Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2746-2758    DOI: 10.1016/j.jia.2023.01.009
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Degradation effects on dichlorvos by a biocontrol strain, Trichoderma atroviride T23
SUN Jia-nan1, 2*, SI Gao-yue1, 2*, LIU Hong-yi1, 2, LI Ya-qian1, 2, WANG Xin-hua1, 2, CHEN Jie1, 2#
1 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P.R.China
2 State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

工农业生产中有机磷杀虫剂敌敌畏的大量使用对人类健康和环境生态安全构成了威胁。微生物降解有机磷农药残留是生物修复环境的重要途径。前期工作表明:木霉作为生防菌同时可以用来降解环境中的化学农药,但亟需阐明木霉降解敌敌畏的作用机制。试验表明:深绿木霉T23对敌敌畏的降解能力取决于敌敌畏的初始诱导作用、培养基养分和pH值的变化。敌敌畏胁迫下T23产生的不同初级和次生代谢产物可以为菌株提供能量和作为抗氧化剂来耐受敌敌畏的胁迫。结果表明:深绿木霉T23可以产生大量的胞内酶降解敌敌畏,T23产生的胞内酶活性随着时间、初始敌敌畏浓度、培养基中硫酸铵和磷酸盐含量的变化而变化。研究阐明了敌敌畏诱导的生防深绿木霉T23降解敌敌畏的酶动力学特点和作用机理,为环境中有机磷农药残留的微生物降解提供了理论依据。



Abstract  

Excessive use of organophosphate pesticides (OP), such as dichlorvos, in farming system poses a threat to human health through potential contamination of environment.  To date, biodegradation has been prospected most promising approach to eliminate environmental OP residues.  Trichoderma species as a biological control microorganism is often exposed to the chemical pesticides applied in environments, so it is necessary to understand the mechanism of degradation of dichlorvos by Trichoderma.  In this study, dichlorvos significantly inhibited the growth, sporulation and pigmentation of Tatroviride T23, and the dichlorvos degradation activity of T23 required the initial induction effect of dichlorvos and the culture conditions, including the nutrient and pH values of the medium.  Various changed primary and secondary metabolites released from T23 in the presence of dichlorvos were speculated as the energy and antioxidants for the strain itself to tolerate dichlorvos stress.  The results showed that T23 could produce a series of enzymes, especially the intracellular enzymes, to degrade dichlorvos.  The activities of the intracellular enzyme generated by T23 were differentially changed along time course and especially relied on initial dichlorvos concentration, ammonium sulfate and phosphate added in the medium.  In conclusion, some dichlorvos-induced chemical degradation related enzymes of T23 were proved to be involved in the degradation of dichlorvos.

Keywords:  Trichoderma atroviride T23       dichlorvos        intracellular enzyme        induced enzyme activity  
Received: 01 August 2022   Accepted: 23 November 2022
Fund: This work was supported by the National Natural Science Foundation of China (31872015), the Shanghai Science and Technology Innovation Action Program of the Shanghai Science and Technology Commission, China (21N41900200), the Shanghai Agricultural Applied Technology Development Program (2022-02-08-00-12-F0-01143), the China Agriculture Research System of MOF and MARA (CARS-02), and the National Key R&D Program of China (2017YFD0200403).
About author:  SUN Jia-nan, E-mail: sunjianan@yeah.net; SI Gao-yue, E-mail: sigaoyue19@sjtu.edu.cn; Correspondence CHEN Jie, Tel: +86-21-34206141, E-mail: jiechen59@sjtu.edu.cn

Cite this article: 

SUN Jia-nan, SI Gao-yue, LIU Hong-yi, LI Ya-qian, WANG Xin-hua, CHEN Jie. 2023. Degradation effects on dichlorvos by a biocontrol strain, Trichoderma atroviride T23. Journal of Integrative Agriculture, 22(9): 2746-2758.

Asemoloye M D, Jonathan S G, Ahmad R. 2019. Degradation of 2,2-dichlorovinyl dimethyl phosphate (dichlorvos) through the rhizosphere interaction between Panicum maximum Jacq and some selected fungi. Chemosphere221, 403–411.

Bhandari G, Bhatt P, Gangola S, Srivastava A, Anita S. 2022. Degradation mechanism and kinetics of carbendazim using Achromobacter sp. strain GB61. Bioremediation Journal26, 150–161.

Bhatt P, Sethi K, Gangola S, Bhandari G, Verma A, Adnan M, Singh Y, Chaube S. 2022. Modeling and simulation of atrazine biodegradation in bacteria and its effect in other living systems. Journal of Biomolecular Structure and Dynamics40, 3285–3295.

Bosso L, Cristinzio G. 2014. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Reviews in Environmental Science and Bio-Technology13, 387–427.

Candida L, Antonio C, Juan S H, Codruta V, Florina P, Stela P, Francesco D. 2022. Carbon nanomaterial functionalization with pesticide-detoxifying carboxylesterase. Chemosphere309, 136594.

Ezzi M I, Lynch J M. 2005. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme and Microbial Technology36, 849–854.

Fan L L, Fu K H, Yu C J, Li Y Y, Li Y Q, Chen J. 2015. Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunataJournal of Basic Microbiology55, 591–600.

Feng Y M, Huang Y H, Zhan H, Bhatt P, Chen S H. 2020. An overview of strobilurin fungicide degradation: Current status and future perspective. Frontiers in Microbiology11, 389.

Fu H Y, Tan P, Wang R J, Li S L, Liu H Z, Yang Y, Wu Z L. 2022. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials424, 127494.

Gagné F. 2014. Oxidative stress. Biochemical Ecotoxicology6, 103–115.

Gaonkar O, Nambi I M, Kumar G S. 2019. Biodegradation kinetics of dichlorvos and chlorpyrifos by enriched bacterial cultures from an agricultural soil. Bioremediation Journal23, 259–276.

Ge F, Yokochi N, Yoshikane Y, Ohnishi K, Yagi T. 2008. Gene identification and characterization of the pyridoxine degradative enzyme 4-pyridoxic acid dehydrogenase from the nitrogen-fixing symbiotic bacterium Mesorhizobium loti MAFF303099. Journal of Biochemistry143, 603–609.

Goldman G H, Temmerman W, Jacobs D, Contreras R, Van M M, Herrera E A. 1993. A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-carbamate. Molecular and General Genetics240, 73–80.

Heidar H, Omid N S T, Abbasali Z. 2017. Monitoring organophosphorous pesticides residues in the shahid rajaei dam reservoir, Sari, Iran. Bulletin of Environmental Contamination and Toxicology98, 791–797.

Hu Z R, Liu Y, Peng C L, Li S B. 2019. Diversity, heavy-metal tolerance and indoleacetic acid production of bacterial endophytes in Bidens pilosaMicrobiology China46, 29–41. (in Chinese)

Huang Y H, Lin Z Q, Zhang W P, Pang S M, Bhatt P, Rene E R, Kumar A J, Chen S H. 2020. New insights into the microbial degradation of D-cyphenothrin in contaminated water/soil environments. Microorganisms8, 473.

Jiang B, Zhang N N, Xing Y, Lian L N, Chen Y T, Zhang D Y, Li G H, Sun G D, Song Y Z. 2019. Microbial degradation of organophosphorus pesticides: Novel degraders, kinetics, functional genes, and genotoxicity assessment. Environmental Science and Pollution Research26, 21668–21681.

Jochum M D, McWilliams K L, Borrego E J, Kolomiets M V, Niu G H, Pierson E A, Jo Y K. 2019. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Frontiers in Microbiology10, 2106.

Katayama A, Matsumura F. 1993. Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianumEnvironmental Toxicology and Chemistry12, 1059–1065.

Kazemi M, Tahmasbi A M, Valizadeh R, Naserian A, Soni A. 2012. Organophosphate pesticides: A general review. Biology2, 512–522.

Lari S Z, Khan N A, Gandhi K N, Meshram T S, Thacker N P. 2014. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. Journal of Environmental Health Science and Engineering12, 11.

Li X, Zhang Y, Gulbins E. 2010. Lipid rafts and pseudomonas aeruginosa infections. In: Keasling J D, ed., Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin Heidelberg. pp. 3179–3184.

Lu T, Zhang Q L, Yao S J. 2016. Biosorption applications of filamentous fungi in wastewater treatment. Journal of Chemical Engineering of Chinese Universities30, 741–753. (in Chinese)

Meng D, Jiang W, Li J, Huang L, Zhai L X, Zhang L Y, Guan Z B, Cai Y J, Liao X R. 2019. An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. Journal of Environmental Science and Health54, 336–343.

Ning J, Gang G, Bai Z H, Hu Q, Qi H Y, Ma A Z, Zhuan X L, Zhuang G Q. 2012. In situ enhanced bioremediation dichlorvos by a phyllosphere Flavobacterium strain. Frontiers of Environmental Science & Engineering6, 231–237.

Pang S M, Lin Z Q, Zhang Y M, Zhang W P, Alansary N, Mishra S, Bhatt P, Chen S H. 2020. Insights into the toxicity and degradation mechanisms of imidacloprid via physicochemical and microbial approaches. Toxics8, 65.

Parte S G, Mohekar A D, Kharat A S. 2020. Aerobic dichlorvos degradation by Pseudomonas stutzeri smk: Complete pathway and implications for toxicity in Mus musculusIranian Journal of Microbiology12, 38–147.

Prenafeta-Boldu F X, Summerbell R, de Hoog G S. 2006. Fungi growing on aromatic hydrocarbons: Biotechnology’s unexpected encounter with biohazard? FEMS Microbiology Reviews30, 109–130.

Priyanka B, Vivek K G, Varsha T, Shishir B, Natesan M, Abhay B. 2023. Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. Journal of Hazardous Materials441, 129906.

Ren Z M, Zhang X, Wang X G, Qi P P, Zhang B, Zeng Y, Fu R S, Miao M S. 2015. AChE inhibition: One dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure. Chemosphere120, 252–257.

Saccoccia F, Angelucci F, Boumis G, Carotti D, Desiato G, Miele A E, Bellelli A. 2014. Thioredoxin reductase and its inhibitors. Current Protein & Peptide Science15, 621–646.

Saurabh G, Pankaj B, Alagarasan J K, Geeta B, Samiksha J, Arjita P, Kalpana B, Eldon R R. 2022. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Chemosphere296, 133916.

Spina F G, Cecchi A, Landinez-Torres L, Russo F, Wu B, Cai L, Liu X, Tosi S, Varese G C, Zotti M, Persiani A. 2018. Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosystems152, 474–488.

Sun J N, Karuppiah V, Li Y Q, Pandian S, Kumaran S, Chen J. 2022. Role of cytochrome P450 genes of Trichoderma atroviride T23 on the resistance and degradation of dichlorvos. Chemosphere290, 133173.

Sun J N, Yuan X, Li Y Q, Wang X H, Chen J. 2019a. The pathway of 2,2-dichlorovinyl dimethyl phosphate (DDVP) degradation by Trichoderma atroviride strain T23 and characterization of a paraoxonase-like enzyme. Applied Microbiology and Biotechnology103, 8947–8962.

Sun J N, Zhang T L, Li Y Q, Wang X H, Chen J. 2019b. Functional characterization of the ABC transporter TaPdr2 in the tolerance of biocontrol the fungus Trichoderma atroviride T23 to dichlorvos stress. Biological Control129, 102–108.

Sun W L, Chen Y P, Liu LX, Tang J, Chen J, Liu P. 2010. Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism. Bioresource Technology101, 9197–9203.

Tabet J C, Lichtenstein E P. 1976. Degradation of [14C] photodieldrin by Trichoderma viride as affected by other insecticides. Canadian Journal of Microbiology22, 1345–1356.

Tahiliani A G, Beinlich C J. 1991. Pantothenic acid in health and disease. Vitamins & Hormones46, 165–228.

Tang J, Liu L X, Huang X L, Li Y Y, Chen Y P, Chen J. 2010. Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Canadian Journal of Microbiology56, 121–127.

Tripathi P, Singh P C, Mishra A, Chauhan P S, Dwivedi S, Bais R T, Tripathi R D. 2013. Trichoderma: A potential bioremediator for environmental clean up. Clean Technologies and Environmental Policy15, 541–550.

Zhang R, Zhao Z H, Bai H, Jia X Q. 2022. Isolation, identification, and degrading characteristics of DDVP-degrading bacterium. Applied Chemical Industry51, 2262–2267. (in Chinese)

Zhang Y M, Zhang W P, Li J Y, Pang S M, Mishra S, Pankaj B, Zeng D X, Chen S H. 2021. Emerging technologies for degradation of dichlorvos: A review. International Journal of Environmental Research and Public Health18, 5789.

Zhou X Y, Xu S F, Liu L X, Chen J. 2007. Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresource Technology98, 2958–2962.

No related articles found!
No Suggested Reading articles found!