Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (3): 621-630    DOI: 10.1016/S2095-3119(20)63447-5
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A locus TUTOU2, determines the panicle apical abortion phenotype of rice (Oryza sativa L.) in tutou2 mutant
ZHU Zi-chao1, 2, LUO Sheng1, LEI Bin1, LI Xian-yong2, CHENG Zhi-jun1
1 Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing 100081, P.R.China
2 Rice Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 400060, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

水稻顶端小穗退化是重要的农艺性状,它引起颖花数减少,造成产量损失。为进一步理解其分子机制,我们从组织培养后代中得到1个隐性穗顶部退化突变体tutou2。利用图位克隆将候选基因定位在第10染色体长臂约75kb区间内。测序发现,在该区域内突变体基因LOC_Os10g31910的第2外显子第941位碱基发生了A→T碱基变化,导致编码氨基酸由异亮氨酸变为苯丙氨酸。互补实验能够使tutou2突变体的表型恢复正常,敲除LOC_Os10g31910也能够获得tutou2突变体同样的表型。这说明:LOC_Os10g31910是引起突变体tutou2穗顶部退化的基因TUTOU2。尽管TUTOU2很可能与已报道的叶片早衰基因DEL1等位,但突变体del1tutou2之间的表型差异说明DEL1/TUTOU2同时在水稻叶片和穗发育中发挥作用,这在目前还没有充分研究过。



Abstract  Rice panicle apical abortion (PAA) is a detrimental agronomic trait resulting in spikelet number reduction and yield loss.  To understand its underlying molecular mechanism, we identified one recessive PAA mutant tutou2 from the offspring of tissue cultures.  The mutation locus was finely mapped to a 75-kb interval on the long arm of chromosome 10.  Sequence analysis revealed a single nucleotide substitution of A to T at the 941 position of LOC_Os10g31910 in tutou2, resulting in an amino acid change from isoleucine to phenylalanine.  Complementation analysis showed that the degenerated panicle phenotype in tutou2 was rescued in the transgenic lines.  A phenotype similar to tutou2 can also be obtained by LOC_Os10g31910 knockout in wild-type rice.  These results suggested that LOC_Os10g31910 is the causative locus TUTOU2 responsible for the tutou2 PAA phenotype and probably also the locus of DEL1, previously documented as a leaf senescence gene.  The significant phenotypic differences between del1 and tutou2 suggest that the locus DEL1/TUTOU2 plays roles in both leaf and panicle development which were not considered fully in previous studies.
Keywords:  Oryza sativa L.       panicle apical abortion       Pectate lyase-like       gene cloning       DEL1  
Received: 09 July 2020   Accepted: 01 September 2020
CLC Number:     
Fund: This work was supported by grants from the National Transgenic Science and Technology Program, China (2016ZX08009003-003), the National Key Research and Development Program of China (2016YFD0101100), the Youth Innovation Team Program of Chongqing Academy of Agricultural Sciences, China (NKY-2018QC03) and the National Natural Science Foundation of China (31960401). 

About author:  ZHU Zi-chao, E-mail: zichaozhu@126.com; Correspondence CHENG Zhi-jun, Tel: +86-10-82108786, Email: chengzhijun@caas.cn

Cite this article: 

ZHU Zi-chao, LUO Sheng, LEI Bin, LI Xian-yong, CHENG Zhi-jun. 2022. A locus TUTOU2, determines the panicle apical abortion phenotype of rice (Oryza sativa L.) in tutou2 mutant. Journal of Integrative Agriculture, 21(3): 621-630.

 Akter M B, Piao R, Kim B, Lee Y, Koh E, Koh H J. 2014. Fine mapping and candidate gene analysis of a new mutant gene for panicle apical abortion in rice. Euphytica, 197, 387–398.
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741–745.
Bai J T, Zhu X D, Wang Q, Zhang J, Chen H Q, Dong G J, Zhu L, Zheng H K, Xie Q J, Nian J Q, Chen F, Fu Y, Qian Q, Zuo J R. 2015. Rice Tutou1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiology, 169, 1179–1191.
Bai X F, Huang Y, Hu Y, Liu H Y, Zhang B, Smaczniak C, Hu G, Han Z M, Xing Y D. 2017. Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants, 3, 885–893.
Benitez-Burraco A, Blanco-Portales R, Redondo-Nevado J, Bellido M L, Moyano E, Caballero J L, Munoz-Blanco J. 2003. Cloning and characterization of two ripening-related strawberry (Fragaria×ananassa cv. Chandler) pectate lyase genes. Journal of Experimental Botany, 54, 633–645.
Cheng Z J, Mao B G, Gao S W, Zhang L, Wang J L, Lei C L, Zhang X, Wu F Q, Guo X P, Wan J. 2011. Fine mapping of qPAA8, a gene controlling panicle apical development in rice. Journal of Integrative Plant Biology, 53, 710–718.
Chotigeat W, Duangchu S, Wititsuwannakun R, Phongdara A. 2009. Cloning and characterization of pectate lyase from Hevea brasiliensis. Plant Physiology Biochemistry, 47, 243–247.
Fujita D, Trijatmiko K R, Tagle A G, Sapasap M V, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban R B, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin I H, Ishimaru T, Kobayashi N. 2013. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110, 20431–20436.
Heng Y Q, Wu C Y, Long Y, Luo S, Ma J, Chen J, Liu J F, Zhang H, Ren Y L, Wang M, Tan J J, Zhu S S, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Cheng Z J, Wan J M. 2018. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. The Plant Cell, 30, 889–906.
Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 41, 494–497.
Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. 2017. NOG1 increases grain production in rice. Nature Communications, 8, 1497.
Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. 2007. Rice Aberrant Panicle Organization 1, encoding an F-box protein, regulates meristem fate. The Plant Journal, 51, 1030–1040.
Ikeda K, Maekawa M, Izawa T, Itoh J, Nagato Y. 2012. Aberrant Panicle Organization 2/RFL, the rice ortholog of Arabidopsis Leafy, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. The Plant Journal, 69, 168–180.
Ikeda K, Sunohara H, Nagato Y. 2004. Developmental course of inflorescence and spikelet in rice. Breeding Science, 54, 147–156.
Jiang J J, Yao L N, Miao Y, Cao J S. 2013. Genome-wide characterization of the Pectate Lyase-like (PLL) genes in Brassica rapa. Molecular Genetics and Genomics, 288, 601–614.
Jiang J J, Yao L N, Yu Y J, Lv M L, Miao Y, Cao J S. 2014. Pectate Lyase-Like10 is associated with pollen wall development in Brassica campestris. Journal of Integrative Plant Biology, 56, 1095–1105.
Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 42, 541–544.
Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. 2003. LAX and SPA: Major regulators of shoot branching in rice. Proceedings of the National Academy of Sciences of the United States of America, 100, 11765–11770.
Kulikauskas R, McCormick S. 1997. Identification of the tobacco and Arabidopsis homologues of the pollen-expressed LAT59 gene of tomato. Plant Molecular Biology, 34, 809–814.
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. 2007. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 445, 652–655.
Leng Y J, Yang Y L, Ren D Y, Huang L C, Dai L P, Wang Y Q, Chen L, Tu Z J, Gao Y H, Li X Y, Zhu L, Hu J, Zhang G H, Gao Z Y, Guo L B, Kong Z S, Lin Y J, Qian Q, Zeng D L. 2017. A rice Pectate Lyase-Like gene is required for plant growth and leaf senescence. Plant Physiology, 174, 1151–1166.
Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. 2009. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. The Plant Journal, 58, 592–605.
Li S Y, Zhao B R, Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z, Feng Y Q, Yuan L P, Li C Y. 2013. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proceedings of the National Academy of Sciences of the United States of America, 110, 3167–3172.
Marin-Rodriguez M C, Smith D L, Manning K, Orchard J, Seymour G B. 2003. Pectate lyase gene expression and enzyme activity in ripening banana fruit. Plant Molecular Biology, 51, 851–857.
Miao J, Guo D S, Zhang J Z, Huang Q P, Qin G J, Zhang X, Wan J M, Gu H Y, Qu L J. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23, 1233–1236.
Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 42, 545–549.
Nakagawa M, Shimamoto K, Kyozuka J. 2002. Overexpression of RCN1 and RCN2, rice Terminal Flower 1/Centroradialis homologs, confers delay of phase transition and altered panicle morphology in rice. The Plant Journal, 29, 743–750.
Nunan K J, Davies C, Robinson S P, Fincher G B. 2001. Expression patterns of cell wall-modifying enzymes during grape berry development. Planta, 214, 257–264.
Oikawa T, Kyozuka J. 2009. Two-step regulation of Lax Panicle1 protein accumulation in axillary meristem formation in rice. The Plant Cell, 21, 1095–1108.
Peng Y B, Hou F X, Bai Q, Xu P Z, Liao Y X, Zhang H Y, Gu C J, Deng X S, Wu T K, Chen X Q, Ali A, Wu X J. 2018. Rice calcineurin B-like protein-interacting protein kinase 31 (OsCIPK31) is involved in the development of panicle apical spikelets. Frontiers in Plant Science, 9, 1661.
Qiao Y L, Piao R H, Shi J X, Lee S I, Jiang W Z, Kim B K, Lee J, Han L Z, Ma W B, Koh H J. 2011. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics, 122, 1439–1449.
Rao Y C, Yang Y L, Xu J, Li X J, Leng Y J, Dai L P, Huang L C, Shao G S, Ren D Y, Hu J, Guo L B, Pan J W, Zeng D L. 2015. Early Senescence1 encodes a scar-like protein2 that affects water loss in rice. Plant Physiology, 169, 1225–1239.
Rogers H J, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale D M, Twell D. 2001. Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Molecular Biology, 45, 577–585.
Senanayake N, De Datta S K, Naylor R E L, Thompson W J. 1991. Lowland rice apical development: Stages and cultivar differences detected by electron microscopy. Agronomy Journal, 83, 1013–1023.
Senechal F, Wattier C, Rusterucci C, Pelloux J. 2014. Homogalacturonan-modifying enzymes: Structure, expression, and roles in plants. Journal of Experimental Botany, 65, 5125–5160.
Shin S B, Golovkin M, Reddy A S. 2014. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Scientific Reports, 4, 5263.
Sun H R, Hao P B, Ma Q, Zhang M, Qin Y, Wei H L, Su J J, Wang H T, Gu L J, Wang N H, Liu G Y, Yu S X. 2018. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton (Gossypium hirsutum L.). BMC Genomics, 19, 661.
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X, Yoshida H, Kyozuka J, Chen F, Sato Y. 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. The Plant Cell, 23, 3276–3287.
Tanaka W, Pautler M, Jackson D, Hirano H Y. 2013. Grass meristems II: Inflorescence architecture, flower development and meristem fate. Plant & Cell Physiology, 54, 313–324.
Vogel J P, Raab T K, Schiff C, Somerville S C. 2002. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. The Plant Cell, 14, 2095–2106.
Wang Q L, Sun A Z, Chen S T, Chen L S, Guo F Q. 2018. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nature Plants, 4, 280–288.
Wu H B, Wang B, Chen Y, Liu Y G, Chen L. 2013. Characterization and fine mapping of the rice premature senescence mutant ospse1. Theoretical and Applied Genetics, 126, 1897–1907.
Wu Y, Qiu X, Du S, Erickson L. 1996. PO149, a new member of pollen pectate lyase-like gene family from alfalfa. Plant Molecular Biology, 32, 1037–1042.
Xing Y Z, Zhang Q F. 2010. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 61, 421–442. 
Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 40, 761–767.
Yamagishi J, Miyamoto N, Hirotsu S, Laza R C, Nemoto K. 2004. QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonica×tropical japonica cross. Theoretical and Applied Genetics, 109, 1555–1561.
Yang L, Huang W, Xiong F J, Xian Z Q, Su D D, Ren M Z, Li Z G. 2017. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnology Journal, 15, 1544–1555.
Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J. 2013. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proceedings of the National Academy of Sciences of the United States of America, 110, 767–772.
Zafar S A, Patil S B, Uzair M, Fang J, Zhao J, Guo T, Yuan S, Uzair M, Luo Q, Shi J, Schreiber L, Li X. 2020. Degenerated Panicle and Partial Sterility 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. The New Phytologist, 225, 356–375.
Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G. 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 183, 315–324.
Zhu K M, Tang D, Yan C J, Chi Z C, Yu H X, Chen J M, Liang J S, Gu M H, Cheng Z K. 2010. Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 184, 343–350.
Zou X H, Qin Z R, Zhang C Y, Liu B, Liu J, Zhang C S, Lin C T, Li H Y, Zhao T. 2015. Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. Journal of Experimental Botany, 66, 7197–7209.
[1] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[2] CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun. Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin[J]. >Journal of Integrative Agriculture, 2023, 22(1): 31-40.
[3] HAN Rui-cai, XU Zhi-rong, LI Chen-yan, Adnan Rasheed, PAN Xiao-hua, SHI Qing-hua, WU Zi-ming. The removal of nitrate reductase phosphorylation enhances tolerance to ammonium nitrogen deficiency in rice[J]. >Journal of Integrative Agriculture, 2022, 21(3): 631-643.
[4] HAN Rui-cai, LI Chen-yan, Adnan Rasheed, PAN Xiao-hua, SHI Qing-hua, WU Zi-ming. Reducing phosphorylation of nitrate reductase improves nitrate assimilation in rice[J]. >Journal of Integrative Agriculture, 2022, 21(1): 15-25.
[5] TANG Yu-jin, WANG Qian, XUE Jing-yi, LI Yan, LI Rui-min, Steve Van Nocker, WANG Yue-jin, ZHANG Chao-hong. Gene cloning and expression analyses of WBC genes in the developing grapevine seeds[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1348-1359.
[6] QIN Jing, GAO Peng, ZHANG Xiao-xiang, LU Ming-xing, DU Yu-zhou. Characterization of two novel heat shock protein 70s and their transcriptional expression patterns in response to thermal stress in adult of Frankliniella occidentalis (Thysanoptera: Thripidae)[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1023-1031.
[7] DAI Ru, JIN Hai-peng, WANG Zeng, Avihai Perl, XU Hai-ying, ZHANG Wen, CHEN Shang-wu, MA Hui-qin. Cloning and Characterization of WOX4 Gene from Vitis vinifera L. Involved in Stem Cell Regulation[J]. >Journal of Integrative Agriculture, 2011, 10(12): 1861-1871.
No Suggested Reading articles found!