Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)
XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian
2023, 22 (8): 2335-2345.   DOI: 10.1016/j.jia.2023.04.046
Abstract227)      PDF in ScienceDirect      

Anthocyanin is an important pigment that affects plant color and nutritional quality.  MYBs play an important role in plant anthocyanin synthesis and accumulation.  However, the regulatory function of MYB transcription factors in anthocyanin synthesis in flax flowers is still unclear.  In this study, 402 MYB transcription factors were identified in the flax genome.  These MYB members are unevenly distributed on 15 chromosomes.  The R2R3-LuMYB members were divided into 32 phylogenetic subfamilies.  qRT-PCR analysis showed that seven R2R3-LuMYB genes in the adjacent subfamily of the evolutionary tree had similar expression patterns, among which LuMYB216 was highly expressed in the petals of different colors.  Moreover, gene editing of LuMYB216 in flax showed that the petal color, anther color and seed coat color of mutant plants were significantly lighter than those of wild-type plants, and the anthocyanin content of lumyb216 mutant plants was significantly reduced.  Correlation analysis indicated that LuMYB216 was significantly positively correlated with the upstream regulator bHLH30.  This study systematically analyzed the MYB gene family in flax, laying a foundation for studying the regulation of LuMYB216 in flax flower anthocyanin synthesis.

Reference | Related Articles | Metrics
A novel short transcript isoform of chicken IRF7 negatively regulates interferon-β production
MA Yu-chen, CHEN Hua-yuan, GAO Shen-yan, ZHANG Xiao-zhan, LI Yong-tao, YANG Xia, ZHAO Jun, WANG Zeng
2023, 22 (7): 2213-2220.   DOI: 10.1016/j.jia.2022.12.015
Abstract134)      PDF in ScienceDirect      
Type I interferon (IFN-I) provides an important first line to protect avian species against pathogens invasion. IFN regulatory factor 7 (IRF7) has been identified as the most important regulator for both DNA and RNA virus-induced IFN-I production in chickens. Although four splicing variants of IRF7 have been identified in mammals, it is still unclear whether alternative splicing patterns and the function of IRF7 isoform(s) exist in chickens. In this study, we reported a novel short transcript isoform of chicken IRF7 (chIRF7), termed chIRF7-iso, which contained an intact N-terminal DNAbinding domain (DBD) and 14 amino acids different from chIRF7 in the C-terminal. Overexpression of chIRF7 in chicken leghorn male hepatocellular (LMH) cells activated the IFN-β promoter and significantly inhibited Newcastle disease virus (NDV) and fowl adenovirus serotype 4 (FAdV-4) replication. Conversely, overexpression of chIRF7-iso blocked the IFN-β promoter activity and was favorable for NDV and FAdV-4 replication in vitro. Collectively, our results confirm that a novel chIRF7 isoform-mediated negative regulates IFN-β production, which will contribute to understanding the role of chIRF7 in innate antiviral response in chicken.
Reference | Related Articles | Metrics
A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism
ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan
2023, 22 (3): 799-811.   DOI: 10.1016/j.jia.2022.08.117
Abstract235)      PDF in ScienceDirect      

Meloidogyne incognita is a devastating plant-parasitic nematode.  Effectors play important roles during the stages of nematodes infection and parasitism, but their molecular functions remain largely unknown.  In this study, we characterized a new effector, Minc03329, which contains signal peptide for secretion and a C-type lectin domain.  The yeast signal sequence trap experiments indicated that the signal peptide of Minc03329 is functional.  In situ hybridization showed that Minc03329 was specifically expressed in the subventral esophageal gland.  Real-time qPCR confirmed that the expression level of Minc03329 transcript was significantly increased in pre-parasitic and parasitic second-stage juveniles (pre-J2s and par-J2s).  Tobacco rattle virus (TRV)-mediated gene silencing of Minc03329 in host plants largely reduced the pathogenicity of nematodes.  On the contrary, ectopic expression of Minc03329 in Arabidopsis thaliana significantly increased plant susceptibility to nematodes.  Transient expression of Minc03329 in Nicotiana benthamiana leaves suppressed the programmed cell death triggered by the pro-apoptotic protein BAX.  Moreover, the transcriptome analysis of Minc03329-transgenic Arabidopsis and wild type revealed that many defense-related genes were significantly down-regulated.  Interestingly, some different expressed genes were involved in the formation of nematode feeding sites.  These results revealed that Minc03329 is an important effector for Mincognita, suppressing host defense response and promoting pathogenicity.

Reference | Related Articles | Metrics
Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community
ZOU Xiao-xia, HUANG Ming-ming, LIU Yan, SI Tong, ZHANG Xiao-jun, YU Xiao-na, GUO Feng, WAN Shu-bo
2023, 22 (11): 3430-3443.   DOI: 10.1016/j.jia.2023.04.018
Abstract209)      PDF in ScienceDirect      

Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry.  Wheat (Triticum aestivum L.)–maize (Zea mays L.) (W–M) rotation is the dominant planting pattern in the Huang-Huai-Hai  Plain and is important for food security in China.  However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation.  Introducing legumes into the W–M rotation system may be an effective way to improve soil quality.  In this study, we aimed to verify this hypothesis by exploring efficient planting systems (wheat–peanut (Arachis hypogaea L.) (W–P) rotation and wheat rotated with maize and peanut intercropping (W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai   Plain.  Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms (SMs), and soil organic carbon (SOC) fractions for three consecutive years.  The results indicated that wheat yields were significantly increased under W–P and W–M/P (382.5–579.0 and 179.8–513.1 kg ha−1, respectively) compared with W–M.  W–P

and W–M/P provided significantly higher net returns (58.2 and 70.4%, respectively) than W–M.  W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer.  Compared with W–M, W–M/P improved labile carbon fractions; the sensitivity index of potentially mineralizable carbon, microbial biomass carbon (MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively.  The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern.  W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers.  Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely, potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P.  SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales.  Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity.  In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems.

Reference | Related Articles | Metrics
Genome-wide association studies reveal the genetic basis of amino acid content variation in tea plants
GUO Ya-fei, LI Dai-li, QIU Hai-ji, ZHANG Xiao-liang, LIU Lin, ZHAO Jing-jing, JIANG De-yuan
2023, 22 (11): 3364-3379.   DOI: 10.1016/j.jia.2023.10.002
Abstract172)      PDF in ScienceDirect      

Tea is one of the most popular non-alcoholic beverages in the world, and free amino acids, especially theanine, make a major contribution to the umami taste of tea.  However, the genetic basis of the variation in amino acid content in tea plants remains largely unknown.  Here, we measured the free amino acid content in fresh leaves of 174 tea accessions over two years using a targeted metabolomics approach and obtained genotype data via RNA sequencing.  Genome-wide association studies were conducted to investigate loci affecting the content of free amino acids.  A total of 69 quantitative trait loci (–log10(P-value)>5) were identified.  Functional annotation revealed that branched-chain amino acid aminotransferase, glutamine synthetase, nitrate transporter, and glutamate decarboxylase might be important for amino acid metabolism.  Two significant loci, glutamine synthetase (Glu1, P=3.71×10–4; Arg1, P=4.61×10–5) and branched-chain amino acid aminotransferase (Val1, P=4.67×10–5; I_Leu1, P=3.56×10–6), were identified, respectively.  Based on the genotyping result, two alleles of CsGS (CsGS-L and CsGS-H) and CsBCAT (CsBCAT-L and CsBCAT-H) were selected to perform function verification.  Overexpression of CsGS-L and CsGS-H enhanced the contents of glutamate and arginine in transgenic plants, and overexpression of CsBCAT-L and CsBCAT-H promoted the accumulation of valine, isoleucine and leucine.  Enzyme activity assay uncovered that SNP1054 is important for CsGS catalyzing glutamate into glutamine.  Furthermore, CsGS-L and CsGS-H differentially regulated the accumulation of glutamine, and CsBCAT-L and CsBCAT-H differentially regulated the accumulation of branched-chain amino acids.  In summary, the findings in our study would provide new insights into the genetic basis of amino acids contents variation in tea plants and facilitate the identification of elite genes to enhance amino acids content.

Reference | Related Articles | Metrics
A novel mutation in ACS11 leads to androecy in cucumber
WANG Jie, LI Shuai, CHEN Chen, ZHANG Qi-qi, ZHANG Hui-min, CUI Qing-zhi, CAI Guang-hua, ZHANG Xiao-peng, CHAI Sen, WAN Li, YANG Xue-yong, ZHANG Zhong-hua, HUANG San-wen, CHEN Hui-ming, SUN Jin-jing
2023, 22 (11): 3312-3320.   DOI: 10.1016/j.jia.2023.03.003
Abstract199)      PDF in ScienceDirect      

Sex determination in plants gives rise to unisexual flowers.  A better understanding of the regulatory mechanism underlying the production of unisexual flowers will help to clarify the process of sex determination in plants and allow researchers and farmers to harness heterosis.  Androecious cucumber (Cucumis sativus L.) plants can be used as the male parent when planted alongside a gynoecious line to produce heterozygous seeds, thus reducing the cost of seed production.  The isolation and characterization of additional androecious genotypes in varied backgrounds will increase the pool of available germplasm for breeding.  Here, we discovered an androecious mutant in a previously generated ethyl methanesulfonate (EMS)-mutagenized library of the cucumber inbred line ‘406’.  Genetic analysis, whole-genome resequencing, and molecular marker-assisted verification demonstrated that a nonsynonymous mutation in the ethylene biosynthetic gene 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 11 (ACS11) conferred androecy.  The mutation caused an amino acid change from serine (Ser) to phenylalanine (Phe) at position 301 (S301F).  In vitro enzyme activity assays revealed that this S301F mutation leads to a complete loss of enzymatic activity.  This study provides a new germplasm for use in cucumber breeding as the androecious male parent, and it offers new insights into the catalytic mechanism of ACS enzymes.

Reference | Related Articles | Metrics
Comprehensive analysis of the full-length transcripts and alternative splicing involved in clubroot resistance in Chinese cabbage
SU He-nan, YUAN Yu-xiang, YANG Shuang-juan, WEI Xiao-chun, ZHAO Yan-yan, WANG Zhi-yong, QIN Liu-yue, YANG Zhi-yuan, NIU Liu-jing, LI Lin, ZHANG Xiao-wei
2023, 22 (11): 3284-3295.   DOI: 10.1016/j.jia.2022.09.014
Abstract197)      PDF in ScienceDirect      

Chinese cabbage is an economically important Brassica vegetable worldwide, and clubroot, which is caused by the soil-borne protist plant pathogen Plasmodiophora brassicae is regarded as a destructive disease to Brassica crops.  Previous studies on the gene transcripts related to Chinese cabbage resistance to clubroot mainly employed RNA-seq technology, although it cannot provide accurate transcript assembly and structural information.  In this study, PacBio RS II SMRT sequencing was used to generate full-length transcriptomes of mixed roots at 0, 2, 5, 8, 13, and 22 days after Pbrassicae infection in the clubroot-resistant line DH40R.  Overall, 39 376 high-quality isoforms and 26 270 open reading frames (ORFs) were identified from the SMRT sequencing data.  Additionally, 426 annotated long noncoding RNAs (lncRNAs), 56 transcription factor (TF) families, 1 883 genes with poly(A) sites and 1 691 alternative splicing (AS) events were identified.  Furthermore, 1 201 of the genes had at least one AS event in DH40R.  A comparison with RNA-seq data revealed six differentially expressed AS genes (one for disease resistance and five for defensive response) that are potentially involved in Pbrassicae resistance.  The results of this study provide valuable resources for basic research on clubroot resistance in Chinese cabbage.

Reference | Related Articles | Metrics
Identification of transition factors in myotube formation from proteome and transcriptome analyses
ZHENG Qi, HU Rong-cui, ZHU Cui-yun, JING Jing, LOU Meng-yu, ZHANG Si-huan, LI Shuang, CAO Hong-guo, ZHANG Xiao-rong, LING Ying-hui
2023, 22 (10): 3135-3147.   DOI: 10.1016/j.jia.2023.08.001
Abstract282)      PDF in ScienceDirect      

Muscle fibers are the main component of skeletal muscle and undergo maturation through the formation of myotubes.  During early development, a population of skeletal muscle satellite cells (SSCs) proliferate into myoblasts.  The myoblasts then undergo further differentiation and fusion events, leading to the development of myotubes.  However, the mechanisms involved in the transition from SSCs to myotube formation remain unclear.  In this study, we characterized changes in the proteomic and transcriptomic expression profiles of SSCs, myoblasts (differentiation for 2 d) and myotubes (differentiation for 10 d).  Proteomic analysis identified SLMAP and STOM as potentially associated with myotube formation.  In addition, some different changes in MyoD, MyoG, Myosin7 and Desmin occurred after silencing SLMAP and STOM, suggesting that they may affect changes in the myogenic marker.  GO analysis indicated that the differentiation and migration factors SVIL, ENSCHIG00000026624 (AQP1) and SERPINE1 enhanced the transition from SSCs to myoblasts, accompanied by changes in the apoptotic balance.  In the myoblast vs. myotube group, candidates related to cell adhesion and signal transduction were highly expressed in the myotubes.  Additionally, CCN2, TGFB1, MYL2 and MYL4 were identified as hub-candidates in this group.  These data enhance our existing understanding of myotube formation during early development and repair.

Reference | Related Articles | Metrics
Identification of soft rot resistance loci in Brassica rapa with SNP markers
LIU Meng-yang, WU Fang, GE Yun-jia, LU Yin, ZHANG Xiao-meng, WANG Yan-hua, WANG Yang, YAN Jing-hui, SHEN Shu-xing, ZHAO Jian-jun, MA Wei
2022, 21 (8): 2253-2263.   DOI: 10.1016/S2095-3119(21)63874-1
Abstract221)      PDF in ScienceDirect      

Soft rot caused by Pectobacterium carotovorum (Pc) is a devastating disease of Brassica rapa, causing substantial reductions in crop yield and quality.  Identifying genes related to soft rot resistance is the key to solving this problem.  To characterize soft rot resistance, we screened a soft rot-susceptible Chinese cabbage (A03), a resistant pakchoi (‘Huaguan’), and a resistant mutant (sr).  An F2 population was generated by crossing susceptible Chinese cabbage A03 and resistant pakchoi ‘Huaguan’ to identify quantitative trait loci (QTLs) that confer soft rot resistance.  A high-density genetic map was constructed and the three QTLs identified contain 166 genes.  Based on available transcriptome data, we analyzed the expression of the 166 genes during an important defense regulatory period in Pc infection in both A03 and the resistant mutant sr.  Among the 166 genes, six candidate genes were related to the soft rot defense response in Brapa.  TIFY10B (JAZ2, BraA07g038660.3C) was located in the major soft rot resistance QTL, DRQTL-3 on A07, and we speculate that this gene may play an important role in the defense mechanism against soft rot in Brapa.  This study lays the foundation for further investigations on the mechanism of soft rot resistance in Brapa crops.

Reference | Related Articles | Metrics
Influence of high-molecular-weight glutenin subunit deletions at the Glu-A1 and Glu-D1 loci on protein body development, protein components and dough properties of wheat (Triticum aestivum L.)
LIU Da-tong, ZHANG Xiao, JIANG Wei, LI Man, WU Xu-jiang, GAO De-rong, BIE Tong-de, LU Cheng-bin
2022, 21 (7): 1867-1876.   DOI: 10.1016/S2095-3119(21)63605-5
Abstract264)      PDF in ScienceDirect      
High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat.  As the organelle where proteins are stored, the development of protein bodies (PBs) reflects the status of protein synthesis and also affects grain quality to a great extent.  In this study, with special materials of four near-isogenic lines in a Yangmai 18 background we created, the effects of Glu-A1 and Glu-D1 loci deletions on the development and morphological properties of the protein body, protein components and dough properties were investigated.  The results showed that the deletion of the HMW-GS subunit delayed the development process of the PBs, and slowed the increases of volume and area of PBs from 10 days after anthesis (DAA) onwards.  In contrast, the areas of PBs at 25 DAA, the middle or late stage of endosperm development, showed no distinguishable differences among the four lines.  Compared to the wild type and single null type in Glu-A1, the ratios of HMW-GSs to low-molecular-weight glutenin subunits (LMW-GSs), glutenin macropolymer (GMP) content, mixograph parameters as well as extension parameters decreased in the single null type in Glu-D1 and double null type in Glu-A1 and Glu-D1, while the ratios of gliadins (Gli)/glutenins (Glu) in those types increased.  The absence of Glu-D1 subunits decreased both dough strength and extensibility significantly compared to the Glu-A1 deletion type.  These results provide a detailed description of the effect of HMW-GS deletion on PBs, protein traits and dough properties, and contribute to the utilization of Glu-D1 deletion germplasm in weak gluten wheat improvement for use in cookies, cakes and southern steamed bread in China and liquor processing. 
Reference | Related Articles | Metrics
Maizelegume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability
ZHENG Ben-chuan, ZHOU Ying, CHEN Ping, ZHANG Xiao-na, DU Qing, YANG Huan, WANG Xiao-chun, YANG Feng, XIAO Te, LI Long, YANG Wen-yu, YONG Tai-wen
2022, 21 (6): 1755-1771.   DOI: 10.1016/S2095-3119(21)63730-9
Abstract188)      PDF in ScienceDirect      
Legume cultivars affect N uptake, component crop growth, and soil physical and chemical characteristics in maize–legume intercropping systems.  However, how belowground interactions mediate root growth, N fixation, and nodulation of different legumes to affect N uptake is still unclear.  Hence, a two-year experiment was conducted with five planting patterns, i.e., maize–soybean strip intercropping (IMS), maize–peanut strip intercropping (IMP), and corresponding monocultures (monoculture maize (MM), monoculture soybean (MS), and monoculture peanut (MP)), and two N application rates, i.e., no N fertilizer (N–) and conventional N fertilizer (N+), to examine relationships between N uptake and root distribution of crops, legume nodulation and soil N availability.  Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.  Compared with the monoculture system, the N uptake of the intercropping systems increased by 31.7–45.4% in IMS and by 7.4–12.2% in IMP, respectively.  The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%, and that of intercropped peanuts significantly decreased by 46.6% compared with the corresponding monocultures.  Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.  The root length density (RLD) and root surface area density (RSAD) of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.  The roots of intercropped peanuts were confined, which resulted in decreased RLD and RSAD compared with the monoculture.  The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS, and those of peanut were significantly lower in IMP than in MP.  The soil protease, urease, and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture, while the enzyme activities of peanut were significantly lower in IMP than in MP.  The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures, while that of IMP was significantly lower than in MP.  In summary, the IMS system was more beneficial to N uptake than the IMP system.  The intercropping of maize and legumes can promote the N uptake of maize, thus reducing the need for N application and improving agricultural sustainability.

Reference | Related Articles | Metrics
Physiological mitochondrial ROS regulate diapause by enhancing HSP60/Lon complex stability in Helicoverpa armigera
ZHANG Xiao-shuai, SU Xiao-long, GENG Shao-lei, WANG Zheng-hao
2022, 21 (6): 1703-1712.   DOI: 10.1016/S2095-3119(20)63578-X
Abstract216)      PDF in ScienceDirect      
Diapause is a long-lived stage which has evolved into an important strategy for insects to circumvent extreme environments.  In the pupal stage, Helicoverpa armigera can enter diapause, a state characterized by significantly decreased metabolic activity and enhanced stress resistance, to survive cold winters.  Previous studies have shown that reactive oxygen species (ROS) can promote the diapause process by regulating a distinct insulin signaling pathway.  However, the source of ROS in the diapause-destined pupal brains and mechanisms by which ROS regulate diapause are still unknown.  In this study, we showed that diapause-destined pupal brains accumulated high levels of mitochondrial ROS (mtROS) and total ROS during the diapause process, suggesting that mitochondria are the main source of ROS in diapause-destined pupal brains.  In addition, injection of 2-deoxy-D-glucose (DOG), a glucose metabolism inhibitor, could delay pupal development by elevating mtROS levels in the nondiapause-destined pupal brains.  Furthermore, the injection of a metabolite mixture to increase metabolic activity could avert the diapause process in diapause-destined pupae by decreasing mtROS levels.  We also found that ROS could activate HSP60 expression and promote the stability of the HSP60-Lon complex, increasing its ability to degrade mitochondrial transcription factor A (TFAM) and decreasing mitochondrial activity or biogenesis under oxidative stress.  Thus, this study illustrated the beneficial function of ROS in diapause or lifespan extension by decreasing mitochondrial activity.
Reference | Related Articles | Metrics
Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)
HAN Li-jie, SONG Xiao-fei, WANG Zhong-yi, LIU Xiao-feng, YAN Li-ying, HAN De-guo, ZHOU Zhao-yang, ZHANG Xiao-lan
2022, 21 (5): 1321-1331.   DOI: 10.1016/S2095-3119(21)63788-7
Abstract245)      PDF in ScienceDirect      
OVATE family proteins (OFPs) are plant-specific proteins with a conserved OVATE domain that regulate plant growth and development.  Although OFPs have been studied in several species, their biological functions remain largely unknown in cucumber (Cucumis sativus L.).  This study identified 19 CsOFPs distributed on seven chromosomes in cucumber.  Most CsOFP genes were expressed in reproductive organs, but with different expression patterns.  Ectopic expression of CsOFP12-16c in Arabidopsis resulted in shorter and blunt siliques.  The overall results indicated that CsOFP12-16c regulates silique development in Arabidopsis and may have a similar function in cucumber.
Reference | Related Articles | Metrics
Incidence and prevalence levels of three aphid-transmitted viruses in crucifer crops in China
ZHANG Xiao-yan, PENG Yan-mei, XIANG Hai-ying, WANG Ying, LI Da-wei, YU Jia-lin, HAN Cheng-gui
2022, 21 (3): 774-780.   DOI: 10.1016/S2095-3119(21)63618-3
Abstract235)      PDF in ScienceDirect      
Poleroviruses, which are distributed worldwide, infect many crops of economic importance and cause severe plant diseases.  Brassica yellows virus (BrYV), which has three genotypes, A, B, and C, is a newly identified polerovirus infecting crucifer crops in China, but its distribution is still unclear.  Here, we report the distribution and prevalence levels of the three BrYV genotypes in crucifer crops in China.  A total of 570 crucifer leaf samples randomly collected from 22 provinces, four ethnic minority autonomous regions, and three municipalities in China were tested for BrYV.  RT-PCR detection showed that 97 of the field samples were positive for BrYV, and the average incidence of BrYV was 17.0%.  The virus was detected in 22 provinces, with high incidences in north, northwest, and northeast China.  The multiplex RT-PCR amplification of the three BrYV genotypes revealed that both single and mixed infections occurred.  Among the BrYV infections, 38.1% were mix-infected by more than two viral genotypes, and 8.2% samples were mix-infected by three viral genotypes.  Our findings indicated a widespread prevalence of BrYV in China, and BrYV mixed infections with Turnip mosaic virus and Cucumber mosaic virus in crucifer crops are common.  This study is the first large-scale survey of BrYV in crucifer crops in China.  The information generated in this investigation will contribute to the national prevention and control of viral diseases.
Reference | Related Articles | Metrics
Partial organic substitution weakens the negative effect of chemical fertilizer on soil micro-food webs
LIU Han-wen, ZHANG Xiao-ke, ZHANG Gui-zong, KOU Xin-chang, LIANG Wen-ju
2022, 21 (10): 3037-3050.   DOI: 10.1016/j.jia.2022.07.043
Abstract184)      PDF in ScienceDirect      
Soil biotic communities play vital roles in enhancing soil nutrient cycling and soil fertility.  Long-term excessive nitrogen (N) application is disadvantageous to the stability of soil food webs and affects arable soil health and sustainable utilization.  Proper organic substitution is essential to improve soil health and alleviate the disadvantages of excessive chemical fertilization.  However, the biological effects of various organic amendments on soil micro-food webs are poorly understood.  In order to explore the effects of various organic amendments including stover, biochar and manure on soil micro-food webs (microbial and nematode communities), a field plot experiment with maize having five treatments viz., 100% urea (100% N), 70% urea (70% N), 70% urea plus stover (Stover), 70% urea plus cattle manure (Manure) and 70% urea plus biochar (Biochar) was conducted.  Manure treatment increased the carbon (C) to N use efficiency of soil microbes, which contributed to the retention of soil C, while Biochar treatment elevated soil organic C (SOC) and soil pH.  Additionally, Biochar treatment mitigated the negative effects of soil acidification on the soil micro-food web and reduced the abundance of plant parasites.  Overall, the biological effect of organic amendments was distinguished from chemical fertilization (100% N and 70% N) through principal co-ordinates analysis.  Negative relationships among soil properties, microbial and nematode biomass in the 100% N treatment were diminished in treatments where chemical fertilizer was reduced.  The bottom-up effects on soil food webs were observed in organic substitution treatments.  In conclusion, organic amendments improved soil fertility by regulating soil microbial and nematode communities in the cropland ecosystem, alleviated the negative effects of chemical fertilizer on the micro-food webs and controlled the trophic cascades among soil biota.
Reference | Related Articles | Metrics
The TaFIM1 gene mediates wheat resistance against Puccinia striiformis f. sp. tritici and responds to abiotic stress
SHI Bei-bei, WANG Juan, GAO Hai-feng, ZHANG Xiao-juan, WANG Yang, MA Qing
2021, 20 (7): 1849-1857.   DOI: 10.1016/S2095-3119(20)63276-2
Abstract144)      PDF in ScienceDirect      
Fimbrin, a regulator of actin cytoskeletal dynamics that participates in numerous physiological and biochemical processes, controls multiple developmental processes in a variety of tissues and cell types.  However, the role of fimbrin in pathogen defense of wheat and the mechanisms have not been well studied.  Here, we investigated that the expression of TaFIM1 gene of wheat was significantly induced in response to avirulent race of Puccinia striiformis f. sp. tritici (Pst) and silencing of TaFIM1 by virus-induced gene silencing method.  The results show that silencing of TaFIM1 resulted in a reduction of resistance against the stripe rust indicated by both phenotypes and a histological examination of Pst growth.  Additionally, the expression level of TaFIM1 gene was up-regulated under abiotic stresses.  These findings suggest that TaFIM1 functions as a positive regulator of pathogen resistance of wheat plants and response to abiotic stress.  Our work may show new light on understanding the roles of fimbrin in wheat. 
Reference | Related Articles | Metrics
Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus
LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong
2021, 20 (1): 212-226.   DOI: 10.1016/S2095-3119(20)63268-3
Abstract217)      PDF in ScienceDirect      
Skeletal muscle accounts for about 40% of mammalian body weight, the development of which is a dynamic, complex and precisely regulated process that is critical for meat production. We here described the transcriptome expression profile in 21 goat samples collected at 7 growth stages from fetus to kid, including fetal 45 (F45), 65 (F65), 90 (F90), 120 (F120), and 135 (F135) days, and birth 1 (B1) day and 90 (B90) days kids.  Paraffin sections combined with RNA-seq data of the 7 stages divided the transcriptomic functions of skeletal muscle into 4 states: before F90, F120, F135 and B1, and B90.  And the dynamic expression of all 4 793 differentially expressed genes (DEGs) was identified.  Furthermore, DEGs were clustered by weighted gene correlation network analysis into 4 modules (turquoise, grey, blue and brown) that corresponded to these 4 states.  Functional and pathway analysis indicated that the active genes in the stages before F90 (turquoise) were closely related to skeletal muscle proliferation.  The DEGs in the F120-related module (grey) were found to participate in the regulation of skeletal muscle structure and skeletal muscle development by regulating tRNA.  The brown module (F135 and B1) regulated fatty acid biological processes to maintain the normal development of muscle cells.  The DEGs of B90 high correlation module (blue) were involved the strengthening and power of skeletal muscle through the regulation of actin filaments and tropomyosin.  Our current data thus revealed the internal functional conversion of the goat skeletal muscle in the growth from fetus to kid.  The results provided a theoretical basis for analyzing the involvement of mRNA in skeletal muscle development.
 
Reference | Related Articles | Metrics
Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing
HAO Lu-yang, LIU Xu-yang, ZHANG Xiao-jing, SUN Bao-cheng, LIU Cheng, ZHANG Deng-feng, TANG Huai-jun, LI Chun-hui, LI Yong-xiang, SHI Yun-su, XIE Xiao-qing, SONG Yan-chun, WANG Tian-yu, LI Yu
2020, 19 (2): 449-464.   DOI: 10.1016/S2095-3119(19)62660-2
Abstract174)      PDF in ScienceDirect      
Drought is one of the most important abiotic stresses affecting maize growth and development and therefore resulting in yield loss.  Thus it is essential to understand molecular mechanisms of drought stress responses in maize for drought tolerance improvement.  The root plays a critical role in plants sensing water deficit.  In the present study, two maize inbred lines, H082183, a drought-tolerant line, and Lv28, a drought-sensitive line, were grown in the field and treated with different water conditions (moderate drought, severe drought, and well-watered conditions) during vegetative stage.  The transcriptomes of their roots were investigated by RNA sequencing.  There were 1 428 and 512 drought-responsive genes (DRGs) in Lv28, 688 and 3 363 DRGs in H082183 under moderate drought and severe drought, respectively.  A total of 31 Gene Ontology (GO) terms were significantly over-represented in the two lines, 13 of which were enriched only in the DRGs of H082183.  Based on results of Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, “plant hormone signal transduction” and “starch and sucrose metabolism” were enriched in both of the two lines, while “phenylpropanoid biosynthesis” was only enriched in H082183.  Further analysis revealed the different expression patterns of genes related to abscisic acid (ABA) signal pathway, trehalose biosynthesis, reactive oxygen scavenging, and transcription factors might contribute to drought tolerance in maize.  Our results contribute to illustrating drought-responsive molecular mechanisms and providing gene resources for maize drought improvement.
Reference | Related Articles | Metrics
Impacts of the COVID-19 pandemic on consumers’ food safety knowledge and behavior in China
MIN Shi, XIANG Cheng, ZHANG Xiao-heng
2020, 19 (12): 2926-2936.   DOI: 10.1016/S2095-3119(20)63388-3
Abstract110)      PDF in ScienceDirect      
This study assesses the impacts of the COVID-19 pandemic on Chinese residents’ food safety knowledge and behavior, and explores the possible influence mechanism, namely, focus on media information.  The study is based on internet survey data of 1 373 residents in China.  A series of econometric models are developed to estimate food safety knowledge and behavior of residents.  Both the descriptive and econometric results indicate that the existence of COVID-19 cases in a community has a significantly positive effect on residents’ food safety knowledge and behavior.  Residents focusing on food safety-related information tend to have higher food safety knowledge and practice food safety behavior.  When controlling the variable focused on food safety-related information, the marginal effects of the existence of COVID-19 cases in a community on residents’ food safety knowledge and behavior significantly decrease.  However, the decrease in consumers’ food safety knowledge is quite minor.  Hence, the COVID-19 pandemic indeed improves Chinese residents’ food safety knowledge and behavior, while focus on food safety-related information is an important mechanism for improving food safety behavior.  Moreover, the estimation results of the simultaneous equations model reveal that consumers’ food safety knowledge has a significant and positive effect on their food safety behavior.  Heterogeneous impacts of the COVID-19 pandemic on residents’ food safety knowledge and behavior among different regions and income groups are observed.  The findings of this study provide evidence that public health events could enhance residents’ safety awareness and behavior, while residents’ focus on relevant information plays an important role in improving knowledge and impacting behavior.
Reference | Related Articles | Metrics
Straw layer burial to alleviate salt stress in silty loam soils: Impacts of straw forms
ZHANG Hong-yuan, LU Chuang, PANG Huan-cheng, LIU Na, ZHANG Xiao-li, LI Yu-yi
2020, 19 (1): 265-276.   DOI: 10.1016/S2095-3119(19)62737-1
Abstract131)      PDF in ScienceDirect      
Salt stress can be alleviated by straw layer burial in the soil, but little is known of the appropriate form of the straw layer for optimal regulation of soil water and salinity because of the uncontrollability of field tests.  Here, the following four straw forms with compaction thickness of 5 cm buried 40–45 deep were studied: no straw layer (CK), segmented straw (SL, 5 cm in length), straw pellet (SK), and straw powder (SF).  The three straw forms (SL, SK and SF) significantly delayed the infiltration of irrigation water down the column profile by 71.20–134.3 h relative to CK and the migration velocity of the wetting front under SF was the slowest.  It took longer for the wetting front to transcend SK than SL but shorter for it to reach the bottom of soil column after water crossed the straw layer.  Compared with CK, the average volumetric water content in the 0–40 cm soil layer increased by 6.45% under SL, 1.77% under SK and 5.39% under SF.  The desalination rates at the 0–40 and 0–100 cm soil layers increased by 5.85 and 3.76% under SL, 6.64 and 1.47% under SK and 5.97 and 4.82% under SF.  However, there was no significant difference among straw forms in the 0–40 cm soil layer.  Furthermore, the salt leaching efficiency (SLE, g mm–1 h–1) above the 40 cm layer under SL was 0.0097, being significantly higher than that under SF (0.0071) by 37.23%.  Salt storage under SL, SK and SF in the 40–45 cm layer accounted for 4.50, 16.92 and 7.43% of total storage in the 1-m column profile.  Cumulative evaporation under SL and SF decreased significantly by 41.20 and 49.00%, with both treatments having the most significant inhibition of salt accumulation (resalinization rate being 36.06 and 47.15% lower than CK) in the 0–40 cm soil layer.  In conclusion, the different forms of straw layers have desalting effects under high irrigation level (446 mm).  In particular, SL and SF performed better than SK in promoting deep salt leaching and inhibiting salt accumulation on the soil surface.  However, SL was simpler to implement and its SLE was higher.  Therefore, the segmented 5 cm straw can be recommended as an optimum physical form for establishing a straw layer for managing saline soils for crop production.
Reference | Related Articles | Metrics
Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato
ZHAO Ting-ting, WANG Zi-yu, BAO Yu-fang, ZHANG Xiao-chun, YANG Huan-huan, ZHANG Dong-ye, JIANG Jing-bin, ZHANG He, LI Jing-fu, CHEN Qing-shan, XU Xiang-yang
2019, 18 (7): 1579-1586.   DOI: 10.1016/S2095-3119(19)62621-3
Abstract293)      PDF in ScienceDirect      
Zinc finger-homeodomain proteins (ZF-HDs) are transcription factors that regulate plant growth, development, and abiotic stress tolerance.  The SL-ZH13 gene was found to be significantly upregulated under drought stress treatment in tomato (Solanum lycopersicum) leaves in our previous study.  In this study, to further understand the role that the SL-ZH13 gene plays in the response of tomato plants to drought stress, the virus-induced gene silencing (VIGS) method was applied to downregulate SL-ZH13 expression in tomato plants, and these plants were treated with drought stress to analyze the changes in drought tolerance.  The SL-ZH13 silencing efficiency was confirmed by quantitative real-time PCR (qRT-PCR) analysis.  In SL-ZH13-silenced plants, the stems wilted faster, leaf shrinkage was more severe than in control plants under the same drought stress treatment conditions, anyd the mean stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants.  Physiological analyses showed that the activity of superoxide dismutase (SOD) and peroxidase (POD) and the content of proline (Pro) in SL-ZH13-silenced plants were lower than those in control plants after 1.5 and 3 h of drought stress treatment.  The malondialdehyde (MDA) content in SL-ZH13-silenced plants was higher than that in control plants after 1.5 and 3 h of drought stress treatment, and H2O2 and O2-· accumulated much more in the leaves of SL-ZH13-silenced plants than in the leaves of control plants.  These results suggested that silencing the SL-ZH13 gene affected the response of tomato plants to drought stress and decreased the drought tolerance of tomato plants. 
Reference | Related Articles | Metrics
Genetic diversity and population structure analysis of Capsicum germplasm accessions
GU Xiao-zhen, CAO Ya-cong, ZHANG Zheng-hai, ZHANG Bao-xi, ZHAO Hong, ZHANG Xiao-min, WANG Hai-ping, LI Xi-xiang, WANG Li-hao
2019, 18 (6): 1312-1320.   DOI: 10.1016/S2095-3119(18)62132-X
Abstract234)      PDF in ScienceDirect      
Genetic diversity plays an essential role in plant breeding and utilization.  Pepper is an important vegetable and spice crop worldwide.  The genetic diversity of 1 904 accessions of pepper conserved at the National Mid-term Genebank for Vegetables, Beijing, China was analyzed based on 29 simple sequence repeat (SSR) markers, which were evenly distributed over 12 pepper chromosomes.  The pepper accessions were divided into two groups in a genetic structure analysis, and the two groups showed obvious differences in fruit type and geographical distribution.  We finally selected 248 accessions capturing 75.6% of the SSR alleles as the core collection for further research.  Insights into the genetic structure of pepper provide the basis for population-level gene mining and genetic improvement.
Reference | Related Articles | Metrics
Farm size and fertilizer sustainable use: An empirical study in Jiangsu, China
HU Ling-xiao, ZHANG Xiao-heng, ZHOU Ying-heng
2019, 18 (12): 2898-2909.   DOI: 10.1016/S2095-3119(19)62732-2
Abstract118)      PDF in ScienceDirect      
Inefficient use of fertilizer has caused serious environmental problems and unsustainable development of agriculture in China.  To meet the increasing food demand in the future without damaging the ecological environment, Chinese government officially launched the Action Plan for the Zero Growth of Fertilizer Use in 2015.  At the same time, China released a series of policies aiming explicitly at expanding farm size and a great number of large scale farmers emerged recently.  However, whether the expansion of farm size will be beneficial for the increase of fertilizer use efficiency still remains to be investigated.  In this study, we comprehensively explored the relationship between fertilizer use efficiency and farm size.  Based on the 4?281 farm households’ survey data collected by the National Development and Reform Commission (NDRC) of China from 2004 to 2016 in Jiangsu Province, China, this paper applies a stochastic frontier production function to estimate fertilizer use efficiency across farm size and uses a regression model to analyze the influence of farm size on fertilizer use efficiency.  The results show that: (1) the average fertilizer use efficiency of whole samples was only 0.60, much lower than the average technical efficiency, indicating that on average half of the fertilizer utilized are excessive in China; and (2) the smallest farm size group get the highest fertilizer use efficiency score.  We also provide some possible explanations for the inverse relationship between farm size and fertilizer use efficiency.
Reference | Related Articles | Metrics
Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays
HUANG Ying, ZHANG Xiao-xia, LI Yi-hong, DING Jian-zhou, DU Han-mei, ZHAO Zhuo, ZHOU Li-na, LIU Chan, GAO Shi-bin, CAO Mo-ju, LU Yan-li, ZHANG Su-zhi
2018, 17 (12): 2612-2623.   DOI: 10.1016/S2095-3119(18)61998-7
Abstract300)      PDF in ScienceDirect      
Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na+/H+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate (79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na+ and K+ than wild-type (WT) plants particularly in the leaves, resulting in a higher ratio of K+/Na+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.
Reference | Related Articles | Metrics
Effect of high-molecular-weight glutenin subunit deletion on soft wheat quality properties and sugar-snap cookie quality estimated through near-isogenic lines
ZHANG Xiao, ZHANG Bo-qiao, WU Hong-ya, LU Cheng-bin, Lü Guo-feng, LIU Da-tong, LI Man,
2018, 17 (05): 1066-1073.   DOI: 10.1016/S2095-3119(17)61729-5
Abstract510)      PDF in ScienceDirect      
High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat dough.  The HMW-GSs are encoded by Glu-A1, Glu-B1, and Glu-D1 loci on the long arms of chromosomes 1A, 1B, and 1D, respectively.  In the present study, four near-isogenic lines with different HMW-GS deletions and compositions at the Glu-A1 and Glu-D1 loci in Yangmai 18 background were used for quality analysis.  Deletion in Glu-D1 showed much weaker gluten quality and dough strength than null Glu-A1 genotype and wild genotype (WT), based on the measurements of sodium dodecyl sulfate (SDS)-sedimentation, lactic acid solvent retention capacity (SRC), gluten index, development time, stability time, and alveograph P and L values.  The deletion of Glu-D1 did not significantly affect grain hardness, grain protein content, water SRC, sodium carbonate SRC, and sucrose SRC.  Double null genotype in Glu-A1 and Glu-D1 and single null genotype in Glu-D1 showed significantly higher cookie diameter, crispness, and lower cookie height compared with single null genotype in Glu-A1 and WT.  These indicate that the null Glu-D1 genotype is useful for improvement of biscuit quality, and use of this germplasm would be a viable strategy to develop new wheat varieties for biscuit processing.
Reference | Related Articles | Metrics
Characterization of two novel heat shock protein 70s and their transcriptional expression patterns in response to thermal stress in adult of Frankliniella occidentalis (Thysanoptera: Thripidae)
QIN Jing, GAO Peng, ZHANG Xiao-xiang, LU Ming-xing, DU Yu-zhou
2018, 17 (05): 1023-1031.   DOI: 10.1016/S2095-3119(17)61725-
Abstract547)      PDF in ScienceDirect      

Heat shock protein 70 (HSP70) is one of the most important members in the heat shock protein family, and plays important roles in the thermotolerance of insect.  To explore the molecular mechanism of thermotolerance of Frankliniella occidentalis adults, the difference in the expression of HSP70s in F. occidentalis male or female adults under the thermal stress was studied under the laboratory conditions.  Two full length cDNAs of HSP70s gene (Fohsc704 and Fohsc705) were cloned from F. occidentalis by using RT-PCR and RACE.  The genomic sequence was demonstrated by genomic validation, and the position and size of the intron were analyzed by sequence analysis of cDNA.  Real-time PCR was used to analyze the HSP70 expression patterns.  The cDNA of Fohsc704 and Fohsc705 possessed 2 073 and 1 476 bp which encoded 690 and 491 amino acids (aa) with a calculated molecular weight of 75 and 54 kDa, respectively.  Four introns in Fohsc704 and six introns in Fohsc705 protein were found.  However, the HSP70 protein sequences in our study were ended with EKKN and GIFL, which were different from the reported FoHSP70s.  Various expression patterns of Fohsc704 and Fohsc705 were found in both genders of F. occidentalis under thermal stress.  The expression of Fohsc704 and Fohsc705 reached to the highest level at –12 and –8°C in male adults, respectively, and Fohsc705 expressed the highest level at 33°C in female adults.  In conclusion, HSP70s of F. occidentalis in our study are novel heat shock proteins.  There were difference in expression patterns of the two hsc70s in genders of F. occidentalis, and the two HSP70s play important roles in the thermotolerance of F. occidentalis.  
Reference | Related Articles | Metrics
The PhoR/PhoP two-component system regulates fengycin production in Bacillus subtilis NCD-2 under low-phosphate conditions
GUO Qing-gang, DONG Li-hong, WANG Pei-pei, LI She-zeng, ZHAO Wei-song, LU Xiu-yun, ZHANG Xiao-yun, MA Ping
2018, 17 (01): 149-157.   DOI: 10.1016/S2095-3119(17)61669-1
Abstract717)      PDF in ScienceDirect      
Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2.  The regulator phoP and its sensor kinase PhoR compose a two-component system in B. subtilis.  In this study, the phoR- and phoP-knockout mutants were constructed by in-frame deletion and the role of PhoR/phoP on the production of fengycin was determined.  Inactivation of phoR or phoP in  B. subtilis decreased its inhibition ability against Botrytis cinerea growth in vitro compared to the strain NCD-2 wild type.  The lipopeptides were extracted from strain NCD-2 wild type and its mutant strains by hydrochloric acid precipitate, and the lipopeptides from phoR-null mutant or phoP-null mutant almost lost the inhibition ability against B. cinerea growth compared to the lipopeptides from strain NCD-2 wild type.  Fast protein liquid chromatography (FPLC) analysis of the lipopeptides showed that inactivation of phoR or phoP genes reduced the production of fengycin by strain NCD-2.  The fengycin production abilities were compared for bacteria under low-phosphate medium (LPM) and high-phosphate medium (HPM), respectively.  Results indicated that the regulation of fengycin production by the PhoR/PhoP two-component system occurred in LPM but not in HPM.  Reverse transcriptional-PCR confirmed that the fengycin synthetase gene fenC was positively regulated by phoP when cultured in LPM.  All of these characteristics could be partially restored by complementation of intact phoR or phoP gene in the mutant.  These data indicated that the PhoR/PhoP two-component system greatly regulated fengycin production and antifungal ability in B. subtilis NCD-2 mainly under low-phosphate conditions.
Reference | Related Articles | Metrics
Responses of N2O reductase gene (nosZ)-denitrifier communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil
WANG Ying-yan, LU Sheng-e, XIANG Quan-ju, YU Xiu-mei, ZHAO Ke, ZHANG Xiao-ping, TU Shihua, GU Yun-fu
2017, 16 (11): 2597-2611.   DOI: 10.1016/S2095-3119(17)61707-6
Abstract1024)      PDF in ScienceDirect      
    The effect of long-term fertilization on soil denitrifying communities was analysed by measuring the abundance and diversity of the nitrous oxide (N2O) reductase gene, nosZ.  Soil samples were collected from plots of a long-term fertilization experiment established in 1982 in Suining City, China.  The fertilizer treatments were no fertilizer (CK), three chemical fertilizer (CF) treatments (N, NP, NPK), manure (M) alone, and manure with chemical fertilizers (NM, NPM, NPKM).  The abundance and diversity of the denitrifying bacteria were assessed by real-time quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of nosZ genes.  The diversity and abundance of nosZ-denitrifiers was higher in soil amended with manure and chemical fertilizers (CFM) than in soil amended with CF alone, and the highest in topsoil (0–20 cm).  The nosZ-denitrifier community composition was more complex in CFM soil than in CF soil.  Specific species were detected only in the CFM soil.  The abundance of nosZ-denitrifier in the NPKM treatment was approximately two times higher than that in the CK, N, and NPK treatments.  Most of the cloned nosZ sequences were closely related to nosZ sequences from Bradyrhizobiaceae and Rhodospirillaceae in Alphaproteobacteria.  Of the measured abiotic factors, soil organic matter correlated significantly with the abundance (P<0.01); available phosphorus correlated significantly with the topsoil community composition (P<0.01), whereas soil organic matter correlated significantly with the subsoil (20–90 cm) community composition (P<0.01). This study demonstrated that long-term CFM fertilization affected both the abundance and composition of the nosZ-denitrifier community. 
Reference | Related Articles | Metrics
A callus transformation system for gene functional studies in soybean
XU Kun, ZHANG Xiao-mei, FAN Cheng-ming, CHEN Fu-lu, ZHU Jin-long, ZHANG Shi-long, CHEN Qing-shan, FU Yong-fu
2017, 16 (09): 1913-1922.   DOI: 10.1016/S2095-3119(16)61621-0
Abstract748)      PDF in ScienceDirect      
    Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants (e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies.
Reference | Related Articles | Metrics
Quantifying the spatial variation in the potential productivity and yield gap of winter wheat in China
ZHANG Shi-yuan, ZHANG Xiao-hu, QIU Xiao-lei, TANG Liang, ZHU Yan, CAO Wei-xing, LIU Lei-lei
2017, 16 (04): 845-857.   DOI: 10.1016/S2095-3119(16)61467-3
Abstract957)      PDF in ScienceDirect      
Despite the improvement in cultivar characters and management practices, large gaps between the attainable and potential yields still exist in winter wheat of China.  Quantifying the crop potential yield is essential for estimating the food production capacity and improving agricultural policies to ensure food security.  Gradually descending models and geographic information system (GIS) technology were employed to characterize the spatial variability of potential yields and yield gaps in winter wheat across the main production region of China.  The results showed that during 2000–2010, the average potential yield limited by thermal resource (YGT) was 23.2 Mg ha–1, with larger value in the northern area relative to the southern area.  The potential yield limited by the water supply (YGW) generally decreased from north to south, with an average value of 1.9 Mg ha–1 across the entire study region.  The highest YGW in the north sub-region (NS) implied that the irrigation and drainage conditions in this sub-region must be improved.  The averaged yield loss of winter wheat from nutrient deficiency (YGN) varied between 2.1 and 3.1 Mg ha–1 in the study area, which was greater than the yield loss caused by water limitation.  The potential decrease in yield from photo-thermal-water-nutrient-limited production to actual yield (YGO) was over 6.0 Mg ha–1, ranging from 4.9 to 8.3 Mg ha–1 across the entire study region, and it was more obvious in the southern area than in the northern area.  These findings suggest that across the main winter wheat production region, the highest yield gap was induced by thermal resources, followed by other factors, such as the level of farming technology, social policy and economic feasibility.  Furthermore, there are opportunities to narrow the yield gaps by making full use of climatic resources and developing a reasonable production plan for winter wheat crops.  Thus, meeting the challenges of food security and sustainability in the coming decades is possible but will require considerable changes in water and nutrient management and socio-economic policies.
Reference | Related Articles | Metrics