中国农业科学 ›› 2016, Vol. 49 ›› Issue (18): 3465-3476.doi: 10.3864/j.issn.0578-1752.2016.18.001

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

中国棉花高产育种研究进展

喻树迅,范术丽,王寒涛,魏恒玲,庞朝友   

  1. 中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南安阳 455000
  • 收稿日期:2016-04-18 出版日期:2016-09-16 发布日期:2016-09-16
  • 通讯作者: 喻树迅,E-mail:ysx195311@163.com
  • 作者简介:喻树迅,E-mail:ysx195311@163.com
  • 基金资助:
    国家现代农业产业技术体系(CARS-18-02A)

Progresses in Research on Cotton High Yield Breeding in China

YU Shu-xun, FAN Shu-li, WANG Han-tao, WEI Heng-ling, PANG Chao-you   

  1. Cotton Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2016-04-18 Online:2016-09-16 Published:2016-09-16

摘要: 棉花是中国重要的经济作物,棉花生产稳定发展关乎中国两千万棉农的利益。产量是棉花种植收益的基础,因此,在其他性状综合发展的前提下,高产是棉花品种培育的最重要目标。20世纪50年代以来,中国棉花单位面积产量增加了9倍之多,其中品种的引进和改良为棉花产量的提高作出了重要贡献。但是近年来,随着棉花种质资源遗传多样性日渐狭窄,中国棉花单位面积产量增加缓慢,严重阻碍了棉花种植产业的健康发展。本文分析了棉花单位面积产量包含的4个主要组成成分单位面积株数、单株铃数、单铃重和衣分在棉花产量形成中起到的作用;单株铃数和衣分的增加在中国棉花高产育种过程中起到了重要作用,但是产量的提高是一个相互协调的过程,在加强重点性状改良的同时,也要注重其他性状及因素的相互配合,才能取得最好的效果。分析在中国高产育种中起重要作用的途径方法及其研究进展:国外引种在建国初期对于中国棉花产量的提高起重要作用,替代了中国原有的产量低、品质差的亚洲棉品种,促进了中国自主育种的发展;通过传统育种先后培育出早熟的中棉所16、丰产的鲁棉1号和抗病丰产的中棉所12等品种,推动了中国棉花生产的发展;通过杂种优势利用,中国培育了一大批起重大推动作用的杂交品种,例如中棉所29曾经占中国长江流域杂交棉种植面积的50%左右;加强对雄性不育系的研究对于杂种优势利用的持续发展起到关键作用;分子标记技术的发展为棉花分子育种提供了技术支持,多个稳定产量性状位点的定位为分子标记辅助育种奠定了基础;转基因技术的发展为棉花分子设计育种提供了契机,转基因抗虫棉中棉所41、石远321和鲁棉研28等的育成使中国棉花产量稳中有升,但是目前针对产量性状改良的基因较少,还需加强对于产量相关基因的挖掘,加快发展转基因高产育种。目前中国棉花单位面积产量水平处于国际前列,但中国地少人多,在不与粮争地的前提下,为确保农产品的有效供给,还需继续挖掘棉花产量潜力,提高棉花单位面积产量,保证棉花产业持续健康发展。因此,建议收集种植资源,注重种质资源的创新;加强胞质雄性不育研究,简化制种技术和成本,推动简化制种的优异杂交种的培育;利用高通量测序技术,发掘全基因范围内的高产相关基因,用于分子标记辅助育种和全基因组选择育种;通过聚合育种,培育高产、优质、早熟以及适合机械化种植的棉花新品种。

关键词: 棉花, 产量性状, 杂交育种, 杂种优势, 分子育种

Abstract: Cotton is an important economic crop in China, the stable development of cotton production is concerned with the interests of 20 million of farmers. Yield is the most important trait on the premise of the comprehensive development of other traits, so high yield is the most important goal of cotton planting. From 1950 to 2015, the cotton yield per unit area in China was increased by more than 9 times, and the introduction and improvement of varieties have made a great contribution to the increase of cotton yield. In recent years, the improvement of cotton yield per unit area was slow because of the narrow genetic diversity, hindering seriously the development of cotton industry. Cotton yield per unit area contains four major components, stock number per unit area, boll number per plant, single boll weight and lint percentage. This paper analyzed the roles of four components in cotton planting. Boll number per plant and lint percentage are more important for the cotton yield breeding, but the improvement of cotton yield is a complex progress which need every trait coordinated properly. At the same time, this paper discussed the important ways and its research progress to be used for high-yield breeding. Germplasm introduction has played an important role in raising cotton yield and replaced the Gossypium arboreum varieties of lower productivity and poor quality in China, and promoting the development of cotton breeding in China. Some significant varieties were cultivated by conventional breeding, for example, early maturing cotton CCRI 16, high-yielding cotton variety Lumian1, high-yielding and disease-resistant variety CCRI 12 etc. These varieties promoted the development of cotton industry in China, and which were the important parents of cotton breeding. The utilization of heterosis is an effective approach to cotton breeding of high yield and good quality. Lots of significant hybrids were cultivated by cross breeding. For example, the planting area of CCRI 29 once accounted for 50% of hybrid cotton in Yangtze River basin of China. And the research of male sterility line plays a key role for sustainable development of heterosis utilization. The development of molecular marker technology provides technical supports for molecular breeding of cotton, and multiple stable QTL related with yield trait has laid a foundation for molecular mark assisted breeding. The development of transgenic technology provides an opportunity for cotton molecular design breeding. The discovered genes related with yield trait are few, so more work should be done on the excavation of new genes. At present, the cotton yield per unit area in China is at the international leading level. Because China has more people and less land, the increase of cotton yield per unit area is a way out for cotton industry based on the premise that not to reclaim land under food crops. So the following suggestions were put forward: It is necessary to collect plant resources and pay more attention to the innovation of germplasm resources; the cytoplasmic male sterility (CMS) research should be strengthened, the seed production technology and cost should be simplified and promoting the potential of hybrid breeding; exploring the high yield related genes using high-throughput sequencing technologies in whole genome for molecular marker assisted breeding and genome-wide selective breeding; it is significant to cultivate new varieties with high-yield, good quality, early-maturing and suitable for mechanization planting with pyramiding breeding.

Key words: cotton, yield trait, cross-breeding, heterosis, molecular breeding