? <em>GmNAC15 </em>overexpression in hairy roots enhances salt tolerance in soybean
JIA
      
Quick Search in JIA      Advanced Search  
    2018, Vol. 17 Issue (03): 530-538     DOI: 10.1016/S2095-3119(17)61721-0
Crop Science Current Issue | Next Issue | Archive | Adv Search  |   
GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean
LI Ming1, 2, HU Zheng2, JIANG Qi-yan2, SUN Xian-jun2, GUO Yuan2, QI Jun-cang1, ZHANG Hui2   
1 Agricultural College, Shihezi University, Shihezi 832003, P.R.China
2 National Key Facilities for Crop Genetic Resources and Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
 Download: PDF in ScienceDirect (0 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The NAC (NAM, ATAF1/2 and CUC2) transcription factor family plays a key role in plant development and responses to abiotic stress.  GmNAC15 (Glyma15g40510.1), a member of the NAC transcription factor family in soybean, was functionally characterized, especially with regard to its role in salt tolerance.  In the present study, qRT-PCR (quantitative reverse transcription PCR) analysis indicated that GmNAC15 was induced by salt, drought, low temperature stress, and ABA treatment in roots and leaves.  GmNAC15 overexpression in soybean (Glycine max) hairy roots enhanced salt tolerance.  Transgenic hairy roots improved the survival of wild leaves; however, overexpression of GmNAC15 in hairy root couldn’t influnce the expression level of GmNAC15 in leaf.  GmNAC15 regulates the expression levels of genes responsive to salt stress.  Altogether, these results provide experimental evidence of the positive effect of GmNAC15 on salt tolerance in soybean and the potential application of genetic manipulation to enhance the salt tolerance of important crops. 
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsNAC     salt tolerance     soybean     hairy roots     
Received: 2017-02-24; Published: 2017-05-31
Fund:

This study was supported by the National Key Research and Development Program of China (2016YFD0101005) and the Agricultural Science and Technology Program for Innovation Team on Identification and excavation of Elite Crop Germplasm, Chinese Academy of Agricultural Sciences.

Corresponding Authors: Correspondence QI Jun-cang,E-mail: qjc_agr@shzu.edu.cn; ZHANG Hui,E-mail:zhanghui06@caas.cn   
About author: LI Ming,Tel/Fax:+86-10-62186654,E-mail:lmpapaya1987926@sina.com
Cite this article:   
LI Ming, HU Zheng, JIANG Qi-yan, SUN Xian-jun, GUO Yuan, QI Jun-cang, ZHANG Hui. GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean[J]. Journal of Integrative Agriculture, 2018, 17(03): 530-538.
URL:  
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/10.1016/S2095-3119(17)61721-0      or     http://www.chinaagrisci.com/Jwk_zgnykxen/EN/Y2018/V17/I03/530
 
[1] Aono M, Kubo A, Saji H, Tanaka K, Kondo N. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant and Cell Physiology, 34, 129-135.
[2] Ernst H A, Olsen A N, Skriver K, Larsen S, Leggio L L. 2004. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. Scientific Report, 5, 297-303.
[3] Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J E, Díaz-Camino C, Santana O, Murillo E, Guillén G, Sánchez-Guevara N, Acosta J, Quinto C, Li D, Gresshoff P M, Sánchez F. 2006. Agrobacterium rhizogenes transformation of the Phaseolus spp.: A tool for functional genomics. Molecular Plant-Microbe Interactions, 19, 1385-1393.
[4] Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z. 2014. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 15, 284-296.
[5] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H, Lei G, Tian A , Zhang W, Ma B, Zhang J, Chen S. 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 68, 302-313.
[6] He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal, 44, 903-916.
[7] Hibara K I, Karim M R, Takada S, Taoka K I, Furutani M, Aida M, Tasaka M. 2006. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. The Plant Cell, 18, 2946-2957.
[8] Huang Q, Wang Y. 2016. Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Frontiers in Plant Science, 7, 1754.
[9] Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G. 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biology, 15, 268.
[10] Huang X S, Luo T, Fu X Z, Fan Q J, Liu J H. 2011. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. Journal of Experimental Botany, 62, 5191-5206.
[11] Jensen M K, Kjaersgaard T, Nielsen M M, Galberg P, Petersen K, O’Shea C, Skriver K. 2010. The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 426, 183-196.
[12] Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. 2007. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols, 2, 948-952.
[13] Kong X, Sun L, Zhou Y, Zhang M, Liu Y, Pan J, Li D. 2011. ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. Plant Cell Reports, 30, 2097-2104.
[14] Le D T, Nishiyama R I E, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S P. 2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Research, 18, 263-276.
[15] Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402-408.
[16] Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R. 2012. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 63, 2933-2946.
[17] Ni Z, Hu Z, Jiang Q, Zhang H. 2013. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Molecular Biology, 82, 113-129.
[18] Nuruzzaman M, Manimekalai R, Sharoni A M, Satoh K, Kondoh H, Ooka H, Kikuchi S. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene, 465, 30-44.
[19] Parida A K, Das A B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, 324-349.
[20] Patil M, Ramu S V, Jathish P, Sreevathsa R, Reddy P C, Prasad T G, Udayakumar M. 2014. Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnology Reports, 8, 161-169.
[21] Phang T H, Shao G, Lam H M. 2008. Salt tolerance in soybean. Journal of Integrative Plant Biology, 50, 1196-1212.
[22] Puckette M C, Weng H, Mahalingam R. 2007. Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiology and Biochemistry, 45, 70-79.
[23] Puranik S, Sahu P P, Srivastava P S, Prasad M. 2012. NAC proteins: Regulation and role in stress tolerance. Trends in Plant Science, 17, 369-381.
[24] Rushton P J, Bokowiec M T, Han S, Zhang H, Brannock J F, Chen X, Laudeman T W, Timko M P. 2008. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiology, 147, 280-295.
[25] Takada S, Hibara K I, Ishida T, Tasaka M. 2001. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128, 1127-1135.
[26] Yang R, Deng C, Ouyang B, Ye Z. 2011. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Molecular Biology Reports, 38, 857-863.
[27] Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. 2009. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 60, 3781-3796.
[28] Zheng X, Chen B, Lu G, Han B. 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 379, 985-989.
[29] Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6, 486-503.
No Similar of article
Copyright © 2015 ChinaAgriSci.com, All Rights Reserved
Chinese Academy of Agricultural Sciences (CAAS) No. 12 South Street, Zhongguancun, Beijing 100081, P. R. China
http://www.ChinaAgriSci.com   JIA E-mail: jia_journal@caas.cn