Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3430-3443    DOI: 10.1016/j.jia.2023.04.018
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community

ZOU Xiao-xia1#, HUANG Ming-ming1, LIU Yan1, SI Tong1, ZHANG Xiao-jun1, YU Xiao-na1, GUO Feng2#, WAN Shu-bo2#

1 Shandong Provincial Key Laboratory of Dryland Farming Technology/Shandong Peanut Industry Collaborative Innovation Center/College of Agronomy, Qingdao Agricultural University, Qingdao 266109, P.R.China
2 Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

获得高产的同时改善土壤质量是农业生产的主要挑战。小麦Triticum aestivum L.)玉米Zea mays L.)轮作(W–M)是黄淮海平原的主要种植模式,对保障中国粮食安全具有重要意义。然而,由于长期、集中、连续栽培,W–M轮作系统土壤质量正在退化。我们推测在W–M轮作系统中引入豆科作物可能是改善土壤质量的有效途径本研究旨在验证这一假设,并探索小麦花生Arachis hypogaea L.)轮作(W–P)和小麦轮作玉米/花生间作(W–M/P)的高效种植系统,以实现黄淮海平原农业的高效生产研究以传统的W–M轮作为对照,基于3年定位试验,系统研究了作物产量、净收益、土壤微生物和土壤碳库特征。结果表明W–M相比,W–PW–M/P处理显著提高了小麦产量(分别提升382.5–579.0179.8–513.1 kg ha–1)和净收益(分别提高58.270.4%);在0 ~20 cm土层,W–M/PW–M土壤有机碳储量比W–P分别增加了25.46–31.03%14.47–27.64%;W–M/P改善了土壤活性碳组分,其中,20–40 cm土层潜在矿化碳、10–40 cm土层微生物量碳和10–20 cm土层的可有机碳的敏感指数分别达31.5%96.5–157.2%17.8%细菌群落组成和功能随土壤深度和种植系统的不同而变化,W–M/PW–M0–2020–40 cm土层分别具有相似的细菌群落组成和功能W–P相比,W–M的10–20 cm土层和WM/P的0–20 cm土层具有较高的移动元件contains mobile elements和耐胁迫stress tolerant功能基因丰度、较低的潜在致病potentially pathogenic基因丰度土壤有机碳和微生物量碳是影响土壤细菌群落的主要因素,其含量SphingomonadalesGemmatimonadales正相关Blastocatellales负相关;作物有机物料输入影响土壤有机碳微生物群落变化的主要因素,并反馈作用于作物产量。综上,与传统的W–M系统相比,W–M/P系统可提高作物产量、净收益,改善土壤有机碳库,在设计高产种植系统时考虑植物-土壤-微生物相互作用。



Abstract  

Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry.  Wheat (Triticum aestivum L.)–maize (Zea mays L.) (W–M) rotation is the dominant planting pattern in the Huang-Huai-Hai  Plain and is important for food security in China.  However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation.  Introducing legumes into the W–M rotation system may be an effective way to improve soil quality.  In this study, we aimed to verify this hypothesis by exploring efficient planting systems (wheat–peanut (Arachis hypogaea L.) (W–P) rotation and wheat rotated with maize and peanut intercropping (W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai   Plain.  Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms (SMs), and soil organic carbon (SOC) fractions for three consecutive years.  The results indicated that wheat yields were significantly increased under W–P and W–M/P (382.5–579.0 and 179.8–513.1 kg ha−1, respectively) compared with W–M.  W–P

and W–M/P provided significantly higher net returns (58.2 and 70.4%, respectively) than W–M.  W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer.  Compared with W–M, W–M/P improved labile carbon fractions; the sensitivity index of potentially mineralizable carbon, microbial biomass carbon (MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively.  The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern.  W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers.  Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely, potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P.  SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales.  Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity.  In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems.

Keywords:  composite planting        carbon sequestration        labile carbon fraction        bacterial community structure        bacterial functions  
Received: 30 November 2022   Accepted: 20 March 2023
Fund: This work was supported by the National Natural Science Foundation of China (42107376) and the earmarked fund for China Agriculture Research System (CARS-13).
About author:  #Correspondence ZOU Xiao-xia, Tel: +86-535-58957447, E-mail: xxzou@qau.edu.cn; GUO Feng, Tel: +86-531-66659692, E-mail: guofeng08-08@163.com; WAN Shu-bo, Tel: +86-531-66659692, E-mail: wanshubo2016@163.com

Cite this article: 

ZOU Xiao-xia, HUANG Ming-ming, LIU Yan, SI Tong, ZHANG Xiao-jun, YU Xiao-na, GUO Feng, WAN Shu-bo. 2023. Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community. Journal of Integrative Agriculture, 22(11): 3430-3443.

Acharya U, Chatterjee A, Daigh A L M. 2019. Effect of subsurface drainage, crop rotation, and tillage on crop yield in Fargo clay soil. Journal of Soil and Water Conservation74, 456–465.

Adair E C, Parton W J, del Grosso S J, Silver W L, Harmon M E, Hall S A, Burke I C, Hart S C. 2008. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biology14, 2636–2660.

Ahn Y J, Lee J A, Choi K R, Bang J, Lee S Y. 2022. Can microbes be harnessed to reduce atmospheric loads of greenhouse gases? Environmental Microbiology25, 17–25.

Bao S D. 2000. Soil Agricultural Chemical Analysis. 3rd ed. China Agriculture Press, Beijing, China. (in Chinese)

Barry K E, Mommer L, Van ruijven J, Wirth C, Wright A J, Bai Y F, Connolly J, de Deyn G B, de Kroon H, Isbell F, Milcu A, Roscher C, Scherer-Lorenzen M, Schmid B, Weigelt A. 2019. The future of complementarity: disentangling causes from consequences. Trends in Ecology & Evolution34, 167–180.

Begum R, Jahangir M M R, Jahiruddin M, Islam M R, Bokhtiar S M, Islam K R. 2022. Reduced tillage with residue retention improves soil labile carbon pools and carbon lability and management indices in a seven-year trial with wheat–mung bean–rice rotation. Pedosphere32, 916–927.

Borase D N, Nath C P, Hazra K K, Senthilkumar M, Singh S S, Praharaj C S, Singh U, Kumar N. 2020. Long-term impact of diversified crop rotations and nutrient management practices on soil microbial functions and soil enzymes activity. Ecological Indicators114, 106322.

Cappelli S L, Domeignoz-Horta L A, Loaiza V, Laine A L. 2022. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends in Plant Science27, 674–687.

Cardinale B J, Srivastava D S, Duffy J E, Wright J P, Downing A L, Sankaran M, Jouseau C. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature443, 989–992.

Chaudhary S, Dheri G S, Brar B S. 2017. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice–wheat cropping system. Soil & Tillage Research166, 59–66.

Chen J, Arafat Y, Wu L K, Xiao Z G, Li Q S, Khan M A, Khan M U, Lin S, Lin W X. 2018. Shifts in soil microbial community, soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels. Applied Soil Ecology124, 327–334.

Chen Z M, Wang H Y, Liu X W, Zhao X L, Lu D J, Zhou J M, Li C Z. 2017. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil & Tillage Research165, 121–127.

Chi B, Zhang Y, Zhang D, Zhang X, Dai J, Dong H. 2019. Wide-strip intercropping of cotton and peanut combined with strip rotation increases crop productivity and economic returns. Field Crops Research243, 107617.

Coban O, de Deyn G B, Van der Ploeg M. 2022. Soil microbiota as game-changers in restoration of degraded lands. Science375, abe0725.

Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Van der Werf W. 2015. Intercropping enhances soil carbon and nitrogen. Global Change Biology21, 1715–1726.

Costantini E A C, Branquinho C, Nunes A, Schwilch G, Stavi I, Valdecantos A, Zucca C. 2016. Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth7, 397–414.

Cui H X, Luo Y L, Chen J, Jin M, Li Y, Wang Z L. 2022. Straw return strategies to improve soil properties and crop productivity in a winter wheat–summer maize cropping system. European Journal of Agronomy133, 126436.

Dang K, Gong X W, Zhao G, Wang H L, Ivanistau A, Feng B L. 2020. Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: A potential mechanism for increasing proso millet grain yield. Frontiers in Microbiology11, 601054.

Delgado-Baquerizo M, Oliverio A M, Brewer T E, Benavent-Gonzalez A, Eldridge D J, Bardgett R D, Maestre F T, Singh B K, Fierer N. 2018. A global atlas of the dominant bacteria found in soil. Science359, 320–325.

Dobrovol’skaya T G, Zvyagintsev D G, Chernov I Y, Golovchenko A V, Zenova G M, Lysak L V, Manucharova N A, Marfenina O E, Polyanskaya L M, Stepanov A L, Umarov M M. 2015. The role of microorganisms in the ecological functions of soils. Eurasian Soil Science48, 959–967.

Domeignoz-horta L A, Pold G, Liu X J A, Frey S D, Melillo J M, Deangelis K M. 2020. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications11, 3684.

Don A, Bohme I H, Dohrmann A B, Poeplau C, Tebbe C C. 2017. Microbial community composition affects soil organic carbon turnover in mineral soils. Biology and Fertility of Soils53, 445–456.

Duchene O, Vian J F, Celette F. 2017. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. AgricultureEcosystems & Environment240, 148–161.

Feng C, Sun Z X, Zhang L Z, Feng L S, Zheng J M, Bai W, Gu C F, Wang Q, Xu Z, Van der Werf W. 2021. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crops Research270, 108208.

Feng J G, Tang M, Zhu B. 2021. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Global Change Biology27, 2793–2806.

Fitzpatrick C R, Copeland J, Wang P W, Guttman D S, Kotanen P M, Johnson M T J. 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences of the United States of America115, 1157–1165.

Ghosh P K, Hazra K K, Venkatesh M S, Nath C P, Singh J, Nadarajan N. 2017. Increasing soil organic carbon through crop diversification in cereal–cereal rotations of Indo-Gangetic Plain. Proceedings of the National Academy of SciencesIndia Section (B: Biological Sciences), 89, 429–440.

Gong X W, Dang K, Lv S M, Zhao G, Wang H L, Feng B L. 2021. Interspecific competition and nitrogen application alter soil ecoenzymatic stoichiometry, microbial nutrient status, and improve grain yield in broomcorn millet/mung bean intercropping systems. Field Crops Research270, 108227.

Guo F, Wang M L, Si T, Wang Y F, Zhao H J, Zhang X J, Yu X N, Wan S B, Zou X X. 2021. Maize–peanut intercropping led to an optimization of soil from the perspective of soil microorganism. Archives of Agronomy and Soil Science67, 1986–1999.

Han F, Guo S, Wei S, Guo R, Cai T, Zhang P, Jia Z, Hussain S, Javed T, Chen X, Ren X, Alsadoon M K, Stępień P. 2022. Photosynthetic and yield responses of rotating planting strips and reducing nitrogen fertilizer application in maize–peanut intercropping in dry farming areas. Frontiers in Plant Science13, 1014631.

He Z, Chen H, Liang L, Dong J, Liang Z, Zhao L. 2019. Alteration of crop rotation in continuous Pinellia ternate cropping soils profiled via fungal ITS amplicon sequencing. Letters in Applied Microbiology68, 522–529.

Hu L, Robert C A M, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van der Heijden M G A, Schlaeppi K, Erb M. 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications9, 2738.

Huang P, Zhang J B, Zhu A N, Li X P, Ma D H, Xin X L, Zhang C Z, Wu S J, Garland G, Pereira E I P. 2018. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain. Science of the Total Environment610, 1020–1028.

Huang T T, Yang N, Lu C, Qin X L, Siddique K H M. 2021. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil & Tillage Research214, 105171.

Huo C F, Liang J Y, Zhang W D, Wang P, Cheng W X. 2022. Priming effect and its regulating factors for fast and slow soil organic carbon pools: A meta-analysis. Pedosphere32, 140–148.

Ju Q, Ouyang F, Gu S M, Qiao F, Yang Q F, Qu M J, Ge F. 2019. Strip intercropping peanut with maize for peanut aphid biological control and yield enhancement. Agriculture Ecosystems & Environment286, 106682.

Kayikcioglu H H, Duman I, Asciogul T K, Bozokalfa M K, Elmaci O L. 2020. Effects of tomato-based rotations with diversified pre-planting on soil health in the Mediterranean soils of Western Turkey. Agriculture Ecosystems & Environment299, 106986.

Keesing F, Holt R D, Ostfeld R S. 2006. Effects of species diversity on disease risk. Ecology Letters9, 485–498.

Korenblum E, Dong Y H, Szymanski J, Panda S, Jozwiak A, Massalha H, Meir S, Rogachev I, Aharoni A. 2020. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proceedings of the National Academy of Sciences of the United States of America117, 3874–3883.

Kou T J, Zhu P, Huang S, Peng X X, Song Z W, Deng A X, Gao H J, Peng C, Zhang W J. 2012. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil & Tillage Research118, 132–138.

Kraychenko A N, Guber A K, Razavi B S, Koestel J, Quigley M Y, Robertson G P, Kuzyakov Y. 2019. Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications10, 3121.

Li H Y, Li C H, Song X, Liu Y, Gao Q X, Zheng R, Li J T, Zhang P C, Liu X L. 2022. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific Reports12, 2758.

Li J, Wen Y C, Li X H, Li Y T, Yang X D, Lin Z, Song Z Z, Cooper J M, Zhao B Q. 2018a. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil & Tillage Research175, 281–290.

Li J, Wu X P, Gebremikael M T, Wu H J, Cai D X, Wang B S, Li B G, Zhang J C, Li Y S, Xi J L. 2018b. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system. PLoS ONE13, e0195144.

Li J, Zhang X C, Luo J F, Lindsey S, Zhou F, Xie H T, Li Y, Zhu P, Wang L C, Shi Y L, He H B, Zhang X D. 2020. Differential accumulation of microbial necromass and plant lignin in synthetic versus organic fertilizer-amended soil. Soil Biology & Biochemistry149, 107967.

Li Q, Wu L K, Chen J, Khan M A, Luo X, Lin W. 2016. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. Journal of Integrative Agriculture15, 101–110.

Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, et al. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability4, 943–950.

Liang Z, Elsgaard L, Nicolaisen M H, Lyhne-Kjaerbye A, Olesen J E. 2018. Carbon mineralization and microbial activity in agricultural topsoil and subsoil as regulated by root nitrogen and recalcitrant carbon concentrations. Plant and Soil433, 65–82.

Ling N, Wang T, Kuzyakov Y. 2022. Rhizosphere bacteriome structure and functions. Nature Communications13, 836.

Liu B, Xia H, Jiang C, Riaz M, Yang L, Chen Y, Fan X, Xia X. 2022. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice–wheat rotation of middle China. Science of the Total Environment841, 156608.

Liu E K, Yan C, Mei X, Zhang Y, Fan T L. 2013. Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in Northwest China. PLoS ONE8, e56536.

Ma H Y, Xie C, Zheng S L, Li P H, Cheema H N, Gong J, Xiang Z Q, Liu J J, Qin J H. 2022. Potato tillage method is associated with soil microbial communities, soil chemical properties, and potato yield. Journal of Microbiology60, 156–166.

Miao S J, Qiao Y F, Li P, Han X Z, Tang C X. 2017. Fallow associated with autumn-plough favors structure stability and storage of soil organic carbon compared to continuous maize cropping in Mollisols. Plant and Soil416, 27–38.

Munda S, Bhaduri D, Mohanty S, Chatterjee D, Tripathi R, Shahid M, Kumar U, Bhattacharyya P, Kumar A, Adak T, Jangde H K, Nayak A K. 2018. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass & Bioenergy115, 1–9.

NBSC (National Bureau of Statistics of China). 2022. China Statistical Yearbook in 2022. China Statistics Press, Beijing. (in Chinese)

Olanrewaju O S, Babalola O O. 2022. The rhizosphere microbial complex in plant health: A review of interaction dynamics. Journal of Integrative Agriculture21, 2168–2182.

Ortiz A, Sansinenea E. 2022. The role of beneficial microorganisms in soil quality and plant health. Sustainability14, 5358.

Qaswar M, Li D, Huang J, Han T, Ahmed W, Ali S, Khan M N, Khan Z H, Xu Y, Li Q, Zhang H, Wang B, Tauqeer A. 2022. Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat–maize cropping system. Journal of Integrative Agriculture21, 826–839.

Qiao Y F, Miao S, Li N, Xu Y L, Han X, Zhang B. 2015. Crop species affect soil organic carbon turnover in soil profile and among aggregate sizes in a Mollisol as estimated from natural 13C abundance. Plant and Soil392, 163–174.

Philippot L, Raaijmakers J M, Lemanceau P, Van Der Putten W H. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology11, 789–799.

Rabbi S M F, Wilson B R, Lockwood P V, Daniel H, Young I M. 2015. Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia. Soil & Tillage Research146, 193–203.

Ramesh T, Bolan N S, Kirkham M B, Wijesekara H, Kanchikerimath M, Rao C S, Sandeep S, Rinklebe J, Ok Y S, Choudhury B U, Wang H L, Tang C X, Wang X J, Song Z L, Freeman O W. 2019. Soil organic carbon dynamics: impact of land use changes and management practices: A review. Advances in Agronomy156, 1–107.

Saleem M, Hu J, Jousset A. 2019. More Than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annual Review of EcologyEvolutionand Systematics50, 145–168.

Samaddar S, Schmidt R, Tautges N E, Scow K. 2021. Adding alfalfa to an annual crop rotation shifts the composition and functional responses of tomato rhizosphere microbial communities. Applied Soil Ecology167, 104102.

Sendek A, Karakoç C, Wagg C, Domínguez-Begines J, Do Couto G M, Van Der Heijden M G A, Naz A A, Lochner A, Chatzinotas A, Klotz S, Gómez-Aparicio L, Eisenhauer N. 2019. Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Scientific Reports9, 9650.

Silva L S, Laroca J V D, Coelho A P, Gonsalves E C, Gomes R P, Pacheco L P, Carvalho P C D, Pires G C, Oliveira R L, De Souza J M A, Freitas C M, Cabral C E A, Wruck F J, De Souza E D, Gpisi R G, Lives R I G P C. 2022. Does grass-legume intercropping change soil quality and grain yield in integrated crop-livestock systems? Applied Soil Ecology170, 104257.

Singh J, Kumar S. 2021. Responses of soil microbial community structure and greenhouse gas fluxes to crop rotations that include winter cover crops. Geoderma385, 114843.

Song X, Liu X, Liang G, Li S, Li J, Zhang M, Zheng F, Ding W, Wu X, Wu H. 2022. Positive priming effect explained by microbial nitrogen mining and stoichiometric decomposition at different stages Soil Biology and Biochemistry175, 108852.

Tamburini G, Bommarco R, Wanger T C, Kremen C, Van der Heijden M G A, Liebman M, Hallin S. 2020. Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances6, eaba1715.

Tian Q X, Yang X L, Wang X G, Liao C, Li Q X, Wang M, Wu Y, Liu F. 2016. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil. Biogeochemistry128, 125–139.

Trivedi P, Leach J E, Tringe S G, Sa T M, Singh B K. 2020. Plant–microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18, 607–621.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry19, 703–707.

Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology27, 2039–2048.

Wang J, Lu X, Zhang J, Wei H, Li M, Lan N, Luo H. 2021. Intercropping perennial aquatic plants with rice improved paddy field soil microbial biomass, biomass carbon and biomass nitrogen to facilitate soil sustainability. Soil and Tillage Research208, 104908.

Wang X Y, Sun B, Mao J D, Sui Y Y, Cao X Y. 2012. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environmental Science & Technology, 46, 7159–7165.

Wang Z T, Liu L, Chen Q, Wen X X, Liao Y C. 2016. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agronomy for Sustainable Development36, 28.

Xia H Y, Wang L, Xue Y F, Kong W L, Xue Y H, Yu R P, Xu H S, Wang X F, Wang J, Liu Z, Guo X T. 2019. Impact of increasing maize densities on agronomic performances and the community stability of productivity of maize/peanut intercropping systems. Agronomy (Basel), 9, 150.

Xu Z, Li C J, Zhang C C, Yu Y, Van der Werf W, Zhang F S. 2020. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: A meta-analysis. Field Crops Research246, 107661.

Yang X Y, Sun B H, Zhang S L. 2014. Trends of yield and soil fertility in a long-term wheat-maize system. Journal of Integrative Agriculture13, 402–414.

Yu X, Chen Q, Shi W, Gao Z, Sun X, Dong J, Li J, Wang H, Gao J, Liu Z, Zhang M. 2022. Interactions between phosphorus availability and microbes in a wheat–maize double cropping system: A reduced fertilization scheme. Journal of Integrative Agriculture21, 840–854.

Zhalnina K, Louie K B, Hao Z, Mansoori N, da Rocha U N, Shi S J, Cho H J, Karaoz U, Loque D, Bowen B P, Firestone M K, Northen T R, Brodie E L. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.

Zhao M, Jones C M, Meijer J, Lundquist P O, Fransson P, Carlsson G, Hallin S. 2017. Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerataApplied Soil Ecology119, 260–266.

Zhao M M, Ma T, Zhao J B, Deng K D, Xiao Y, Ma J N, Mao J H, Jia P, Diao Q Y. 2017. Determination and estimation of available energy value of peanut vine as single straw feed for mutton sheep. Chinese Journal of Animal Nutrition29, 4162–4170. (in Chinese)

Zhu S W, Gao T P, Liu Z, Ning T Y. 2022. Rotary and subsoiling tillage rotations influence soil carbon and nitrogen sequestration and crop yield. Plant Soil and Environment68, 89–97.

No related articles found!
No Suggested Reading articles found!