAZAR R, SILVA J A T D. Ethylene- stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity. Environmental and Experimental Botany, 2012, 78: 84-90.
doi: 10.1016/j.envexpbot.2011.12.025 |
[9] |
TONG Y, GABRIEL-NEUMANN E, NGWENE B, KRUMBEIN A, GEORGE E, PLATZ S, ROHN S, SCHREINER M. Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chemistry, 2014, 152: 190-196.
doi: 10.1016/j.foodchem.2013.11.099 |
[10] |
LEE B R, ZAMAN R, AVICE J C, OURRY A, KIM T H. Sulfur use efficiency is a significant determinant of drought stress tolerance in relation to photosynthetic activity in Brassica napus cultivars. Frontiers in Plant Science, 2016, 7: 459. DOI: 10.3389/fpls.2016.00459.
doi: 10.3389/fpls.2016.00459 |
[11] | GALLARDO K, COURTY P E, LE SIGNOR C, WIPF D, VERNOUD V. Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions. Frontiers in Plant Science, 2014, 5: 580. |
[12] |
NAZAR R, IQBAL N, MASOOD A, SYEED S, KHAN N A. Understanding the significance of sulfur in improving salinity tolerance in plants. Environmental and Experimental Botany, 2011, 70(2/3): 80-87.
doi: 10.1016/j.envexpbot.2010.09.011 |
[13] |
AHMAD N, MALAGOLI M, WIRTZ M, HELL R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biology, 2016, 16(1): 247.
doi: 10.1186/s12870-016-0940-z |
[14] |
BOURANIS D L, CHORIANOPOULOU S N, SIYIANNIS V F, PROTONOTARIOS V E, HAWKESFORD M J. Aerenchyma formation in roots of maize during sulphate starvation. Planta, 2003, 217(3): 382-391.
doi: 10.1007/s00425-003-1007-6 |
[15] |
ZHAO Y W, XIAO X, BI D M, HU F. Effects of sulfur fertilization on soybean root and leaf traits, and soil microbial activity. Journal of Plant Nutrition, 2008, 31(3): 473-483.
doi: 10.1080/01904160801895001 |
[16] | ALI A, IQBAL Z, HASSAN S W, YASIN M, AHMAD S. Effect of nitrogen and sulphur on phenology. Growth and Yield Parameters of Maize Crop, 2013. |
[17] | 任军, 朱平, 邢秀琴, 孙毅, 郭金瑞, 刘翔, 袁震霖, 苏仁君. 吉林省玉米和水稻硫肥施用效果的研究. 吉林农业科学, 2002, 27(3): 37-39, 43. |
REN J, ZHU P, XING X Q, SUN Y, GUO J R, LIU X, YUAN Z L, SU R J. Effects of sulfur fertilizer application on maize and rice in Jilin Province. Jilin Agricultural Sciences, 2002, 27(3): 37-39, 43. (in Chinese) | |
[18] |
SRIVASTAVA P C, SINGH U S. Effect of graded levels of nitrogen and sulfur and their interaction on yields and quality of aromatic rice. Journal of Plant Nutrition, 2007, 30(5): 811-828.
doi: 10.1080/01904160701290113 |
[19] |
GROVE H, HOLLUNG K, MOLDESTAD A, FÆRGESTAD E M, UHLEN A K. Proteome changes in wheat subjected to different nitrogen and sulfur fertilizations. Journal of Agricultural and Food Chemistry, 2009, 57(10): 4250-4258.
doi: 10.1021/jf803474m |
[20] |
ELWAN M W M, ABD EL-HAMED K E . Influence of nitrogen form, growing season and sulfur fertilization on yield and the content of nitrate and vitamin C of broccoli. Scientia Horticulturae, 2011, 127(3): 181-187.
doi: 10.1016/j.scienta.2010.09.017 |
[21] |
BALPANDE S S, SARAP P A, GHODPAGE R M. Effect of potassium and sulphur on nutrient uptake, yieldand quality of Pigeon Pea (Cajanus cajan). Agricultural Science Digest - A Research Journal, 2016, 36(4): 323-325. DOI: 10.18805/asd.v36i4.6476.
doi: 10.18805/asd.v36i4.6476 |
[22] | 樊明宪, D. L. Messick C. 汤建伟, 穆荣哲. 世界硫需求及硫肥状况. 磷肥与复肥, 2005, 20(6): 5-9. |
FAN M X, MESSICK D L, DE BREY C, TANG J W, MU R Z. Global sulfur requirement and sulfur fertilizers. Phosphate & Compound Fertilizer, 2005, 20(6): 5-9. (in Chinese) | |
[23] | 刘崇群. 中国南方土壤硫的状况和对硫肥的需求. 磷肥与复肥, 1995, 10(3):14. |
LIU C Q. Soil sulfur status and demand for sulfur fertilizer in southern China. Phosphorus Fertilizer and Compound Fertilizer, 1995, 10(3):14. (in Chinese) | |
[24] | 张继棒, 竺伟民, 章力干, 褚海燕, 刘诚, 李孔浩. 安徽省土壤有效硫现状研究. 土壤通报, 1996, 27(5): 222-225. |
ZHANG J B, ZHU W M, ZHANG L G, CHU H Y, LIU C, LI K H. Current status of soil available sulfur in Anhui province. Chinese Journal of Soil Science, 1996, 27(5): 222-225. (in Chinese) | |
[25] | 钱晓华, 杨平, 周学军, 胡荣根, 孙海龙, 张兆坤, 孙旭进. 安徽省土壤有效硫现状及时空分布. 植物营养与肥料学报, 2018, 24(5): 1357-1364. |
QIAN X H, YANG P, ZHOU X J, HU R G, SUN H L, ZHANG Z K, SUN X J. Current situation and spatial-temporal distribution of soil available sulfur in Anhui Province. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1357-1364. (in Chinese) | |
[26] | 迟凤琴, 魏丹, 申惠波, 吴英, 张玉龙. 黑龙江省主要耕地土壤硫素现状研究. 土壤通报, 2003, 34(3): 209-211. |
CHI F Q, WEI D, SHEN H B, WU Y, ZHANG Y L. Study on the sulfur status in cultivited soils of Heilongjiang Province. Chinese Journal of Soil Science, 2003, 34(3): 209-211. (in Chinese) | |
[27] | 王寅, 郭聃, 高强, 焉莉, 宋立新, 刘振刚. 吉林省不同生态区玉米施氮效果与氮肥利用效率差异. 土壤学报, 2016, 53(6): 1464-1475. |
WANG Y, GUO D, GAO Q, YAN L, SONG L X, LIU Z G. Differences in yield response and N use efficiency of maize crops in different ecological zones of Jilin Province. Acta Pedologica Sinica, 2016, 53(6): 1464-1475. (in Chinese) | |
[28] | DONAHUE R L, SHICKLUNA J C, ROBERTSON L S. Soils;An Introduction to Soils and Plant Growth. New Jersey: Prentice-Hall, Inc., Englewood Cliffs, 1972. |
[29] | THE SULPHUR INSTITUTE. Sulphur Deficiency Sources and Symptoms. https://www.sulphurinstitute.org/about-sulphur/ sulphur- the-fourth-major-plant-nutrient/sulphur-deficiency-sources-and-symptoms/, 2021-03-21. |
[30] | ERIKSEN J. Chapter 2 Soil Sulfur Cycling in Temperate Agricultural Systems. Advances in Agronomy, 2009, 102: 55-89. |
[31] | 许闯, 王松山, 李菊梅, 马义兵, 孙文涛, 罗磊, 张淑贞. 长期施肥对红壤和黑土硫形态演变的影响. 应用生态学报, 2014, 25(4): 1069-1075. |
XU C, WANG S S, LI J M, MA Y B, SUN W T, LUO L, ZHANG S Z. Effects of long-term fertilization on evolution of S forms in a red soil and a black soil. Chinese Journal of Applied Ecology, 2014, 25(4): 1069-1075. (in Chinese) | |
[32] | 陈庆瑞, 涂仕华, 冯文强, 曾晖. 四川省土壤有效硫状况及硫肥效应研究. 土壤通报, 2001, 32(3): 129-131, 145. |
CHEN Q R, TU S H, FENG W Q, ZENG H. Effect of sulfur application on soil sulfur status in Sichuan Province. Chinese Journal of Soil Science, 2001, 32(3): 129-131, 145. (in Chinese) | |
[33] | 陶其骧, 罗奇祥, 李祖章, 刘光荣. 江西省农田土壤有效硫现状研究. 土壤通报, 2001, 32(2): 90-92, 94. |
TAO Q X, LUO Q X, LI Z Z, LIU G R. Current situation of available sulfur in cultivated soils in Jiangxi Province. Chinese Journal of Soil Science, 2001, 32(2): 90-92, 94. (in Chinese) | |
[34] | 任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53(8): 1606-1616. |
REN T, GUO L X, ZHANG L M, YANG X K, LIAO S P, ZHANG Y Y, LI X K, CONG R H, LU J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616. (in Chinese) | |
[35] | SCHNUG E, JI L Z, ZHOU J M. Aspects of sulfur nutrition of plants; evaluation of China’s current, future and available resources to correct plant nutrient sulfur deficiencies - report of the first Sino-German Sulfur Workshop[C]. Landbau for Schung Vlkenrode, Special Issue, 2005, 283: 1-4. |
[36] |
LI C, MCLINDEN C, FIOLETOV V, KROTKOV N, CARN S, JOINER J, STREETS D, HE H, REN X R, LI Z Q, DICKERSON R R. India is overtaking China as the world's largest emitter of anthropogenic sulfur dioxide. Scientific Reports, 2017, 7: 14304.
doi: 10.1038/s41598-017-14639-8 |
[37] | 马常宝, 高祥照, M.X. Fan, D.L. Messsick. 全球土壤缺硫与硫肥应用情况. 中国农技推广, 2008, 24(8): 31-33. |
MA C B, GAO X Z, FAN M X, MESSSICK D L. Soil sulphur deficiency and sulphur fertilizer application in the world. China Agricultural Technology Extension, 2008, 24(8): 31-33. (in Chinese) | |
[38] | 蔡红光, 张秀芝, 闫孝贡, 刘剑钊, 盖嘉慧, 张洪喜, 袁静超, 周康, 任军. 吉林省春玉米土壤中、微量元素“潜缺乏”初探. 玉米科学, 2013, 21(3): 71-75. |
CAI H G, ZHANG X Z, YAN X G, LIU J Z, GAI J H, ZHANG H X, YUAN J C, ZHOU K, REN J. Preliminary study on hidden deficiency of secondary and trace elements in spring maize in Jilin Province. Journal of Maize Sciences, 2013, 21(3): 71-75. (in Chinese) | |
[39] | 李书田, 林葆. 土壤中植物有效硫的评价. 植物营养与肥料学报, 1998, 4(1): 75-83. |
LI S T, LIN B. The status and evaluation of plant available sulphur in soils. Plant Natrition and Fertilizer Science, 1998, 4(1): 75-83. (in Chinese) | |
[40] | 宋长春, 王志春, 宋新山. 灌溉条件下苏打盐渍化土壤环境变化及其生物效应. 生态学杂志, 2001, 20(5): 51-54. |
SONG C C, WANG Z C, SONG X S. Environment influence and biological effects in sodic salinization soil under irrigation condition. Chinese Journal of Ecology, 2001, 20(5): 51-54. (in Chinese) | |
[41] |
ERIKSEN J. Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biology and Fertility of Soils, 1996, 22(1): 149-155.
doi: 10.1007/BF00384447 |
[42] |
LIU S R, CUI S, YING F Y, NASAR J, WANG Y, GAO Q A. Simultaneous improvement of protein concentration and amino acid balance in maize grains by coordination application of nitrogen and sulfur. Journal of Cereal Science, 2021, 99: 103189.
doi: 10.1016/j.jcs.2021.103189 |
[43] |
LIU S R, CUI S, ZHANG X E, WANG Y, MI G H, GAO Q A. Synergistic regulation of nitrogen and sulfur on redox balance of maize leaves and amino acids balance of grains. Frontiers in Plant Science, 2020, 11: 576718.
doi: 10.3389/fpls.2020.576718 |
[44] | 高义民, 同延安, 孙本华, 赵护兵. 陕西农田土壤硫分布特征及其与土壤性质的关系. 西北农业学报, 2005, 14(3): 177-180. |
GAO Y M, TONG Y N, SUN B H, ZHAO H B. The characteristics of sulphur distribution in soil and relationships with soil properties of Shaanxi. Acta Agriculturae Boreali-Occidentalis Sinica, 2005, 14(3): 177-180. (in Chinese) | |
[45] | 焉莉, 王寅, 冯国忠, 高强. 吉林省农田土壤肥力现状及变化特征. 中国农业科学, 2015, 48(23): 4800-4810. |
YAN L, WANG Y, FENG G Z, GAO Q. Status and change characteristics of farmland soil fertility in Jilin Province. Scientia Agricultura Sinica, 2015, 48(23): 4800-4810. (in Chinese) | |
[46] | 尹思佳, 李慧, 徐志强, 裴久渤, 戴继光, 刘雨薇, 李艾蒙, 于雅茜, 刘维, 汪景宽. 东北典型黑土区旱地耕层土壤肥力指标的纬度变化特征及其关系. 中国农业科学, 2021, 54(10): 2132-2141. |
YIN S J, LI H, XU Z Q, PEI J B, DAI J G, LIU Y W, LI A M, YU Y X, LIU W, WANG J K. Spatial variations and relationships of topsoil fertility indices of drylands in the typical black soil region of northeast China. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141. (in Chinese) |
[1] | 张维理,傅伯杰,徐爱国,杨鹏,陈涛,张认连,史舟,吴文斌,李建兵,冀宏杰,刘峰,雷秋良,李兆君,冯瑶,李艳丽,徐用兵,裴玮. 中国土壤调查结果的地统计特征[J]. 中国农业科学, 2022, 55(13): 2572-2583. |
[2] | 黄秋红,刘智蕾,李鹏飞,车俊杰,于彩莲,彭显龙. 相同气候背景下南北方稻田土壤上水稻生长及氮响应差异研究[J]. 中国农业科学, 2021, 54(19): 4143-4154. |
[3] | 房蕊,于镇华,李彦生,谢志煌,刘俊杰,王光华,刘晓冰,陈渊,刘居东,张少庆,吴俊江,Stephen J HERBERT,金剑. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3666-3679. |
[4] | 乔磊,张吴平,黄明镜,王国芳,任健. 基于MGWRK的土壤有机质制图及驱动因素研究[J]. 中国农业科学, 2020, 53(9): 1830-1844. |
[5] | 陈丽明,周燕芝,谭义青,吴自明,谭雪明,曾勇军,石庆华,潘晓华,曾研华. 双季机械直播早籼稻品种的丰产性和稳产性[J]. 中国农业科学, 2020, 53(2): 261-272. |
[6] | 李冬初,黄晶,马常宝,薛彦东,高菊生,王伯仁,张杨珠,柳开楼,韩天富,张会民. 中国稻田土壤有机质时空变化及其驱动因素[J]. 中国农业科学, 2020, 53(12): 2410-2422. |
[7] | 姜赛平,张认连,张维理,徐爱国,张怀志,谢良商,冀宏杰. 近30年海南岛土壤有机质时空变异特征及成因分析[J]. 中国农业科学, 2019, 52(6): 1032-1044. |
[8] | 王小波,关攀锋,辛明明,汪永法,陈希勇,赵爱菊,刘曼双,李红霞,张明义,逯腊虎,魏亦勤,刘旺清,张金波,倪中福,姚颖垠,胡兆荣,彭惠茹,孙其信. 小麦种质资源耐热性评价[J]. 中国农业科学, 2019, 52(23): 4191-4200. |
[9] | 刘琳,吉冰洁,李若楠,BATBAYARJavkhlan,张树兰,杨学云. 陕西关中冬小麦/夏玉米区土壤磷素特征[J]. 中国农业科学, 2019, 52(21): 3878-3889. |
[10] | 任科宇,段英华,徐明岗,张旭博. 施用有机肥对我国作物氮肥利用率影响的整合分析[J]. 中国农业科学, 2019, 52(17): 2983-2996. |
[11] | 吴小宾, 谭德水, 林海涛, 朱国梁, 李子双, 和爱玲, 郭建华, 刘兆辉. 冬小麦一次性施肥氮肥产品筛选与产量效应[J]. 中国农业科学, 2018, 51(20): 3863-3875. |
[12] | 姜桂英,张玉军,魏喜,张东旭,刘世亮,柳开楼,黄绍敏,申凤敏. 不同碳饱和水平下典型农田土壤有机质的红外光谱特征[J]. 中国农业科学, 2018, 51(16): 3117-3129. |
[13] | 王寅,郭聃,高强,李翠兰,焉莉,冯国忠,刘振刚,房杰. 吉林省不同生态区玉米施磷的增产效应差异[J]. 中国农业科学, 2017, 50(9): 1635-1645. |
[14] | 贾树海,张佳楠,张玉玲,党秀丽,范庆锋,王展,虞娜,邹洪涛,张玉龙. 东北黑土区旱田改稻田后土壤有机碳、全氮的变化特征[J]. 中国农业科学, 2017, 50(7): 1252-1262. |
[15] | 朱亚星,于雷,洪永胜,章涛,朱强,李思缔,郭力,刘家胜. 土壤有机质高光谱特征与波长变量优选方法[J]. 中国农业科学, 2017, 50(22): 4325-4337. |
|