中国农业科学 ›› 2020, Vol. 53 ›› Issue (1): 81-93.doi: 10.3864/j.issn.0578-1752.2020.01.008

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

我国主要麦区主栽高产品种产量差异及其与 产量构成和氮磷钾吸收利用的关系

黄宁1,王朝辉1,2(),王丽1,马清霞1,张悦悦1,张欣欣1,王瑞1   

  1. 1 西北农林科技大学资源环境学院/农业农村部西北植物营养与农业环境重点实验室,陕西杨凌712100
    2 西北农林科技大学/ 旱区作物逆境生物学国家重点实验室,陕西杨凌712100
  • 收稿日期:2019-04-11 接受日期:2019-07-01 出版日期:2020-01-01 发布日期:2020-01-19
  • 通讯作者: 王朝辉
  • 作者简介:黄宁,E-mail:huangning93@126.com。
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-3);国家重点研发计划(2018YFD0200400)

Yield Variation of Winter Wheat and Its Relationship to Yield Components, NPK Uptake and Utilization of Leading and High Yielding Wheat Cultivars in Main Wheat Production Regions of China

Ning HUANG1,ZhaoHui WANG1,2(),Li WANG1,QingXia MA1,YueYue ZHANG1,XinXin ZHANG1,Rui WANG1   

  1. 1 College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2 Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2019-04-11 Accepted:2019-07-01 Online:2020-01-01 Published:2020-01-19
  • Contact: ZhaoHui WANG

摘要:

【目的】明确主栽高产品种产量差异与产量构成、氮磷钾吸收利用的关系,对于通过选育优良品种,进一步优化养分管理和栽培措施,缩小产量差,以指导我国主要麦区小麦的高产优质生产。【方法】于2016—2017年度在我国黄淮北片、黄淮南片和长江中下游3个主要冬麦区进行田间试验,种植各麦区主栽高产品种,研究高产小麦品种产量差异及其与干物质累积、产量构成和氮磷钾吸收利用之间的关系。【结果】黄淮北片、黄淮南片和长江中下游麦区籽粒产量均存在较大差异,分别介于7 751—8 702 kg·hm -2、7 302—8 413 kg·hm -2、5 554—到6 294 kg·hm -2。各麦区品种高产的原因不同,黄淮北片麦区,高产品种具有高的地上部生物量和收获指数,穗数也是高产的原因;黄淮南片麦区高的收获指数和穗粒数是高产的关键;长江中下游麦区高产的主要原因是高的收获指数和千粒重。黄淮北片麦区,高产品种有低的籽粒含氮量和需氮量以及高的氮生理效率;黄淮南片麦区,高产品种茎叶含磷量和需磷量较低,但磷生理效率和茎叶含钾量较高;长江中下游麦区,高产品种的籽粒含钾量低,籽粒含磷量和茎叶含磷钾量高,地上部氮磷吸收量高,磷生理效率低于而需磷量高于对照品种。【结论】总体来看,黄淮北片麦区鲁原118、黄淮南片濮麦168、长江中下游麦区华麦7号等具有较好的产量表现;在我国主要麦区,地上部生物量和收获指数仍是高产的关键,同时提高地上部养分吸收利用和养分收获指数,才能提高生理效率,降低养分需求量,实现小麦高产优质。

关键词: 小麦, 品种, 产量, 产量构成, 氮磷钾

Abstract:

【Objective】The aim of this study was to clarify wheat yield variation and its relationship to yield components and nutrient uptake and utilization for major high-yielding cultivars, so as to provide guidance to close yield gap and realize high yield and high quality in wheat production. 【Method】 Field experiments were conducted in 2016-2017 to test the major wheat cultivars in North-Huanghuai, South-Huanghuai, and the middle and lower Yangtze River reaches of China, under local suitable agricultural cultivations. The variation of yield and its relationship to dry matter accumulation, yield components, NPK uptake and utilization were investigated for the high-yielding cultivars in the three wheat production regions. 【Result】 Large variation of grain yield existed in each wheat production region, ranging from 7 751 to 8 702 kg hm -2 in North-Huanghuai, 7 302 to 8 413 kg·hm -2 in South-Huanghuai, and 5 554 to 6 294 kg·hm -2 in the middle and lower Yangtze River reaches. The high-yielding cultivars in North-Huanghuai were found to have higher biomass, harvest index and spike number than that of control cultivars, the high-yielding cultivars in South-HuangHuai had higher harvest index and grain number, and the high-yielding cultivars in the middle and lower reaches of the Yangtze River had higher harvest index and thousand grain weight. Besides, in North-HuangHuai the high-yielding cultivars showed lower grain N content and N requirement, and higher N physiological efficiency than that of control, in South-HuangHuai the high-yielding cultivars showed lower straw P content and P requirement, higher P physiological efficiency and straw K content, and in the middle and lower Yangtze River reaches, the high-yielding cultivars showed lower K content in grain, higher K content in straw, P content in grain and straw, and N and P uptake in shoot, and lower P physiological efficiency and higher P requirement.【Conclusion】 The elite high-yielding cultivars, such as Luyuan118, Pumai168 and Huamai7, showed higher yield performance in North-Huanghuai, South-Huanghuai and the middle and lower Yangtze River reaches, respectively. In main wheat production regions of China, increasing shoot biomass and harvest index was the key factor to produce high grain yields. Also, enhancing shoot nutrient uptake and nutrient harvest index was necessary to achieve high grain nutrition quality as well as high yield.

Key words: wheat, cultivars, yield, yield components, nitrogen,phosphorus and potassium