[1] Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, 2010, 153: 1747-1758.
[2] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40: 761-767.
[3] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745.
[4] Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theoretical Applied Genetics, 2008, 116: 789-796.
[5] Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N. Identification of candidate genes for grain number in rice (Oryza sativa L.). Functional& Integrative Genomics, 2010, 10: 339-347.
[6] Liu T M, Mao D H, Zhang S P, Xu C G, Xing Y Z. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theoretical Applied Genetics, 2009, 118: 1509-1517.
[7] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical Applied Genetics, 2006, 112: 1164-1171.
[8] Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, GuoT, Jiang L, Su N, Wan J M. Quantitative Trait Loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008, 179: 2239-2252.
[9] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39: 623-630.
[10] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40: 1023-1028.
[11] Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics, 2010, 11-16.
[12] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374.
[13] Li J M, Thomson M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the Pericentromeric region of rice chromosome 3. Genetics, 2004, 168: 2187-2195.
[14] Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa×O. rufipogon cross. Theoretical Applied Genetics, 2008, 116: 613-622.
[15] Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. The Plant Journal, 2005, 42: 641-651.
[16] Zhou Y, Zhu J Y, Li Z Y, Yi C D, Liu J, Zhang H G, Tang S Z, Gu M H, Liang G H. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009, 183: 315-324.
[17] Zhu K M, Tang D, Yan C J, Chi Z C, Yu H X, Chen J M, Liang J S, Gu M H, Cheng Z K. ERECT PANICAL2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 2010, 184: 343-350.
[18] Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. The Plant Journal, 2007, 51: 1030-1040.
[19] Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. LAX and SPA: Major regulators of shoot branching in rice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20): 11765-11770.
[20] Oikawa T, Kyozuka J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. The Plant Cell, 2009, 21: 1095-1108.
[21] Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X H, Yoshida H, Kyozuka J, Chen F, Sato Y. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. The Plant Cell, 2011, 23: 3276-3287.
[22] Ikeda K, Nagasawa N, Nagato Y. ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Developmemtal Biology, 2005, 282: 349-360.
[23] Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. The Plant Journal, 2007, 51: 1030-1040.
[24] Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiology, 2009, 150: 736-747.
[25] Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J I, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. The Plant Journal, 2012, 69: 168-180.
[26] Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J, Li J, Wang Y. Short panicle1 encodes a putative PTR transporter and determines rice panicle size. The Plant Journal, 2009, 58: 592-605.
[27] Qi Z Y, Xiong L Z. Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. Journal of Integrative Plant Biology, 2013, 55(11): 1119-1135.
[28] Akter M B, Piao RH, Kim B, Lee YJ, Koh E, Koh H J. Fine mapping and candidate gene analysis of a new mutant gene for panicle apical abortion in rice. Euphytica, 2014, 197(3): 387-398.
[29] 徐华山, 孙永建, 周红菊, 余四斌. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007, 33: 979-986.
Xu H S, Sun Y J, Zhou H J, Yu S B. Development and characterization of contigous segement substitution lines with background of an elite restorer line. Acta Agronomica Sinica, 2007, 33: 979-986. (in Chinese)
[30] Tan C, Sun Y, Xu H, Yu S. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breeding, 2011, 130: 177-184.
[31] 王斌, 刘贺梅, 毛毕刚, 高素伟, 徐宏斌, 葛建贵. 水稻顶部小穗退化性状的QTL分析. 中国水稻科学, 2011, 25: 561-564.
Wang B, Liu H M, Mao B G, Gao S W, Xu H B, Ge J G. Analysis on apical spikelet abortion in rice. Chinese Journal of Rice Science, 2011, 25: 561-564. (in Chinese)
[32] 李真, 毛毕刚, 衡月琴, 王久林, 程治军, 万建民. 水稻穗顶部退化基因PAA2的精细定位. 植物遗传资源学报, 2014, 15(5): 1023-1027.
Li Z, Mao B G, Heng Y Q, Wang J L, Cheng Z J, Wan J M. Fine mapping of the panicle apical abortion PAA2 in rice(Oryza sativa). Journal of Plant Genetic Resources, 2014, 15(5): 1023-1027. (in Chinese)
[33] 高素伟, 张玲, 毛毕刚, 王久林, 程治军, 万建民. 水稻穗顶部退化突变体L-05261的遗传分析. 作物学报, 2011, 37: 1935-1941.
Gao S W, Zhang L, Mao B G, Wang J L, Cheng Z J, Wan J M. Genetic analysis of rice mutant L-05261 with panicle apical abortion trait. Acta Agronomica Sinica, 2011, 37: 1935-1941. (in Chinese)
[34] Cheng Z J, Mao B G, Gao S W, Zhang L, Wang J L, Lei C L, Zhang X, Wu F Q, Guo X P, Wan J M. Fine mapping of qPAA8, a gene controlling panicle apical development in rice. Journal of Integrative Plant Biology, 2011, 53: 710-718.
[35] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8: 4321-4325.
[36] Sanguinetti C J, Dias N E, Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 915-919. |