Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (6): 1703-1712    DOI: 10.1016/S2095-3119(20)63578-X
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Physiological mitochondrial ROS regulate diapause by enhancing HSP60/Lon complex stability in Helicoverpa armigera
ZHANG Xiao-shuai, SU Xiao-long, GENG Shao-lei, WANG Zheng-hao
School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

之前研究表明活性氧(reactive oxygen species,ROS)在棉铃虫滞育蛹脑中通过调节独特的胰岛素信号通路转导机制来促进滞育。然而,滞育蛹脑中ROS的来源及调控滞育的机制尚不清楚。本研究的结果显示,滞育蛹脑中积累了高水平的线粒体ROS和总ROS,说明线粒体是滞育蛹脑中ROS的主要来源。另外,注射葡萄糖代谢抑制剂2-脱氧-D-葡萄糖可通过提高非滞育蛹脑中线粒体ROS的水平进而延迟蛹的发育。注射代谢物混合物到滞育蛹中可以降低线粒体ROS的水平进而逆转滞育的进程。进一步的研究显示,线粒体ROS可以激活HSP60的表达和活性,进而促进HSP60/Lon复合物的稳定性,从而降解线粒体转录因子A和降低线粒体活性或生成。因此,本研究阐明了ROS通过降低线粒体活性而促进滞育或寿命延长的有益作用




Abstract  
Diapause is a long-lived stage which has evolved into an important strategy for insects to circumvent extreme environments.  In the pupal stage, Helicoverpa armigera can enter diapause, a state characterized by significantly decreased metabolic activity and enhanced stress resistance, to survive cold winters.  Previous studies have shown that reactive oxygen species (ROS) can promote the diapause process by regulating a distinct insulin signaling pathway.  However, the source of ROS in the diapause-destined pupal brains and mechanisms by which ROS regulate diapause are still unknown.  In this study, we showed that diapause-destined pupal brains accumulated high levels of mitochondrial ROS (mtROS) and total ROS during the diapause process, suggesting that mitochondria are the main source of ROS in diapause-destined pupal brains.  In addition, injection of 2-deoxy-D-glucose (DOG), a glucose metabolism inhibitor, could delay pupal development by elevating mtROS levels in the nondiapause-destined pupal brains.  Furthermore, the injection of a metabolite mixture to increase metabolic activity could avert the diapause process in diapause-destined pupae by decreasing mtROS levels.  We also found that ROS could activate HSP60 expression and promote the stability of the HSP60-Lon complex, increasing its ability to degrade mitochondrial transcription factor A (TFAM) and decreasing mitochondrial activity or biogenesis under oxidative stress.  Thus, this study illustrated the beneficial function of ROS in diapause or lifespan extension by decreasing mitochondrial activity.
Keywords:  mtROS        diapause        HSP60        Helicoverpa armigera  
Received: 30 October 2020   Accepted: 29 November 2020
Fund: This study was supported by the China Postdoctoral Science Foundation (2017M622872).  
About author:  Correspondence ZHANG Xiao-shuai, Tel: +86-20-39332964, Fax: +86-20-39332294, E-mail: zhangxswb@hotmail. com

Cite this article: 

ZHANG Xiao-shuai, SU Xiao-long, GENG Shao-lei, WANG Zheng-hao. 2022. Physiological mitochondrial ROS regulate diapause by enhancing HSP60/Lon complex stability in Helicoverpa armigera. Journal of Integrative Agriculture, 21(6): 1703-1712.

Balaban R S, Nemoto S, Finkel T. 2005. Mitochondria, oxidants, and aging. Cell, 120, 483–495.
Bender T, Lewrenz I, Franken S, Baitzel C, Voos W. 2011. Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease. Molecular and Cellular Biology, 22, 541–554.
Bota D A, Davies K J. 2016. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radical Biology & Medicine, 100, 188–198.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
Canugovi C, Maynard S, Bayne A C, Sykora P, Tian J, de Souza-Pinto N C, Croteau D L, Bohr V A. 2010. The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair, 9, 1080–1089.
Chen W, Xu W H. 2014. Wnt/β-catenin signaling regulates Helicoverpa armigera pupal development by up-regulating c-Myc and AP-4. Insect Biochemistry and Molecular Biology, 53, 44–53.
Cheng M Y, Hartl F U, Martin J, Pollock R A, Kalousek F, Neupert W, Hallberg E M, Hallberg R L, Horwich A L. 1989. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature, 337, 620–625.
Denlinger D L. 2002. Regulation of diapause. Annual Review of Entomology, 47, 93–122.
Dutta D, Xu J Z, Kim J S, Dunn W A, Leeuwenburgh C. 2013. Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy, 9, 328–344.
Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, Li Y, Tang H, Wang G, Fang X, Liu J, Jia N, Chen J, Ouyang K F. 2020. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death and Differentiation, 27, 587–600.
Geng S L, Zhang X S, Xu W H. 2021. COXIV and SIRT2-mediated G6PD deacetylation modulate ROS homeostasis to extend pupal lifespan. FEBS Journal, 28, 2436–2453.
Hahn D A, Denlinger D L. 2011. Energetics of insect diapause. Annual Review of Entomology, 56, 103–121.
Halliwell B. 2006. Oxidative stress and neurodegeneration: where are we now? Journal of Neurochemistry, 97, 1634–1658.
Hu P J. 2007. Dauer. WormBook, 8, 1–19. 
Kang D, Kim S H, Hamasaki N. 2007. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion, 7, 39–44.
Li H Y, Lin X W, Geng S L, Xu W H. 2018. TGF-beta and BMP signals regulate insect diapause through Smad1-POU-TFAM pathway. Biochimica et Biophysica Acta (Molecular Cell Research), 1865, 1239–1249.
Lin X W, Tang L, Yang J H, Xu W H. 2016. HIF-1 regulates insect lifespan extension by inhibiting c-Myc-TFAM signaling and mitochondrial biogenesis. Biochimica et Biophysica Acta (Molecular Cell Research), 1863, 2594–2603.
Lu Y X, Denlinger D L, Xu W H. 2013. Polycomb repressive complex 2 (PRC2) protein ESC regulates insect developmental timing by mediating H3K27me3 and activating prothoracicotropic hormone gene expression. Journal of Biological Chemistry, 288, 23554–23564.
Lu Y X, Xu W H. 2010. Proteomic and phosphoproteomic analysis at diapause initiation in the cotton bollworm, Helicoverpa armigera. Journal of Proteome Research, 9, 5053–5064.
Malet G, Martin A G, Orzaez M, Vicent M J, Masip I, Sanclimens G, Ferrer-Montiel A, Mingarro I, Messeguer A, Fearnhead H O, Perez-Paya E. 2006. Small molecule inhibitors of Apaf-1-related caspase-3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death and Differentiation, 13, 1523–1532.
Matsushima Y, Goto Y, Kaguni L S. 2010. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proceedings of the National Academy of Sciences of the United States of America, 107, 18410–18415.
Van Melderen L, Aertsen A. 2009. Regulation and quality control by Lon-dependent proteolysis. Research in Microbiology, 160, 645–651.
Monaghan R M, Barnes R G, Fisher K, Andreou T, Rooney N, Poulin G B, Whitmarsh A J. 2015. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nature Cell Biology, 17, 782–792.
Mukhopadhyay P, Rajesh M, Hasko G, Hawkins B J, Madesh M, Pacher P. 2007. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nature Protocals, 2, 2295–2301.
Pan Y, Schroeder E A, Ocampo A, Barrientos A, Shadel G S. 2011. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metabolism, 13, 668–678.
Phillips J R, Newsom L D. 1966. Diapause in Heliothis zea and Heliothis virescens (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 59, 154–159.
Popovic Z D, Subotic A, Nikolic T V, Radojicic R, Blagojevic D P, Grubor-Lajsic G, Kostal V. 2015. Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.). Comparative Biochemistry and Physiology (B: Biochemistry & Molecular Biology), 186, 1–7.
Rinehart J P, Li A, Yocum G D, Robich R M, Hayward S A L, Denlinger D L. 2007. Up-regulation of heat shock proteins is essentail for cold survival during insect diapause. Proceedings of the National Academy of Sciences of the United States of America, 104, 11130–11137.
Ristow M, Zarse K. 2010. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Experimental Gerontology, 45, 410–418.
Schulz T J, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metabolism, 6, 280–293.
Scialo F, Sriram A, Fernandez-Ayala D, Gubina N, Lohmus M, Nelson G, Logan A, Cooper H M, Navas P, Enriquez J A, Murphy M, Sanz A. 2016. Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metabolism, 23, 725–734.
Tatar M, Kopelman A, Epstein D, Tu M P, Yin C M, Garofalo R S. 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 292, 107–110.
Vasileiou P V S, Evangelou K, Vlasis K, Fildisis G, Panayiotidis M I, Chronopoulos E, Passias P G, Kouloukoussa M, Gorgoulis V G, Havaki S. 2019. Mitochondrial homeostasis and cellular senescence. Cells, 8, 686.
Voos W. 2009. Mitochondrial protein homeostasis: The cooperative roles of chaperones and proteases. Research in Microbiology, 160, 718–725.
Wang T, Geng S L, Guan Y M, Xu W H. 2018. Deacetylation of metabolic enzymes by Sirt2 modulates pyruvate homeostasis to extend insect lifespan. Aging, 10, 1053–1072.
Wellen K E, Thompson C B. 2010. Cellular metabolic stress: Considering how cells respond to nutrient excess. Molecular Cell, 40, 323–332.
West A P, Brodsky I E, Rahner C, Woo D K, Erdjument-Bromage H, Tempst P, Walsh M C, Choi Y, Shadel G S, Ghosh S. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 472, U476–U543.
Xu W H, Lu Y X, Denlinger D L. 2012. Cross-talk between the fat body and brain regulates insect developmental arrest. Proceedings of the National Academy of Sciences of the United States of America, 109, 14687–14692.
Yang W, Hekimi S. 2010. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biology, 8, e1000556.
Zhang B, Peng Y, Zheng J C, Liang L, Hoffmann A A, Ma C S. 2016. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure. Cell Stress Chaperon, 21, 653–663.
Zhang X S, Wang T, Lin X W, Denlinger D L, Xu W H. 2017. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 114, E7832–E7840.
Zhang Z Q. 2011. Animal biodiversity: An introduction to higher-level classification and taxonomic richness. Zootaxa, 3148, 7–12.
[1] HAO Kun, WANG Jie, TU Xiong-bing, Douglas W. Whitman, ZHANG Ze-hua. Transcriptomic and proteomic analysis of Locusta migratoria eggs at different embryonic stages: Comparison for diapause and non-diapause regimes[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1777-1788.
No Suggested Reading articles found!