中国农业科学 ›› 2020, Vol. 53 ›› Issue (1): 81-93.doi: 10.3864/j.issn.0578-1752.2020.01.008
黄宁1,王朝辉1,2(),王丽1,马清霞1,张悦悦1,张欣欣1,王瑞1
收稿日期:
2019-04-11
接受日期:
2019-07-01
出版日期:
2020-01-01
发布日期:
2020-01-19
通讯作者:
王朝辉
作者简介:
黄宁,E-mail:huangning93@126.com。
基金资助:
Ning HUANG1,ZhaoHui WANG1,2(),Li WANG1,QingXia MA1,YueYue ZHANG1,XinXin ZHANG1,Rui WANG1
Received:
2019-04-11
Accepted:
2019-07-01
Online:
2020-01-01
Published:
2020-01-19
Contact:
ZhaoHui WANG
摘要:
【目的】明确主栽高产品种产量差异与产量构成、氮磷钾吸收利用的关系,对于通过选育优良品种,进一步优化养分管理和栽培措施,缩小产量差,以指导我国主要麦区小麦的高产优质生产。【方法】于2016—2017年度在我国黄淮北片、黄淮南片和长江中下游3个主要冬麦区进行田间试验,种植各麦区主栽高产品种,研究高产小麦品种产量差异及其与干物质累积、产量构成和氮磷钾吸收利用之间的关系。【结果】黄淮北片、黄淮南片和长江中下游麦区籽粒产量均存在较大差异,分别介于7 751—8 702 kg·hm -2、7 302—8 413 kg·hm -2、5 554—到6 294 kg·hm -2。各麦区品种高产的原因不同,黄淮北片麦区,高产品种具有高的地上部生物量和收获指数,穗数也是高产的原因;黄淮南片麦区高的收获指数和穗粒数是高产的关键;长江中下游麦区高产的主要原因是高的收获指数和千粒重。黄淮北片麦区,高产品种有低的籽粒含氮量和需氮量以及高的氮生理效率;黄淮南片麦区,高产品种茎叶含磷量和需磷量较低,但磷生理效率和茎叶含钾量较高;长江中下游麦区,高产品种的籽粒含钾量低,籽粒含磷量和茎叶含磷钾量高,地上部氮磷吸收量高,磷生理效率低于而需磷量高于对照品种。【结论】总体来看,黄淮北片麦区鲁原118、黄淮南片濮麦168、长江中下游麦区华麦7号等具有较好的产量表现;在我国主要麦区,地上部生物量和收获指数仍是高产的关键,同时提高地上部养分吸收利用和养分收获指数,才能提高生理效率,降低养分需求量,实现小麦高产优质。
黄宁,王朝辉,王丽,马清霞,张悦悦,张欣欣,王瑞. 我国主要麦区主栽高产品种产量差异及其与 产量构成和氮磷钾吸收利用的关系[J]. 中国农业科学, 2020, 53(1): 81-93.
Ning HUANG,ZhaoHui WANG,Li WANG,QingXia MA,YueYue ZHANG,XinXin ZHANG,Rui WANG. Yield Variation of Winter Wheat and Its Relationship to Yield Components, NPK Uptake and Utilization of Leading and High Yielding Wheat Cultivars in Main Wheat Production Regions of China[J]. Scientia Agricultura Sinica, 2020, 53(1): 81-93.
表1
各麦区试验站试验田块0—20 cm土层的基本理化性状和施肥情况"
麦区 Region | 试验点 Station | 有机质 Organic matter (g·kg-1) | pH | 全氮 Total N (g·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 施肥量 Fertilization (kg·hm-2) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | |||||||||
黄淮北片NHH | 河北沧州 Cangzhou, Hebei | 22.6 | 8.3 | 1.3 | 2.7 | 6.4 | 46.4 | 333.9 | 291 | 210 | 113 |
河北邯郸 Handan, Hebei | 19.6 | 8.2 | 1.1 | 20.5 | 6.2 | 26.5 | 143.4 | 216 | 113 | 113 | |
河北衡水 Hengshui, Hebei | 23.8 | 8.2 | 1.4 | 21.7 | 5.5 | 24.2 | 195.0 | 351 | 53 | 60 | |
河北石家庄 Shijiazhuang, Hebei | 10.2 | 8.1 | 0.6 | 20.9 | 3.2 | 18.4 | 112.0 | 225 | 150 | 83 | |
山东菏泽 Heze, Shandong | 18.0 | 8.2 | 1.0 | 44.6 | 5.7 | 23.1 | 143.4 | 225 | 206 | 56 | |
山东滨州 Binzhou, Shandong | 11.8 | 8.1 | 0.8 | 8.7 | 9.1 | 10.6 | 150.1 | 245 | 176 | 59 | |
山东泰安 Taian, Shandong | 33.2 | 6.9 | 2.0 | 27.4 | 11.9 | 89.7 | 322.7 | 480 | 135 | 68 | |
北京中种Zhongzhong, Beijing | 21.4 | 8.1 | 1.2 | 18.0 | 3.8 | 19.1 | 87.4 | 258 | 75 | 60 | |
山西临汾 Linfen, Shanxi | 33.3 | 8.1 | 1.7 | 13.8 | 7.9 | 65.8 | 150.1 | 253 | 184 | 90 | |
黄淮南片SHH | 江苏淮安 Huaian, Jiangsu | 34.3 | 4.9 | 2.1 | 57.5 | 109.8 | 115.0 | 398.9 | 245 | 90 | 90 |
安徽亳州 Bozhou, Anhui | 26.5 | 6.3 | 1.4 | 20.8 | 12.9 | 64.3 | 192.7 | 375 | 225 | 150 | |
安徽合肥 Hefei, Anhui | 23.8 | 5.8 | 1.2 | 23.0 | 23.9 | 44.4 | 181.5 | 150 | 90 | 98 | |
河南洛阳 Luoyang, Henan | 15.9 | 8.0 | 0.9 | 11.1 | 3.0 | 8.7 | 147.9 | 137 | 68 | 68 | |
河南濮阳 Puyang, Henan | 13.6 | 8.1 | 0.8 | 19.3 | 3.9 | 20.2 | 118.8 | 251 | 113 | 113 | |
河南商丘 Shangqiu Henan | 19.1 | 8.0 | 1.2 | 16.5 | 8.0 | 40.3 | 264.4 | 195 | 173 | 83 | |
河南驻马店 Zhumadian, Henan | 23.1 | 6.8 | 1.3 | 18.7 | 14.0 | 41.6 | 239.8 | 212 | 90 | 38 | |
陕西西农 Xinong, Shaanxi | 18.3 | 8.1 | 1.1 | 14.9 | 11.1 | 16.0 | 181.5 | 203 | 90 | 60 | |
陕西咸阳 Xianyang, Shaanxi | 16.7 | 8.1 | 1.0 | 26.9 | 3.1 | 19.3 | 233.0 | 219 | 60 | 30 | |
甘肃兰州 Lanzhou, Gansu | 13.7 | 8.6 | 0.8 | 18.9 | 0.4 | 15.6 | 195.0 | 201 | 120 | 0 | |
长江中 下游 YR | 安徽六安-1 Luan-1, Anhui | 26.6 | 5.1 | 1.4 | 8.8 | 8.2 | 21.0 | 145.7 | 193 | 104 | 104 |
安徽六安-2 Luan-2, Anhui | 33.5 | 5.9 | 2.0 | 5.0 | 11.5 | 27.4 | 242.0 | 169 | 60 | 96 | |
河南信阳-1 Xinyang-1, Henan | 17.0 | 4.9 | 1.0 | 20.2 | 31.1 | 34.7 | 192.7 | 265 | 79 | 79 | |
河南信阳-2 Xinyang-2, Henan | 17.8 | 4.8 | 1.1 | 24.8 | 25.5 | 33.8 | 186.0 | 170 | 101 | 101 | |
湖北武汉-1 Wuhan-1, Hubei | 24.8 | 5.1 | 1.3 | 47.6 | 13.1 | 48.5 | 338.4 | 137 | 96 | 96 | |
湖北武汉-2 Wuhan-2, Hubei | 22.1 | 5.9 | 1.3 | 18.2 | 8.8 | 18.4 | 114.3 | 187 | 135 | 135 | |
湖北襄阳-1 Xiangyang-1, Hubei | 19.1 | 5.8 | 1.1 | 2.9 | 14.0 | 29.6 | 116.5 | 266 | 128 | 53 | |
湖北襄阳-2 Xiangyang-2, Hubei | 28.1 | 6.0 | 1.5 | 12.9 | 11.9 | 19.2 | 138.9 | 222 | 90 | 60 | |
江苏南京-1 Nanjing-1, Jiangsu | 19.0 | 7.6 | 1.1 | 14.5 | 4.7 | 19.8 | 71.7 | 236 | 59 | 88 | |
江苏南京-2 Nanjing-2, Jiangsu | 21.5 | 7.6 | 1.4 | 13.1 | 5.4 | 33.6 | 89.6 | 225 | 122 | 68 | |
江苏扬州-1 Yangzhou-1, Jiangsu | 13.3 | 5.3 | 0.9 | 114.4 | 19.2 | 34.1 | 65.0 | 223 | 68 | 68 | |
江苏扬州-2 Yangzhou-2, Jiangsu | 11.4 | 8.0 | 0.7 | 4.3 | 6.7 | 29.7 | 123.2 | 268 | 113 | 113 |
图1
各麦区主栽小麦品种产量差异 A、B和C分别代表黄淮北片、黄淮南片和长江中下游麦区的品种,对应品种分别为:A1(邯11-5276)、A2(鲁原118)、A3(中麦4072)、A4(邢麦20)、A5(烟1212)、A6(菏麦0746-2)、A7(衡1589)、A8(泰科麦5303)、A9(中麦5051)、A10(临Y8222)、A11(安麦12-41)、A12(石11-5139)、A13(LH16-1)、A14(济麦22)、A15(潍2750-6)、A16(邯11-5272)、A17(轮选198)、A18(临农12)、A19(BY35)、A20(沧麦13)、A21(鲁研9088);B1(濮麦168)、B2(徐麦2178)、B3(安科1401)、B4(郑麦0943)、B5(淮麦302)、B6(涡麦505)、B7(天麦162)、B8(漯麦163)、B9(宛麦715)、B10(洛麦33)、B11(皖垦麦1221)、B12(周麦18)、B13(兰天0422)、B14(皖宿1313)、B15(华麦226)、B16(西农615)、B17(百农5822);C1(华麦7号)、C2(皖西麦0439)、C3(襄麦D31)、C4(信麦7916)、C5(扬麦20)、C6(扬麦10-120)。H代表高产,CK代表对照品种。下同"
表2
各麦区主栽品种产量差异与生物量、收获指数与产量构成"
区域 Region | 产量等级 Yield level | 品种 Cultivar | 产量 Grain yield (kg·hm-2) | 生物量Biomass (kg·hm-2) | 收获指数 Harvest index (%) | 穗数 Spike number (×104) | 穗粒数 Grain per spike | 千粒重 1000 grain weight (g) | |
---|---|---|---|---|---|---|---|---|---|
地上部 Aboveground | 茎叶 Straw | ||||||||
黄淮北片 NHH | 高产 H | 邯11-5276 Han 11-5276 | 8702a | 18205ab | 9502ab | 47.9abc | 721a | 29.9de | 41.4bc |
鲁原118 Luyuan 118 | 8696a | 17823abc | 9127b | 48.9a | 613c | 31.8cd | 45.3a | ||
中麦4072 Zhongmai 4072 | 8588a | 17818abc | 9229ab | 48.3ab | 672abc | 32.8bc | 40.0c | ||
邢麦20 Xinmai 20 | 8577a | 18478a | 9902a | 46.6cd | 687ab | 30.7cd | 41.3bc | ||
均值 Mean | 8641A | 18081A | 9440A | 47.9A | 673A | 31.3A | 42.0A | ||
对照 CK | 临农12 Linnong 12 | 7931b | 16977cd | 9047b | 46.8bcd | 654abc | 27.8e | 45.4a | |
BY35 A19 | 7878b | 16826cd | 8947b | 47.0bcd | 646bc | 29.7de | 43.1abc | ||
沧麦13 Cangmai 13 | 7790b | 17194bcd | 9404ab | 45.5d | 542d | 35.5b | 41.7bc | ||
鲁研9088 Luyan 9088 | 7751b | 16745d | 8994b | 46.3cd | 448e | 40.2a | 43.7ab | ||
均值 Mean | 7837B | 16936B | 9098A | 46.4B | 572A | 33.3A | 43.5A | ||
黄淮南片 SHH | 高产 H | 濮麦168 Pumai 168 | 8413Aa | 16698Aa | 8285Ab | 50.6Aa | 515Ab | 41.4Aa | 40.8Abc |
对照 CK | 华麦226 Huamai 226 | 7648b | 16540a | 8892ab | 46.4b | 578ab | 31.6b | 43.5ab | |
西农615 Xinong 615 | 7555b | 17526a | 9972a | 42.9c | 661a | 29.9bc | 38.5c | ||
百农5822 Bainong 5822 | 7302b | 16641a | 9339ab | 44.1bc | 646a | 27.1c | 44.1a | ||
均值 Mean | 7501B | 16902Aa | 9401A | 44.5A | 628A | 29.5B | 42.1A | ||
长江中 下游 YR | 高产 H | 华麦7号 Huamai 7 | 6294a | 13138a | 6844a | 48.7a | 530a | 33.4a | 39.1a |
对照 CK | 扬麦10-120 Yangmai 10-120 | 5554b | 12220a | 6666a | 46.6b | 538a | 31.9a | 36.0b |
表3
各麦区不同产量水平主栽品种含氮量及氮的吸收利用"
区域 Region | 产量等级 Yield level | 品种 Cultivar | 含氮量 N content (g·kg-1) | 地上部吸氮量 N uptake in aboveground part (kg·hm-2) | 氮收获指数 N harvest index (%) | 氮生理效率 N physiological efficiency (kg·kg-1) | 需氮量 N requirement (kg·1000kg-1) | |
---|---|---|---|---|---|---|---|---|
籽粒 Grain | 茎叶 Straw | |||||||
黄淮北片NHH | 高产 H | 邯11-5276 Han 11-5276 | 22.4cd | 4.8ab | 241a | 80.4ab | 36.4bc | 27.6bc |
鲁原118 Luyan 118 | 20.7e | 4.5b | 221a | 81.3ab | 39.7a | 25.4d | ||
中麦4072 Zhongmai 4072 | 21.7de | 4.8ab | 231a | 80.5ab | 37.4ab | 26.9cd | ||
邢麦20 Xingmai 20 | 21.8de | 4.7ab | 234a | 80.5ab | 37.2ab | 27.2cd | ||
均值 Mean | 21.6B | 4.7A | 232A | 80.7A | 37.7A | 26.8B | ||
对照 CK | 临农12 Linnong 12 | 23.5bc | 5.0ab | 231a | 80.7ab | 34.3cd | 29.2ab | |
BY35 A19 | 24.1b | 4.7ab | 232a | 82.6a | 34.2cd | 29.4ab | ||
沧麦13 Cangmai 13 | 23.7bc | 5.2a | 233a | 79.1b | 33.4d | 30.0a | ||
鲁研9088 Luyan 908 | 25.6a | 4.6ab | 240a | 82.7a | 32.4d | 30.9a | ||
均值 Mean | 24.2A | 4.9A | 234A | 81.3A | 33.6B | 29.9A | ||
黄淮南片SHH | 高产 H | 濮麦168 Pumai 168 | 20.4Ac | 4.5Aa | 212Aa | 82.5Aa | 40.9Aa | 24.9Ab |
对照 CK | 华麦226 Huamai 226 | 22.6ab | 4.4a | 217a | 81.8a | 36.7b | 27.9a | |
西农615 Xinong 615 | 21.4bc | 5.0a | 216a | 76.6b | 36.5b | 28.2a | ||
百农5822 Bainong 5822 | 23.7a | 4.3a | 216a | 81.3a | 34.8b | 29.3a | ||
均值 Mean | 22.6A | 4.6A | 216A | 79.9A | 36.0A | 28.4A | ||
长江中下游 YR | 高产 H | 华麦7号 Huamai 7 | 19.7a | 4.2a | 153a | 81.1a | 41.4a | 24.5a |
对照 CK | 扬麦10-120 Yangmai 10-120 | 18.4a | 4.0a | 131b | 79.5a | 43.9a | 23.6a |
表4
各麦区主栽品种含磷量及磷的吸收利用"
区域 Region | 产量等级 Yield level | 品种 Cultivar | 含磷量 P content (g·kg-1) | 地上部吸磷量 P uptake in aboveground part (kg·hm-2) | 磷收获指数 P harvest index (%) | 磷生理效率 P physiological efficiency (kg·kg-1) | 需磷量 P requirement (kg·1000kg-1) | |
---|---|---|---|---|---|---|---|---|
籽粒 Grain | 茎叶 Straw | |||||||
黄淮北片NHH | 高产 H | 邯11-5276 Han 11-5276 | 3.8ab | 0.47abc | 37.4ab | 87.1b | 234bc | 4.3abc |
鲁原118 Luyan 118 | 3.2d | 0.39c | 31.7cd | 88.8ab | 278a | 3.6d | ||
中麦4072 Zhongmai 4072 | 3.7bc | 0.51a | 36.4ab | 86.8b | 242bc | 4.2bc | ||
邢麦20 Xinmai 20 | 4.0a | 0.50ab | 39.4a | 87.8ab | 222c | 4.6a | ||
均值 Mean | 3.7 A | 0.47A | 36.2A | 87.6A | 244A | 4.2A | ||
对照 CK | 临农12 Linmai 12 | 3.9ab | 0.48abc | 35.2b | 87.9ab | 227c | 4.4ab | |
BY35 A19 | 3.9ab | 0.50ab | 35.0bc | 87.7ab | 228c | 4.5ab | ||
沧麦13 Cangmai 13 | 3.5cd | 0.41bc | 30.8d | 87.5b | 254b | 4.0cd | ||
鲁研9088 Luyan 908 | 4.0a | 0.38c | 34.8bc | 90.0a | 225c | 4.5ab | ||
均值 Mean | 3.8A | 0.44A | 33.9A | 88.3A | 234A | 4.3A | ||
黄淮南片SHH | 高产 H | 濮麦168 Pumai 168 | 3.4Ac | 0.42Ba | 31.6Aa | 89.2Aa | 269Aa | 3.8Bb |
对照 CK | 华麦226 Huamai 226 | 4.1a | 0.54a | 35.7a | 87.0ab | 224b | 4.7a | |
西农615 Xinong 615 | 3.7b | 0.53a | 32.4a | 84.2b | 234b | 4.4a | ||
百农5822 Bainong 5822 | 3.8ab | 0.50a | 32.7a | 86.5ab | 231b | 4.5a | ||
均值 Mean | 3.9A | 0.52A | 33.6A | 85.9A | 230B | 4.5A | ||
长江中下游YR | 高产 H | 华麦7号 Huamai 7 | 3.8a | 0.56a | 27.8a | 86.1a | 232b | 4.4a |
对照 CK | 扬麦10-120 Yangmai 10-120 | 3.6b | 0.43b | 22.7b | 87.3a | 250a | 4.1b |
表5
各麦区主栽品种含钾量及钾的吸收利用"
区域 Region | 产量等级 Yield level | 品种 Cultivar | 含钾量 K content (g·kg-1) | 地上部吸钾量 K uptake in aboveground part (kg·hm-2) | 钾收获指数 K harvest index (%) | 钾生理效率 K physiological efficiency (kg·kg-1) | 需钾量 K requirement (kg·1000kg-1) | |
---|---|---|---|---|---|---|---|---|
籽粒 Grain | 茎叶 Straw | |||||||
黄淮北片NHH | 高产 H | 邯11-5276 Han 11-5276 | 3.4b | 16.6bc | 185b | 16.9ab | 48.8abc | 21.3cd |
鲁原118 Luyan 118 | 3.7a | 16.5bc | 181bc | 18.8a | 49.6abc | 20.8cd | ||
中麦4072 Zhongmai 4072 | 3.4bc | 16.0c | 175bcd | 17.1ab | 50.6a | 20.4cd | ||
邢麦20 Xinmai 20 | 3.5b | 19.9a | 224a | 14.0c | 39.2d | 26.2a | ||
均值 Mean | 3.5A | 17.2A | 191A | 16.7A | 47.0A | 22.2A | ||
对照 CK | 临农12 Linmai 12 | 3.6ab | 18.1ab | 189b | 15.8bc | 44cd | 23.8ab | |
BY35 A19 | 3.4b | 15.3c | 164cd | 17.8ab | 51.3a | 20.8cd | ||
沧麦13 Cangmai 13 | 3.7a | 16.0c | 178bcd | 16.4ab | 44.2bcd | 22.9bc | ||
鲁研9088 Luyan 908 | 3.2c | 14.8c | 157d | 16.4b | 50.4ab | 20.3d | ||
均值 Mean | 3.5A | 16.1A | 172A | 16.6A | 47.5A | 22.0A | ||
黄淮南片SHH | 高产 H | 濮麦168 Pumai 168 | 3.7Aa | 18.6Aa | 189Aa | 17.5Aa | 47.5Aa | 21.9Ab |
对照 CK | 华麦226 Huamai 226 | 3.8a | 16.5ab | 179a | 17.1a | 44.7ab | 22.9ab | |
西农615 Xinong 615 | 3.8a | 16.1b | 194a | 15.7a | 41.2b | 25.0a | ||
百农5822 Bainong 5822 | 3.8a | 16.1b | 180a | 16.3a | 42.6ab | 24.2ab | ||
均值 Mean | 3.8A | 16.2B | 184A | 16.4A | 42.8A | 24.0A | ||
长江中下游YR | 高产 H | 华麦7号 Huamai 7 | 3.6b | 15.3a | 127a | 19.0a | 53.1a | 20.1a |
对照 CK | 扬麦10-120 Yangmai 10-120 | 3.9a | 14.0b | 112a | 20.8a | 53.4a | 20.4a |
[1] | GODFRAY H C, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C . Food security: The challenge of feeding 9 billion people. Science, 2010, 327:812-818. |
[2] | MARCO S, MICHAEL C, DANIEL M D, KEITH W, BENJAMIN L B, WIM V, SONJA J V, MARIO H, KIMBERLY M C . Options for keeping the food system within environmental limits. Nature, 2018,562:519-524. |
[3] | 中华人民共和国国家统计局. 中国统计年鉴. 北京:中国农业出版社, 2015. |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing:China Agriculture Press, 2015. (in Chinese) | |
[4] | LU C H, FAN L . Winter wheat yield potentials and yield gaps in the North China Plain. Field Crops Research, 2013, 143:98-105. |
[5] | VAN I M K, CASSMAN K G, GRASSINI P, WOLF J, TITTONELL P, HOCHMAN Z . Yield gap analysis with local to global relevance-A review. Field Crops Research, 2013,143:4-17. |
[6] | BORG J, KIAR L P, LECARPETIER C, GOLDRINGER I, GAUFFRETEAU A, SAINT J S, BAROT S, ENJABERT J . Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps. Field Crops Research, 2018,221:298-313. |
[7] | HAJJARPOR A, SOLTANI A, ZEINALI E, KASHIRI H, AYNEHBAND A, VADEZ V . Using boundary line analysis to assess the on-farm crop yield gap of wheat. Field Crops Research, 2018,225:64-73. |
[8] | SHEARMAN V J, SYLVESTER B R, SCOTT R K, FOULKES M J . Physiological processes associated with wheat yield progress in the UK. Crop Science, 2005,45:175-184. |
[9] | LYNCH J P, DOYLE D, MCAULEY S, MCHARDY F, DANNEELS Q, BLACK L C, WHITE E M, SPINK J . The impact of variation in grain number and individual grain weight on winter wheat yield in the high yield potential environment of Ireland. European Journal of Agronomy, 2017,87:40-49. |
[10] | AISAWI K A B, REYNOLDS M P, SINGH R P, FOULKES M J . The Physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 2015,55:1749-1764. |
[11] | 张俊灵, 闫金龙, 张东旭, 孙美荣, 常海霞 . 北部冬麦区旱地小麦品种的演变规律. 麦类作物学报, 2017,37:1027-1024. |
ZHANG J L, YAN J L, ZHANG D X, SUN M R, CHANG H X . Evolution rule of wheat varieties in dryland of Northern Winter Wheat Zone. Journal of Triticeae Crops, 2017, 37:1017-1024. (in Chinese) | |
[12] | 田纪春, 邓志英, 胡瑞波, 王延训 . 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006,32:1699-1705. |
TIAN J C, DENG Z Y, HU R B, WANG Y X . Yield components of super cheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agronomica Sinica, 2006,32:1699-1705. (in Chinese) | |
[13] | 雷振生, 林作揖, 杨会民, 陈钦高 . 黄淮麦区高产小麦品种的产量结构及其生理基础的研究. 华北农学报, 1996,11(1):70-75. |
LEI Z S, LIN Z Y, YANG H M, CHEN Q G . The yield components and physiological basic of high-yielding wheat cultivars in Huang-Huai wheat production regions. Acta Agriculturae Boreali Sinica, 1996,11(1):70-75. (in Chinese) | |
[14] | 高国良, 陈贵菊, 王福玉, 刘兴强, 王秋云, 尹逊利 . 黄淮北片小麦参试品种(系)产量构成因素及其相互关系分析. 山东农业科学, 2016,48(8):15-18. |
GAO G L, CHEN G J, WANG F Y, LIU X Q, WANG Q Y, YIN X L . Analysis on yield components and their correlations of wheat varieties (lines) in North Huanghe-Huaihe Region. Shandong Agricultural Sciences, 2016,48(8):15-18. (in Chinese) | |
[15] | 刘朝辉, 李江伟, 乔庆洲, 蒋志凯, 马华平, 付亮, 赵宗武 . 黄淮南片小麦产量构成因素的相关分析. 作物杂志, 2013(5):58-61. |
LIU Z H, LI J W, QIAO Q Z, JIANG Z K, MA H P, FU L, ZHAO Z W . The related analysis on the yield components of wheat in the South Huang-Huai wheat production regions. Crops, 2013(5):58-61. (in Chinese) | |
[16] | 王美芳, 雷振生, 吴政卿, 杨会民, 杨攀, 徐福新, 刘加平 . 黄淮冬麦区小麦产量及品质改良现状分析. 麦类作物学报, 2013,33(2):290-295. |
WANG M F, LEI Z S, WU Z Q, YANG H M, YANG P, XU F X, LIU J P . Current situation of wheat yield and quality improvement in Huang-Huai winter wheat region. Journal of Triticeae Crops,2013, 33(2):290-295. (in Chinese) | |
[17] | 姚国才, 马鸿翔, 姚金保, 张鹏, 杨学明 . 长江中下游地区小麦产量育种方向及策略探讨. 中国农学通报, 2010,26(17):168-171. |
YAO G C, MA H X, YAO J B, ZHANG P, YANG X M . The breeding strategies and direction on wheat yield in region of middle and lower reaches of the Yangtze River. Chinese Agricultural Science Bulletin, 2010,26(17):168-171. (in Chinese) | |
[18] | 王红光, 李东晓, 李雁鸣, 李瑞奇 . 河北省10 000 kg·hm -2以上冬小麦产量构成及群个体生育特性 . 中国农业科学, 2015,48(14):2718-2729. |
WANG H G, LI D X, LI Y M, LI R Q . Yield components and population and individual characteristics of growth and development of winter wheat over 10000 kg·hm -2 in Hebei province. Scientia Agricultura Sinica, 2015, 48(14):2718-2729. (in Chinese) | |
[19] | GAJU O, DESILVA J, CARVALHO P, HAWKESFORD M J, GRIFFITHS S, GREENLAND A, FOULKES M J . Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Research, 2016,193:1-15. |
[20] | 周玲, 王朝辉, 李可懿, 顾炽明, 李生秀 . 不同产量水平旱地冬小麦品种的氮磷利用差异分析. 土壤, 2011,43(4):558-564. |
ZHOU L, WANG Z H, LI K Y, GU C M, LI S X . Differences in nitrogen and phosphorus utilization in winter wheat cultivars with different yield levels. Soils, 2011,43(4):558-564. (in Chinese) | |
[21] | 阳显斌, 张锡洲, 李廷轩, 宋潇, 胡宏松 . 磷素子粒生产效率不同的小麦品种磷素吸收利用差异. 植物营养与肥料学报, 2011,17(3):525-531. |
YANG X B, ZHANG X Z, LI T X, SONG X, HU H S . Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield. Journal of Plant Nutrition and Fertilizer,2011, 17(3):525-531. (in Chinese) | |
[22] | 韩燕来, 刘新红, 王宜伦, 谭金芳 . 不同小麦品种钾素营养特性的差异. 麦类作物学报, 2006,26(1):99-103. |
HAN Y L, LIU X H, WANG Y L, TAN J F . Potassium nutrition characteristics of different wheat varieties. Journal of Triticeae Crops, 2006,26(1):99-103. (in Chinese) | |
[23] | 黄芳, 韩晓宇, 王峥, 杨学云, 张树兰 . 不同年代冬小麦品种的产量和磷生理效率对土壤肥力水平的响应. 植物营养与肥料学报, 2016,22(5):1222-1231. |
HUANG F, HAN X Y, WANG Z, YANG X Y, ZHANG S L . Responses of grain yield and phosphorus physiological efficiency of wheat cultivars released in different decades to soil fertility levels. Journal of Plant Nutrition and Fertilizer, 2016,22(5):1222-1231. (in Chinese) | |
[24] | 黄倩楠, 王朝辉, 黄婷苗, 侯赛斌, 张翔, 马清霞, 张欣欣 . 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018,51(14):2722-2734. |
HAUNG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X . Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14):2722-2734. (in Chinese) | |
[25] | 何刚, 王朝辉, 李富翠, 戴健, 李强, 薛澄, 曹寒冰, 王森, 刘慧, 罗来超, 黄明 . 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响. 中国农业科学, 2016,49(9):1657-1671. |
HE G, WANG Z H, LI F C, DAI J, LI Q, XUE C, CAO H B, WANG S, LIU H, LUO L C, HUANG M . Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland. Scientia Agricultura Sinica, 2016,49(9):1657-1671. (in Chinese) | |
[26] | REYNOLDS M, FOULKES J, FURBANK R, GRIFFITHS S, KING J, MURCHIE E, PARRY M, SLAFER G . Achieving yield gains in wheat. Plant, Cell and Environment, 2012,35(10):1799-823. |
[27] | WU W, LI C J, MA B L, SHAH F, LIU Y, LIAO Y C . Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica, 2014, 196:155-168. |
[28] | ZHANG Y, XU W G, WANG H W, DONG H B, QI X L, ZHAO M Z, FANG Y H, GAO C, HU L . Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Field Crops Research, 2016,199:117-128. |
[29] | ZHANG W Y, WANG B Y, LIU B H, PANG Z J, WANG X S, ZHANG X Y, MEI X R . Performance of new released winter wheat cultivars in yield: A case study in the North China Plain. Agronomy Journal, 2016, 108:1346-1355. |
[30] | 茹振钢, 冯素伟, 李淦 . 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015,48(17):3388-3393. |
RU Z G, FENG S W, LI G . High-yield potential and effective ways of wheat in Yellow & Huai River Valley facultative winter wheat region. Scientia Agricultura Sinica, 2015,48(17):3388-3393. (in Chinese) | |
[31] | VALVO P J L, MIRALLES D J, SERRAGO R A . Genetic progress in Argentine bread wheat varieties released between 1918 and 2011: Changes in physiological and numerical yield components. Field Crops Research, 2018,221:314-321. |
[32] | 宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东 . 山东省近年来审定小麦品种农艺和品质性状演变分析. 中国农业科学, 2013,46(6):1114-1126. |
SONG J M, DAI S, LI H S, CHENG D G, LIU A F, CAO X Y, LIU J J, ZHAO Z D . Evolution of agronomic and quality traits of wheat cultivars released in Shandong Province recently. Scientia Agricultura Sinica, 2013,46(6):1114-1126. (in Chinese) | |
[33] | 孙亚辉, 李瑞奇, 党红凯, 张馨文, 李慧玲, 李雁鸣 . 河北省超高产冬小麦群体和个体生育特性及产量结构特点. 河北农业大学学报, 2007,30(3):1-6. |
SUN Y H, LI R Q, DANG H K, ZHANG X W, LI H L, LI Y M . Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province. Journal of Agricultural University of Hebei, 2007, 30(3):1-6. (in Chinese) | |
[34] | SADRAS V O, LAWSON C, . Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop and Pasture Science, 2011, 62:533-549. |
[35] | STEINFORT U, FUKAI S, TREVASKIS B, GLASSOP D, CHAN A, DRECCER M F . Vernalisation and photoperiod sensitivity in wheat: The response of floret fertility and grain number is affected by vernalisation status. Field Crops Research, 2017, 203:2433-2455. |
[36] | 段国辉, 高海涛, 张学品, 吴少辉, 温红霞, 余四平, 马飞, 李团飞 . 河南省近15年小麦区试高产品种产量构成分析. 河南农业科学, 2006,10:38-40. |
DUAN G H, GAO H T, ZHANG X P, WU S H, WEN H X, YU S P, MA F, LI T F , Analysis on the yield components of trial high-yield varieties in wheat area in Henan Province in the past 15 years. Henan Agricultural Sciences, 2006,10:38-40. (in Chinese) | |
[37] | SADRAS V O, SLAFER G A . Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Research, 2012,127:215-224. |
[38] | 俞金龙 . 长江中下游麦区不同产量水平下的小麦产量结构分析. 麦类作物学报, 1995,6:40-41. |
YU J L . The structure analysis of wheat at different yield levels in the middle and lower of the Yangtze River wheat production regions. Journal of Triticeae Crops, 1995,6:40-41. (in Chinese) | |
[39] | TIAN Z W, LI Y, LIANG Z H, GUO H, CAI J, JIANG D, CAO W X, DAI T B . Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Research, 2016,196:251-260. |
[40] | ZHOU Y, ZHU H Z, CAI S B, HE Z H, ZHANG X K, XIA X C, ZHANG G S . Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 2007,157:465-473. |
[41] | FISCHER R A . Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science, 1985,105:447-461. |
[42] | MATTHIEU B, VINCENT A, MARYSE B H, EMMANUEL H, JEAN-MARIE M, MARIE-HELENE J, PJILIPPE G, PIERRE M, JACQUES L G . Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. Journal of Experimental Botany, 2010, 61(15):4303-4312. |
[43] | GAJU O, ALLARD V, MARTRE P, SNAPE J W, HEUMEZ E, LEGOUIS J, MOREAU D, BOGARD M, GRIFFITHS S, ORFORD S, HUBBART S, FOULKES M J . Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research, 2011,123:139-152. |
[44] | 王小纯, 王晓航, 熊淑萍, 马新明, 丁世杰, 吴克远, 郭建彪 . 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015,48(13):2569-2579. |
WANG X C, WANG X H, XIONG X P, MA X M, DING S J, WU K Y, GUO J B . Differences in nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels. Scientia Agricultura Sinica, 2015,48(13):2569-2579. (in Chinese) | |
[45] | YASEEN M, MALHI S S . Variation in yield, phosphorus uptake, and physiological efficiency of wheat genotypes at adequate and stress phosphorus levels in soil. Communications in Soil Science and Plant Analysis, 2009, 40(19/20):3104-3120. |
[46] | 党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 孟建 . 超高产冬小麦对钾的吸收、积累和分配. 植物营养与肥料学报, 2013,19(2):247-287. |
DANG H K, LI R Q, LI Y M, SUN Y H, ZHANG X W, MENG J . Absorption, accumulation and distribution of potassium in super highly-yielding winter wheat. Journal of Plant Nutrition and Fertilizer, 2013,19(2):247-287. (in Chinese) | |
[47] | 李见云, 谭金芳, 介晓磊, 侯彦林, 黄玉波 . 黄淮麦区钾高效小麦品种的筛选. 麦类作物学报, 2003,23(3):49-52. |
LI J Y, TAN J F, JIE X L, HOU Y L, HUANG Y B . Screening of high potassium efficiency wheat varieties in Huang-Huai wheat growing region. Journal of Triticeae Crops, 2003,23(3):49-52. (in Chinese) |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 林萍, 王开良, 姚小华, 任华东. 基于转录组SNP构建油茶主要品种资源的分子身份证[J]. 中国农业科学, 2023, 56(2): 217-235. |
[3] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[4] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[5] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[6] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[7] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[8] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[9] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[10] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[11] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[12] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[13] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[14] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[15] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
|