Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Degradation effects on dichlorvos by a biocontrol strain, Trichoderma atroviride T23
SUN Jia-nan, SI Gao-yue, LIU Hong-yi, LI Ya-qian, WANG Xin-hua, CHEN Jie
2023, 22 (9): 2746-2758.   DOI: 10.1016/j.jia.2023.01.009
Abstract180)      PDF in ScienceDirect      

Excessive use of organophosphate pesticides (OP), such as dichlorvos, in farming system poses a threat to human health through potential contamination of environment.  To date, biodegradation has been prospected most promising approach to eliminate environmental OP residues.  Trichoderma species as a biological control microorganism is often exposed to the chemical pesticides applied in environments, so it is necessary to understand the mechanism of degradation of dichlorvos by Trichoderma.  In this study, dichlorvos significantly inhibited the growth, sporulation and pigmentation of Tatroviride T23, and the dichlorvos degradation activity of T23 required the initial induction effect of dichlorvos and the culture conditions, including the nutrient and pH values of the medium.  Various changed primary and secondary metabolites released from T23 in the presence of dichlorvos were speculated as the energy and antioxidants for the strain itself to tolerate dichlorvos stress.  The results showed that T23 could produce a series of enzymes, especially the intracellular enzymes, to degrade dichlorvos.  The activities of the intracellular enzyme generated by T23 were differentially changed along time course and especially relied on initial dichlorvos concentration, ammonium sulfate and phosphate added in the medium.  In conclusion, some dichlorvos-induced chemical degradation related enzymes of T23 were proved to be involved in the degradation of dichlorvos.

Reference | Related Articles | Metrics
Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome
YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo
2023, 22 (8): 2412-2425.   DOI: 10.1016/j.jia.2023.01.006
Abstract281)      PDF in ScienceDirect      
Plant-associated microbes represent a key determinant of plant fitness through acquiring nutrients, promoting growth, and resisting to abiotic and biotic stresses.  However, an extensive characterization of the bacterial and fungal microbiomes present in different plant compartments of soybean in field conditions has remained elusive.  In this study, we investigated the effects of four niches (roots, stems, leaves, and pods), four genotypes (Andou 203, Hedou 12, Sanning 16, and Zhonghuang 13), and three field locations (Jining, Suzhou, and Xuzhou) on the diversity and composition of bacterial and fungal communities in soybean using 16S and internal transcribed spacer rRNA amplicon sequencing, respectively.  The soybean microbiome significantly differed across organs.  Host genotypes explained more variation in stem bacterial community composition and leaf fungal community composition.  Field location significantly affected the composition of bacterial communities in all compartments and the effects were stronger in the root and stem than in the leaf and pod, whereas field location explained more variation in stem and leaf fungal community composition than in the root and pod.  The relative abundances of potential soybean fungal pathogens also differed among host organs and genotypes, reflecting the niches of these microbes in the host and probably their compatibility to the host genotypes.  Systematic profiling of the microbiome composition and diversity will aid the development of plant protection technologies to benefit soybean health.  
Reference | Related Articles | Metrics
Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize 
WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu
2023, 22 (8): 2370-2383.   DOI: 10.1016/j.jia.2023.02.012
Abstract246)      PDF in ScienceDirect      

Elevating soil water content (SWC) through irrigation was one of the simple mitigation measures to improve crop resilience to heat stress.  The response of leaf function, such as photosynthetic capacity based on chlorophyll fluorescence during the mitigation, has received limited attention, especially in field conditions.  A two-year field experiment with three treatments (control treatment (CK), high-temperature treatment (H), and high-temperature together with elevating SWC treatment (HW)) was carried out during grain filling with two maize hybrids at a typical station in North China Plain.  Averagely, the net photosynthetic rate (Pn) was improved by 20%, and the canopy temperature decreased by 1–3°C in HW compared with in H in both years.  Furthermore, the higher SWC in HW significantly improved the actual photosynthetic rate (Phi2), linear electron flow (LEF), variable fluorescence (Fv), and the maximal potential quantum efficiency (Fv/Fm) for both hybrids.  Meanwhile, different responses in chlorophyll fluorescence between hybrids were also observed.  The higher SWC in HW significantly improved thylakoid proton conductivity (gH+) and the maximal fluorescence (Fm) for the hybrid ZD958.  For the hybrid XY335, the proton conductivity of chloroplast ATP synthase (vH+) and the minimal fluorescence (Fo) was increased by the SWC.  The structural equation model (SEM) further showed that SWC had significantly positive relationships with Pn, LEF, and Fv/Fm.  The elevating SWC alleviated heat stress with the delayed leaf senescence to prolong the effective period of photosynthesis and enhanced leaf photosynthetic capacity by improving Phi2, LEF, Fv, and Fv/Fm.  This research demonstrates that elevating SWC through enhancing leaf photosynthesis during grain filling would be an important mitigation strategy for adapting to the warming climate in maize production.

Reference | Related Articles | Metrics
Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions
ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong
2023, 22 (4): 1021-1034.   DOI: 10.1016/j.jia.2022.08.017
Abstract356)      PDF in ScienceDirect      

Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.  To ameliorate the associated issues such as plastic-film residues and additional labor during the “seedling release” in spring maize production, we have developed a plastic-film-side seeding (PSS) technology with the supporting machinery.  In the semi-arid regions of Northwest China, a 7-year trial demonstrated that PSS increased plant number per hectare by 6 547 and maize yield by 1 686 kg ha–1 compared with the traditional method of seeding under plastic-film mulch (PM).  Two-year experiments were conducted in two semi-arid regions to further understand the effects of PSS on three important aspects of production: (i) the moisture and temperature of soil, (ii) maize development, yield output, and water use efficiency (WUE), and (iii) the revenue and plastic-film residuals in comparison with that of flat planting (CK) and PM.  Continuous monitoring of the soil status demonstrated that, compared with CK, the PSS treatment significantly increased the temperature and moisture of the 0–20 cm soil in the seeding row at the early stage of maize development, and it also promoted grain yield (at 884–1 089 kg ha–1) and WUE, achieving a similar effect as the PM treatment.  Economically, the labor inputs of PSS were equal to CK, whereas the PM cost an additional 960 CNY ha–1 in labor for releasing the seedlings from below the film.  Overall, the PSS system increased profits by 5.83% (547 CNY ha–1 yr–1) and 8.16% (748 CNY ha–1 yr–1) compared with CK and PM, respectively.  Environmentally, PSS achieved a residual film recovery rate of nearly 100% and eliminated 96 to 130 kg ha–1 of residual plastic-film in PM in 3–5 years of maize production.  Collectively, these results show that PSS is an eco-friendly technique for improving yield stability and incomes for the sustainable production of maize in semi-arid regions.

Reference | Related Articles | Metrics
Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China
WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing
2023, 22 (4): 1009-1020.   DOI: 10.1016/j.jia.2022.08.019
Abstract277)      PDF in ScienceDirect      

Nitrogen (N) and seeding rates are important factors affecting grain yield and N use efficiency (NUE) in direct-seeded rice.  However, these factors have not been adequately investigated on direct-seeded and double-season rice (DDR) in Central China.  The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR.  Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.  The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1 with a total growth duration of 85 to 97 days across all treatments with N application.  Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield.  Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates.  The moderate N rates of 100–150 and 70–120 kg N ha–1 in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR.  Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity (INS) between the two seasons.  Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.

Reference | Related Articles | Metrics
Breeding against mycorrhizal symbiosis: Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels
WANG Xin-xin, ZHANG Min, SHENG Jian-dong, FENG Gu, Thomas W. KUYPER
2023, 22 (3): 701-715.   DOI: 10.1016/j.jia.2022.08.004
Abstract276)      PDF in ScienceDirect      

Cotton (Gossypium hirsutum L.) is an important fiber cash crop, but its root traits related to phosphorus (P) acquisition, including mycorrhizal root traits, are poorly understood.  Eight cotton varieties bred in northwestern China that were released between 1950 and 2013 were grown in pots with or without one arbuscular mycorrhizal fungal (AMF) species (Funneliformis mosseae) at three P supply levels (0, 50 and 300 mg P as KH2PO4 kg–1).  Eleven root traits were measured and calculated after 7 wk of growth.  The more recent accessions had smaller root diameters, acquired less P and produced less biomass, indicating an (inadvertent) varietal selection for thinner roots that provided less cortical space for AMF, which then increased the need for a high P fertilizer level.  At the two lower P levels, the mycorrhizal plants acquired more P and produced more biomass than non-mycorrhizal plants (3.2 vs. 0.9 mg P per plant; 1.8 vs. 0.9 g biomass per plant at P0; 14.5 vs. 1.7 mg P per plant; and 4.7 vs. 1.6 g biomass per plant at P50).  At the highest P level, the mycorrhizal plants acquired more P than non-mycorrhizal plants (18.8 vs. 13.4 mg per P plant), but there was no difference in biomass (6.2 vs. 6.3 g per plant).  At the intermediate P level, root diameter was significantly positively correlated with shoot biomass, P concentration and the P content of mycorrhizal plants.  The results of our study support the importance of the outsourcing model of P acquisition in the root economics space framework.  Inadvertent varietal selection in the last decades, resulting in thinner roots and a lower benefit from AMF, has led to a lower productivity of cotton varieties at moderate P supply (i.e., when mycorrhizal, the average biomass of older varieties 5.0 g per plant vs. biomass of newer varieties 4.4 g per plant), indicating the need to rethink cotton breeding efforts in order to achieve high yields without very high P input.  One feasible way to solve the problem of inadvertent varietal selection for cotton is to be aware of the trade-offs between the root do-it-yourself strategy and the outsourcing towards AMF strategy, and to consider both morphological and mycorrhizal root traits when breeding cotton varieties.

Reference | Related Articles | Metrics
Grain yield and lodging-related traits of ultrashort-duration varieties for direct-seeded and double-season rice in Central China
WANG Xin-yu, XU Le, LI Xiao-xiao, YANG Guo-dong, WANG Fei, PENG Shao-bing
2022, 21 (10): 2888-2899.   DOI: 10.1016/j.jia.2022.07.035
Abstract204)      PDF in ScienceDirect      
Lodging is the most common constraint on grain yield of direct-seeded rice.  There is limited information about lodging resistance and its related plant traits in direct-seeded and double-season rice (DDR) in Central China.  This study aims  to identify the plant traits that achieve high lodging resistance in ultrashort-duration varieties (about 95 days) of DDR.  Field experiments were conducted in 2017 and 2018 in Wuxue County, Hubei Province, China, with four ultrashort-duration varieties grown under two nitrogen (N) rates.  Lodging-related traits were measured on the 15th day after heading, and yield and yield attributes were measured at maturity.  The grain yield of the four varieties ranged from 4.59 to 7.61 t ha–1 across the two N rates, with a total growth duration of 85 to 97 days.  Varietal differences in lodging index were mainly explained by the bending moment, which was closely related to plant height.  Breaking resistance did not affect the lodging index significantly.  Shortening plant height from 95.4 to 80.5 cm decreased the lodging index by 22.4% but did not reduce grain yield.  Our results suggested that reducing plant height was effective in improving the lodging resistance of ultrashort-duration varieties of DDR.  Lodging resistance should be enhanced by improving breaking resistance rather than reducing plant height to increase DDR grain yield further.
Reference | Related Articles | Metrics
Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD
LI Chen, LIU Xuan-xuan, ABOUELNASR Hesham, MOHAMED HAMED Arisha, KOU Meng, TANG Wei, YAN Hui, WANG Xin, WANG Xiao-xiao, ZHANG Yun-gang, LIU Ya-ju, GAO Run-fei, MA Meng, LI Qiang
2022, 21 (10): 2865-2875.   DOI: 10.1016/j.jia.2022.07.054
Abstract203)      PDF in ScienceDirect      

As a critical food crop, sweetpotato (Ipomoea batatas (L.) Lam.) is widely planted all over the world, but it is deeply affected by Sweetpotato Virus Disease (SPVD).  The present study utilized short tandem target mimic (STTM) technology to effectively up-regulate the expression of laccase (IbLACs) by successfully inhibiting the expression of miR397.  The upstream genes in the lignin synthesis pathway were widely up-regulated by feedback regulation, including phenylalanine ammonialyase (PAL), 4-coumarate-CoAligase (4CL), hydroxycinnamoyl CoA:shikimatetransferase (HTC), caffeicacid O-methyltransferase (COMT), and cinnamyl alcohol dehydrogenase (CAD).  Meanwhile, the activities of PAL and LAC increased significantly, finally leading to increased lignin content.  Lignin deposition in the cell wall increased the physical defence ability of transgenic sweetpotato plants, reduced the accumulation of SPVD transmitted by Bemisia tabaci (Gennadius), and promoted healthy sweetpotato growth.  The results provide new insights for disease resistance breeding and green production of sweetpotato. 

Reference | Related Articles | Metrics
Detection of arboviruses in Culicoides (Diptera: Ceratopogonidae) collected from animal farms in the border areas of Yunnan Province, China
DI Di, LI Chen-xi, LI Zong-jie, WANG Xin, XIA Qi-qi, Mona SHARMA, LI Bei-bei, LIU Ke, SHAO Dong-hua, QIU Ya-feng, Soe-Soe WAI, YANG Shi-biao, WEI Jian-chao, MA Zhi-yong
2021, 20 (9): 2491-2501.   DOI: 10.1016/S2095-3119(21)63613-4
Abstract162)      PDF in ScienceDirect      
Biting midges of the genus Culicoides (order Diptera, family Ceratopogonidae) are potential biological vectors for the transmission of certain arboviruses among humans, livestock, and wild animals.  This study collected a total of 405 Culicoides individuals from seven animal farms located in five counties in the border areas of Yunnan Province, China, and examined the Culicoides species composition and the major arboviruses carried by the Culicoides species.  The collected Culicoides were classified into seven species with variable abundances: Culicoides arakawae (5.43%, 22/405), Culicoides homotomus (1.23%, 5/405), Culicoides obsoletus (19.75%, 80/405), Culicoides orientalis (17.28%, 70/405), Culicoides oxystoma (29.38%, 119/405), Culicoides peregrinus (5.68%, 23/405), and Culicoides nipponensis (21.23%, 86/405).  Among the seven species, C. oxystoma and C. nipponensis were distributed in all the five counties with abundances of 13.33–44.87% and 10.00–46.83%, respectively, suggesting that these were the dominant species of Culicoides widespread on animal farms in the border areas.  PCR was used to detect major arboviruses in the collected Culicoides specimens, including bluetongue virus (BTV), Japanese encephalitis virus, Dengue virus, Zika virus, African swine fever virus, and African horse sickness virus.  Among the tested viruses, only BTV serotype 1 was tested positive in C. oxystoma specimens collected from a buffalo farm.  Culicoides oxystoma was the dominant species on animal farms in the sampled areas, but it has not previously been documented as positive for BTV in China.  The current results thus suggest that C. oxystoma could be an important vector for BTV transmission in these border areas, which, however, needs to be confirmed by further comprehensive experiments.  Overall, the present study provides the first profile of Culicoides species on animal farms in the China, Vietnam, and Myanmar border areas, establishes the prevalence of arboviruses carried by these Culicoides species, and suggests the vector potential of C. oxystoma species for the transmission of BTV. 
Reference | Related Articles | Metrics
Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)
SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo
2021, 20 (8): 2126-2137.   DOI: 10.1016/S2095-3119(20)63312-3
Abstract200)      PDF in ScienceDirect      
Anthocyanins are important components in the peel of red pears and contribute to the appearance of the fruit.  Melatonin application is known to affect anthocyanin biosynthesis, but the effect of preharvest melatonin application on fruit coloration remains largely unknown.  The objective of this study was to determine the effects of preharvest melatonin application on pigmentation, phenolic compounds, and the expression of related genes in Nanhong pear (Pyrus ussuriensis).  The applications were performed during the pre-color-change period by spraying 50 or 200 μmol L–1 of melatonin on fruits.  We found that treatment with melatonin had a significant effect on color development.  The concentrations of anthocyanins and favonols were enhanced by melatonin treatment, whereas hydroxycinnamate and favanol concentrations were reduced.  Quantitative real-time PCR analyses indicated that the transcription levels for most anthocyanin biosynthetic genes and anthocyanin-related transcription factors were induced by melatonin.  Melatonin application also stimulated the expression of melatonin biosynthesis-related genes and consequently caused an increase in endogenous melatonin concentration.  These results provide insights into melatonin-induced fruit coloration and will facilitate the application of exogenous melatonin in agriculture.
Reference | Related Articles | Metrics
Monilinia fructicola on loquat: An old pathogen invading a new host
YIN Liang-fen, ZHANG Shu-qin, DU Juan, WANG Xin-yu, XU Wen-xing, LUO Chao-xi
2021, 20 (7): 2009-2014.   DOI: 10.1016/S2095-3119(20)63375-5
Abstract128)      PDF in ScienceDirect      
Monilinia fructicola has been widely reported as the causal agent of brown rot disease on many Rosaceae family fruits worldwide.  It has been reported on stone fruits, e.g., peach, plum, cherry, apricot and mume; as well as pome fruits, e.g., apple, pear and hawthorn.  Loquat is a member of the Eriobotrya genus in subfamily Maloideae along with apple, pear and hawthorn.  So far, loquat has not been reported as the host of any Monilia species.  In June 2019, brown rot symptoms were observed on loquat fruits in an orchard in Wuhan, Hubei Province, China.  Thirty single spore isolates were obtained and identified as M. fructicola based on morphological characteristics and molecular analysis.  This is the first report of loquat brown rot disease caused by Monilia species in the world.  Furthermore, upon artificial inoculation, all three Monilia species from peach in China, i.e., M. fructicola, M. mumecola and M. yunnanensis, could cause typical brown rot disease on loquat fruits.  At the same time, M. fructicola isolates from loquat showed virulence similar to those isolates from peach when the pathogenicity test was conducted on peach fruits.  These results suggested that loquat could be infected by other Monilia species and that isolates from loquat also have potential to damage other Rosaceae family fruits in practice. 
Reference | Related Articles | Metrics
Giving maize an excited start – Effects of dopamine on maize germination
CHENG Hang-yuan, WANG Xing, FENG Tian-yu, PENG Chuan-xi, WANG Wei, YANG Mu-yu, ZHOU Yu-yi
2020, 19 (11): 2690-2698.   DOI: 10.1016/S2095-3119(20)63252-X
Abstract127)      PDF in ScienceDirect      
Dopamine (DA) is a neurotransmitter which takes charge of brain activities about memory and self-stimulation behavior in animals.  Interestingly, our results suggest that DA could also give maize an “excited state”.  The results showed that 1  mmol L–1 DA promoted maize germination by 23.2% significantly, and accelerated the growth rate of roots and shoots by 21.4 and 24.7%, respectively.  As we all known, abscisic acid (ABA) is the key hormone involved in seed dormancy.  In our research, ABA levels in roots and shoots dramatically decreased by 16.45 and 57.57%, respectively.  To further investigate how DA reduces the ABA level in budding seed, we studied ABA synthesis and catabolism pathway.  Specific expression of key ABA-synthesis genes, such as ZmNCED1, ZmNCED3 and ZmZEP were down-regulated by DA.  Simultaneously, the expression levels of ABA8OX1a and ABA8OX1b which are major transcripts of ABA 8´-hydroxylase in ABA catabolism were up-regulated at least 1.5- and 4.6-fold, respectively.  Our results enriched the functions of animal hormones in plants.
Reference | Related Articles | Metrics
Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize 
LU Zhi-xiang, TU Guang-ping, ZHANG Ting, LI Ya-qian, WANG Xin-hua, Zhang Quan-guo, SONG Wei, CHEN Jie
2020, 19 (1): 145-152.   DOI: 10.1016/S2095-3119(19)62734-6
Abstract181)      PDF in ScienceDirect      
Maize is one of the major crops in China, but maize stalk rot occurs nationwide and has become one of the major challenges in maize production in China.  In order to find an environment-friendly and feasible technology to control this disease, a Trichoderma-based biocontrol agent was selected.  Forty-eight strains with various inhibition activities to Fusarium graminearum, and Fusarium verticillioides were tested.  A group of Trichoderma strains (DLY31, SG3403, DLY1303 and GDFS1009) were found to provide an inhibition rate to pathogen growth in vitro of over 70%.  These strains also prevented pathogen infection over 65% and promoted the maize seedling growth for the main root in vivo by over 50%.  Due to its advantage in antifungal activity against pathogens and promotion activity to maize, Trichoderma asperellum GDSF1009 was selected as the most promising strain of the biocontrol agent in the Trichoderma spectrum.  Pot experiments showed that the Trichoderma agent at 2–3 g/pot could achieve the best control of seedling stalk rot and promotion of maize seedling growth.  In the field experiments, 8–10 g/hole was able to achieve over 65% control to stalk rot, and yield increased by 2–11%.  In the case of natural morbidity, the control efficiency ranged from 27.23 to 48.84%, and the rate of yield increase reached 11.70%, with a dosage of Trichoderma granules at 75 kg ha–1.  Based on these results, we concluded that the Trichoderma agent is a promising biocontrol approach to stalk rot in maize.
Reference | Related Articles | Metrics
Combined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maize
WANG Shao-qing, MA Jia, WANG Meng, WANG Xin-hua, LI Ya-qian, CHEN Jie
2019, 18 (9): 2063-2071.   DOI: 10.1016/S2095-3119(19)62603-1
Abstract165)      PDF in ScienceDirect      
Southern corn leaf blight (SCLB) disease caused by Cochliobolus heterostrophus is one of the major threats to corn production worldwide.  The synergistic application of low toxic chemical fungicide and biocontrol agents could improve biocontrol stability and efficiency against plant diseases, which ultimately reduce use of chemical fungicide.  Trichoderma spp., well-known biocontrol fungi have been used to control some foliar diseases.  However, few works have been reported on synergistic application of chemical fungicide and Trichoderma against foliar diseases.  This study was aimed to investigate the control effect on the synergistic application of Trichoderma harzianum SH2303 and difenoconazole-propiconazole (DP) against SCLB.  Results showed that the synergistic application of DP and SH2303 reduced the leaf spot area compared to the control.  The efficacy of synergistic application of DP+SH2303 against SCLB could last for 15–20 d in pot trial under the greenhouse condition.  Under the natural field condition, maize treated with DP+DP and DP+SH2303 showed 60% control, which was higher than that of SH2303+DP (45%) and SH2303+SH2303 (35%).  All these treatments induced the synthesis of defense-related enzymes (phenylalanine ammonia lyase (PAL), catalase (CAT), and superoxide dismutase (SOD)) and the defence-related gene expression of SA pathway (PR1).  Taken together the in-vitro leaf test and field trial, the control of SCLB by synergistic application of DP+SH2303 was similar to that of DP+DP.  Among synergistic application, the sequential application of DP+SH2303 showed better control than the sequential application of SH2303+DP.  It was concluded that the synergistic application of chemical fungicide (DP) and biocontrol agent (T. harzianum SH2303) could be used to reduce the chemical fungicide and to reduce the SCLB diseases in maize, which provided alternative approach to realize an eco-friendly controlling of the foliar disease.
Reference | Related Articles | Metrics
Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize
HE An-le, LIU Jia, WANG Xin-hua, ZHANG Quan-guo, SONG Wei, CHEN Jie
2019, 18 (3): 599-607.   DOI: 10.1016/S2095-3119(18)62089-1
Abstract217)      PDF (945KB)(226)      
Of diseases affecting maize (Zea mays), Fusarium graminearum is one of the most common pathogenic fungi that cause stalk rot.  In the present study, the Trichoderma asperellum GDFS1009 strain was shown to be an effective biocontrol agent against stalk rot.  In a confrontation culture test, Trichoderma strain displayed an approximately 60% inhibition rate on the mycelial growth of F. graminearum.  In pot trials, the application of 2 g/pot of T. asperellum GDFS1009 granules had the best control effect on stalk rot at the seedling stage (up to 53.7%), while the average plant height and fresh weight were also significantly improved.  Additionally when fertilizer was added at 8 g/pot, the application of 3 g/pot of Trichoderma granules had the best control effect on maize stalk rot (40.95%).  In field trials, when inoculating F. graminearum alone, the disease index for inoculating was 62.45, but only 31.43 after treatment with T. asperellum GDFS1009 granules, suggesting a control efficiency of 49.67%.  Furthermore, in a naturally F. graminearum-infected field, Trichoderma granules, when applied for 3 consecutive years, showed significant control of stalk rot and increased yields.
 
Reference | Related Articles | Metrics
Effects of Aschersonia aleyrodis on the life table and demographic parameters of Bemisia tabaci
ZHANG Can, SHAO Zhen-fang, HAN Yue-ye, WANG Xing-min, WANG Ze-qing, Peter Dennis Musa, QIU Bao-li, Shaukat Ali
2018, 17 (2): 389-396.   DOI: 10.1016/S2095-3119(17)61773-8
Abstract732)      PDF in ScienceDirect      
The present study reports the sublethal effects of the entomopathogenic fungus, Aschersonia aleyrodis (Webber) on Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae).  A fungal suspension of A. aleyrodis isolate Aa005 containing 1×107 conidia mL–1 was sprayed against B. tabaci on eggplant leaves under greenhouse conditions.  The effects of fungal application on survival as well as life table parameters of the whitefly were observed at different post inoculation periods.  The results indicated that A. aleyrodis can significantly affect the survival of 1st, 2nd, and 3rd nymphal instars of B. tabaci.  Developmental periods of different instar nymphs were not affected by fungal application.  A. aleyrodis spores persisted well and significantly affected the survivorship of young instar nymphs of B. tabaci at different post incubation periods.  Life table results suggested that A. aleyrodis has no impact on general fecundity and longevity of B. tabaci.  When the pathogen was exposed to the open environment and maintained for a relatively longer period, a reduction in the reproductive rate and intrinsic rate of increase was caused by the fungal spores, though the sublethal effects were not as good as the control treatment.  The results suggest that the ability of spores to suppress an increase in whitefly population persists well after incubation of spores to the external environment (up to 9 days).  
Reference | Related Articles | Metrics
Association of host plant growth and weed occurrence with armyworm (Mythimna separata) damage in corn fields
ZHANG Kun-peng, YU Zhi-hao, JIANG Shi-xiong, SUN De-wen, HUI Jun-tao, ZHENG Yu-liang, LI Xiao-zhen, WANG Xing-yun, WU Jun-xiang
2018, 17 (07): 1538-1544.   DOI: 10.1016/S2095-3119(17)61857-4
Abstract279)      PDF in ScienceDirect      
To clarify association between armyworm (Mythimna separata) damage level and the corn growth and weed occurrence, we investigated corn plant height, stem diameter and vigor as well as weed coverage and biomass.  The investigations were conducted at three locations of Shaanxi Province, China which were suffered seriously from armyworm.  Significant correlations were found between the parameters analyzed.  At stunted corn growth and presence of plenty of weeds, the armyworm damage tended to be heavy; oppositely, when corn grew well and weed density were low, armyworm harm was the minimal.  Therefore, corn growing status and weed density can significantly affect armyworm damage level.  Our results imply that promoting corn growth and timely removal of weeds are conducive to reducing armyworm occurrence.
 
Reference | Related Articles | Metrics
Genome-wide assessment of genetic diversity and fiber quality traits characterization in Gossypium hirsutum races
Kiflom Weldu Okubazghi, LI Xiao-na, CAI Xiao-yan, WANG Xing-xing, CHEN Hao-dong, ZHOU Zhong-li, WANG Chun-ying, WANG Yu-hong, LIU Fang, WANG Kun-bo
2017, 16 (11): 2402-2412.   DOI: 10.1016/S2095-3119(17)61671-X
Abstract843)      PDF in ScienceDirect      
Gossypium hirsutum races are believed to be potential reservoirs of desirable traits, which can play crucial roles to overcome the existing narrow genetic base of modern Upland cotton cultivars.  However, prior to utilizing the races in cotton improvement programs, understanding their genetic constitutions is needed.  Thus, this study used molecular and morphological techniques to characterize 110 G. hirsutum germplasm including 109 semi-wild accessions and one Upland cotton cultivar, CRI12.  In the study, 104 SSR markers detected 795 alleles, with an average of 7.64 alleles per marker, ranging from 3 to 14, and average polymorphism information content (PIC) value of 0.71.  And 96 of the markers were found to be highly informative, with PIC value≥0.50.  Pairwise genetic similarity coefficient across the accessions ranged from 0.19 to 1.00, with an average value of 0.46.  Morphological characterization was done using fiber length, fiber strength, micronaire, fiber uniformity index, and fiber elongation.  Pairwise taxonomic distance within the accessions ranged from 0.17 to 3.41, with a mean of 1.33.  The SSR and fiber quality traits data set based unweighted pair group method of arithmetic mean (UPGMA) analysis grouped the accessions into 7 and 12 distinct clusters, respectively, that corresponds well with the results of principal component analysis (PCA).  Our study revealed the existence of vast molecular and morphological diversities within the accessions and provided valuable information on each semi-wild accession for quick and better informed germplasm utilization in cotton breeding programs.   
Reference | Related Articles | Metrics
Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae
PARK Sung-chul, YU Yi-cheng, KOU Meng, YAN Hui, TANG Wei, WANG Xin, LIU Ya-ju, ZHANG Yun-gang, KWAK Sang-soo, MA Dai-fu, SUN Jian, LI Qiang
2017, 16 (10): 2168-2176.   DOI: 10.1016/S2095-3119(16)61570-8
Abstract738)      PDF in ScienceDirect      
Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100 mmol L–1 NaCl stress. X-28 cultivar is relatively high salt tolerant than O-100 cultivar. Interestingly, real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that sweet potato high-affinity K+ transporter 1 (IbHKT1) gene expression was highly induced by 50 and 100 mmol L–1 NaCl stress in the stems of X-28 cultivar than in those of O-100 cultivar, but only slightly induced by these stresses in the leaves and fibrous roots in both cultivars. To characterize the function of IbHKT1 transporter, we performed ion-flux analysis in tobacco transient system and yeast complementation. Tobacco transient assay showed that IbHKT1 could uptake sodium (Na+). Yeast complementation assay showed that IbHKT1 could take up K+ in 50 mmol L–1 K+ medium without the presence of NaCl. Moreover, Na+ uptake significantly increased in yeast overexpressing IbHKT1. These results showed that IbHKT1 transporter could have K+-Na+ symport function in yeast. Therefore, the modes of action of IbHKT1 in transgenic yeast could differ from the mode of action of the other HKT1 transporters in class I. Potentially, IbHKT1 could be used to improve the salt tolerance nature in sweet potato.
Reference | Related Articles | Metrics
Development of SNP markers using RNA-seq technology and tetra-primer ARMS-PCR in sweetpotato
KOU Meng, XU Jia-lei, LI Qiang, LIU Ya-ju, WANG Xin, TANG Wei, YAN Hui, ZHANG Yun-gang, MA Dai-fu
2017, 16 (02): 464-470.   DOI: 10.1016/S2095-3119(16)61405-3
Abstract1224)      PDF in ScienceDirect      
The information of single nucleotide polymorphisms (SNPs) is quite unknown in sweetpotato.  In this study, two sweetpotato varieties (Xushu 18 and Xu 781) were sequenced by Illumina technology, as well as de novo transcriptome assembly, functional annotation, and in silico discovery of potential SNP molecular markers.  Tetra-primer Amplification Refractory Mutation System PCR (ARMS-PCR) is a simple and sufficient method for detecting different alleles in SNP locus.  Total 153 sets of ARMS-PCR primers were designed to validate the putative SNPs from sequences.  PCR products from 103 sets of primers were different between Xu 781 and Xushu 18 via agarose gel electrophoresis, and the detection rate was 67.32%.  We obtained the expected results from 32 sets of primers between the two genotypes.  Furthermore, we ascertained the optimal annealing temperature of 32 sets of primers.  These SNPs might be used in genotyping, QTL mapping, or marker-assisted trait selection further in sweetpotato.  To our knowledge, this work was the first study to develop SNP markers in sweetpotato by using tetra-primer ARMS-PCR technique.  This method was a simple, rapid, and useful technique to develop SNP markers, and will provide a potential and preliminary application in discriminating cultivars in sweetpotato.
Reference | Related Articles | Metrics
Accumulated chilling hours during endodormancy impact blooming and fruit shape development in peach (Prunus persica L.)
LI Yong, FANG Wei-chao, ZHU Geng-rui, CAO Ke, CHEN Chang-wen, WANG Xin-wei, WANG Li-rong
2016, 15 (06): 1267-1274.   DOI: 10.1016/S2095-3119(16)61374-6
Abstract1114)      PDF in ScienceDirect      
   Winter chill is essential for the growth and development of deciduous species. To understand the relationship between accumulated chilling hours during endodormancy and blooming and fruit shape development, we controlled chilling hours and investigated their effects on blooming date and fruit shape of peaches. The results showed that the number of days to full bloom date and the heat requirement for blooming were negatively correlated with accumulated chilling hours. Accumulated chilling hours were significantly negatively correlated with fruit shape index and fruit tip lengths, suggesting that the number of chilling hours affect the fruit shape development. Fewer accumulated chilling hours may be the major reason for longer fruit shape and protruding fruit tips. In conclusion, our results indicate specifically that decreased winter chilling hours can delay the bloom date and may lead to aberrant fruit shape development in peaches. Our study provides preliminary insights into the response of temperate fruit species to global climate change.
Reference | Related Articles | Metrics
The cytochrome P450 superfamily: Key players in plant development and defense
XU Jun, WANG Xin-yu, GUO Wang-zhen
2015, 14 (9): 1673-1686.   DOI: 10.1016/S2095-3119(14)60980-1
Abstract2802)      PDF in ScienceDirect      
The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple metabolic pathways with distinct and complex functions, playing important roles in a vast array of reactions. As a result, numerous secondary metabolites are synthesized that function as growth and developmental signals or protect plants from various biotic and abiotic stresses. Here, we summarize the characterization of CYPs, as well as their phylogenetic classification. We also focus on recent advances in elucidating the roles of CYPs in mediating plant growth and development as well as biotic and abiotic stresses responses, providing insights into their potential utilization in plant breeding.
Reference | Related Articles | Metrics
Food safety regulatory systems in Europe and China: A study of how co-regulation can improve regulatory effectiveness
Kevin Chen, WANG Xin-xin, SONG Hai-ying
2015, 14 (11): 2203-2217.   DOI: 10.1016/S2095-3119(15)61113-3
Abstract2325)      PDF in ScienceDirect      
Food safety has received a great deal of attention in both developed and developing countries in recent years. In China, the numerous food scandals and scares that have struck over the past decade have spurred significant food safety regulatory reform, which has been increasingly oriented towards the public-private partnership model adopted by the Europe Union’s (EU) food safety regulatory system. This paper analyzes the development of both the EU’s and China’s food safety regulatory systems, identifies the current challenges for China and additionally considers the role of public-private partnership. The success of co-regulation in the food regulatory system would bring significant benefits and opportunities for China. Finally, this paper recommends additional measures like training and grants to improve the private’s sector effectiveness in co-regulating China’s food safety issues.
Reference | Related Articles | Metrics
Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos
ZHANG Wei, WANG Xin-min, FAN Rong, YIN Gui-xiang, WANG Ke, DU Li-pu, XIAO Le-le, YE Xing-guo
2015, 14 (1): 11-19.   DOI: 10.1016/S2095-3119(14)60764-4
Abstract1906)      PDF in ScienceDirect      
The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H2O2) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L–1 AGP or 0.005 to 0.01 ‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L–1 AGP application level in callus induction medium plant regeneration rates of 8.49, 409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L–1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 ‰ of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01 ‰ of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research.
Reference | Related Articles | Metrics
Effects of Environmental Temperature on the Regeneration Frequency of the Immature Embryos of Wheat (Triticum aestivum L.)
WANG Xin-min; REN Xian; YIN Gui-xiang; WANG Ke; LI Jia-rui; DU Li-pu; XU Hui-jun ;
2014, 13 (4): 722-732.   DOI: 10.1016/S2095-3119(13)60361-5
Abstract1789)      PDF in ScienceDirect      
The immature embryos (IEs) of wheat are the most widely used tissues for in vitro culture and genetic transformation due to its high regeneration competency. However, this explant can only be maintained in 4°C daily cooler for a short period time for its use in plant tissue culture or transformation experiments. This study aimed to investigate the effects of environmental temperature, cryopreservation storage temperature, and heat shock culture (HSC) temperature on the regeneration frequency of wheat IEs. Results indicated that environmental temperature significantly affected the induction of embryonic calli. The optimum total accumulated temperature (TAT) during the time of anthesis and sampling for regeneration of these tissues was around 280°C for spring wheat type cv. CB037 and approximately 300°C for winter wheat type cv. Kenong 199. Regeneration ability obviously declined when the highest environmental temperature was over 35°C for 1 d or a high temperature between 30 and 33°C lasted for 5 d during anthesis and sampling. This finding was verified by culturing the freshly isolated IEs under different temperatures from 29 to 37°C in different controlled growth incubators for 5 d; the IEs almost completely lost regeneration ability when the temperature rose to 37°C. Cryopreservation of -20°C caused the wheat samples lost ability of producing callus or embryonic callus in a few days, and cryopreservation of -10°C more than 10 d made the regeneration potential of the tissues dramatically declined. Comparatively, the temperature that best maintained high regeneration ability was -5°C, at which the materials can be maintained for around 1 mon. In addition, the preservation of the immature samples at -5 or -10°C inhibited the direct germination of the IEs, avoiding the embryo axis removing process. Our results are useful for ensuring that field collection and cryopreservation of the wheat IEs are done correctly to enable tissue culture and genetic transformation.
Reference | Related Articles | Metrics
Effect of Shading During Grain Filling on the Physicochemical Properties of Fresh Waxy Maize
LU Da-lei, SUN Xu-li, WANG Xin, YAN Fa-bao , LU Wei-ping
2013, 12 (9): 1560-1567.   DOI: 10.1016/S1671-2927(00)9071
Abstract1381)      PDF in ScienceDirect      
Grain physicochemical properties determine the table quality of fresh waxy maize. Two waxy maize varieties, Suyunuo 5 (shading tolerant) and FHN003 (shading sensitive), were used to estimate the effect of shading (plants received 30% less radiation than control) during grain filling (from 0 d to 23 d after pollination) on physicochemical properties of fresh waxy maize grain. Shading decreased the grain fresh weight of Suyunuo 5 and FHN003 by 8.4 and 19.1%, respectively. Shading increased the grain water content of FHN003, whereas that of Suyunuo 5 was not affected. In both varieties for shading treatment, soluble sugar, starch and protein contents were decreased, whereas zein content was increased. The changes in globulin, albumin and glutenin contents under shading were variety dependent. In both varieties, shading decreased λmax, iodine binding capacity and the percentage of large starch granules (diameter >17 μm) but increased crystallinity. The results of rapid visco analysis showed that the viscosity characteristics (except for pasting temperature) of both varieties were decreased by shading; however, FHN003 was more severely affected than Suyunuo 5. Under shading, ΔHret and %R were decreased in both varieties, whereas the changes in ΔHgel and transition temperatures were variety dependent. Hardness, cohesiveness and chewiness were decreased in both varieties. Significant differences in physicochemical characteristics were observed between the two varieties.
Reference | Related Articles | Metrics
Characterization of Tomato Transcription Factor WUSCHEL and Functional Study in Arabidopsis
WANG Xiang, WANG Xin-guo, REN Jiang-ping, MA Ying, YIN Jun
2012, 12 (8): 1257-1265.   DOI: 10.1016/S1671-2927(00)8654
Abstract1514)      PDF in ScienceDirect      
The homeobox transcription factor WUSCHEL (WUS) plays a critical role in keeping the balance between the maintenance and differentiation of stem cell population in shoot and floral meristems of Arabidopsis thaliana. The corresponding gene SlWUS is yet to be characterized in tomato. In order to characterize SlWUS gene and its biological function, we cloned it from tomato and analyzed its structure. Tissue expression showed that the SlWUS highly expressed in tomato flower abscission zone. The overexpression of SlWUS in Arabidopsis could trigger undifferentiation of plant flower organ and indeterminacy of flower identity, suggesting that SlWUS maybe involved in flower structure development as well as flower organ identity. Taken together, our results indicated that the SlWUS plays an important role in flower abscission zone and plant organ shedding.
Reference | Related Articles | Metrics
Differentially Expressed Genes of Soybean During Infection by Phytophthorasojae
XU Peng-fei, Allen Xue, CHEN Wei-yuan, LV Hui-ying, FAN Su-jie, WANG Xin, JIANG Liang-yu, ZHANG Shu-zhen
2012, 12 (3): 368-377.   DOI: 10.1016/S1671-2927(00)8554
Abstract1624)      PDF in ScienceDirect      
To elucidate the differential gene expression patterns in soybeans during infection by Phytophthora sojae, a cDNA libraryfor suppression subtractive hybridization (SSH) was constructed with cDNAs from soybean cultivar Suinong 10 treatedwith sterile distilled water as the driver and cDNAs from Suinong 10 inoculated with P. sojae as the tester. A total of 2 067recombinant colonies from the SSH library were randomly picked, amplified, and sequenced. After discarding 312 poorquality expressed sequence tags (EST), 1 755 high quality ESTs were assembled and edited to 1 384 tentatively uniquegenes (TUG), in which, 586 showed significant homology to known sequences, and 798 had low homology or no matchwith the known sequences. A cDNA microarray containing 307 singletons from the 586 TUGs and 222 singletons from the798 TUGs was developed to characterize differentially expressed cDNAs in the SSH library, and eight cDNAs wereidentified to be up-regulated after microarray analysis and then confirmed by real-time PCR. They were homologous to theprotein 10, and were also related to some proteins in disease resistance response, such as pathogen-related protein,phenylalanine ammonia-lyase, isoflavone reductase, WRKY transcription factor 31, major allergen Pru ar 1, and pleiotropicdrug resistance protein 12. Most of the up-regulated cDNAs encode enzymes of phytoalexin biosynthesis andpathogenesis-related proteins involved in plant disease resistance. Here, we fist reported the Pru ar 1 in soybeans. Thefindings of this research have contributed to better understanding of soybean resistance to P. sojae at the molecular level.
Reference | Related Articles | Metrics
The Effect ofAdministration of Rutin on Plasma Levels of Estrogen, Prolactin, Growth Hormone and Gene Expression of Their Receptors in Mammary Glands in Ovariectomized Rats
GUO Xu-dong, DIAO Qi-yu, WANG Yue-ying, TU Yan, DENG Kai-dong, WANG Xin-jian, FU Tong, YAN Gui-long
2012, 12 (10): 1700-1706.   DOI: 10.1016/S1671-2927(00)8703
Abstract1633)      PDF in ScienceDirect      
The development of mammary glands, endocrine hormone concentrations and the gene expression of related receptors were measured in ovariectomized virgin rats after adminstration of an estrogen-like plant extract, rutin. Thirty-two ovariectomized virgin Wistar rats were randomly assigned to 4 treatments with 8 animals each: gastric infusion of 2 mL normal saline per unovariectomized rat per day (Sham), gastric infusion of 2 mL normal saline per ovariectomized rat per day (Ova), gastric infusion of 60 mg rutin kg-1 body weight (BW) per ovariectomized rat per day (Ova+Rut), or intramuscular injection of 60 μg estradiol kg-1 BW per ovariectomized rat weekly (Ova+Est). Samples of blood and mammary glands were harvested to determine the levels of estrogen (E2), prolactin (PRL) and growth hormone (GH), and the gene expression of estrogen receptors (ER), prolactin receptors (PRLR) and growth hormone receptors (GHR) with radioimmunoassy (RIA) and RT-PCR technology, respectively. The E2 concentration in plasma and gland tissues from the rats of Ovx+Rut or Ovx+Est was higher than that of Ovx (P<0.05), but the plasma E2 concentration from the rats of Ovx+Rut was lower than that of Sham (P<0.05). The order of the PRL concentration in plasma and gland tissues was Ovx
Reference | Related Articles | Metrics
18S ribosomal RNA methyltransferase METTL5-mediated CDX2 translation regulates porcine early embryo development
XU Teng-teng, ZHANG Meng-ya, LIU Qiu-chen, WANG Xin, LUO Peng-fei, LIU Tong, YAN Ye-lian, ZHOU Na-ru, MA Yang-yang, YU Tong, LI Yun-sheng, CAO Zu-bing, ZHANG Yun-hai
DOI: 10.1016/j.jia.2023.10.013 Online: 19 October 2023
Abstract96)      PDF in ScienceDirect      

N6-methyladenosine (m6A) plays a key role in mammalian early embryonic development and cell lineage differentiation. However, the role and mechanisms of 18S ribosomal RNA (rRNA) m6A methyltransferase METTL5 in early embryonic development remain unclear. Here, we found that 18S rRNA m6A methyltransferase METTL5 plays an important role in porcine early embryonic development. METTL5 knockdown and overexpression significantly reduced the developmental efficiency of porcine early embryos and impaired cell lineage allocation. METTL5 knockdown apparently decreased the global translation efficiency in blastocyst, while METTL5 overexpression increased the global translation efficiency. Furthermore, METTL5 knockdown did not affect the abundance of CDX2 mRNA, but resulted in a significant reduction in CDX2 protein levels. Moreover, the low developmental efficiency and abnormal lineage distribution of METTL5 knockdown embryos could be rescued by CDX2 overexpression. Collectively, our results demonstrated that 18S rRNA methyltransferase METTL5 regulates porcine early embryonic development via modulating the translation of CDX2.

Reference | Related Articles | Metrics