Diagnosis and characterization of the ribosomal DNA-ITS of potato rot nematode (Ditylenchus destructor) populations from Chinese medicinal herbs
The potato rot nematode (Ditylenchus destructor) is a very economically important nematode in agronomic and horticultural plants worldwide. In this study, 43 populations of D. destructor were collected from different hosts across China, including 37 populations from Chinese herbal medicine plants. Obtained sequences of ITS-rDNA and D2–D3 of 28S-rDNA genes of D. destructor were compared and analyzed. Nine types of significant length variations in ITS sequences were observed among all populations. The differences in ITS1 length were mainly caused by the presence of repetitive elements with substantial base substitutions. Reconstructions of ITS1 secondary structures showed that the minisatellites formed a stem structure. Ten haplotypes were observed in all populations based on mutations and variations of helix H9. Among them, 3 known haplotypes (A–C) were found in 7 populations isolated from potato, sweet potato, and Codonopsis pilosula, and 7 unique haplotypes were found in other 36 populations collected from C. pilosula and Angelica sinensis compared with 7 haplotypes (A–G) according to Subbotin’ system. These unique haplotypes were different from haplotypes A–G, and we named them as haplotypes H–N. The present results showed that a total of 14 haplotypes (A–N) of ITS-rDNA have been found in D. destructor. Phylogenetic analyses of ITS-rDNA and D2–D3 showed that all populations of D. destructor were clustered into two major clades: one clade only containing haplotype A from sweet potato and the other containing haplotypes B–N from other plants. For further verification, PCR-ITS-RFLP profiles were conducted on 7 new haplotypes. Collectively, our study suggests that D. destructor populations on Chinese medicinal materials are very different from those on other hosts and this work provides a paradigm for relevant researches.
A mixture of controlled-release urea and normal urea (CRUNU) is an efficient nitrogen (N) fertilizer type, but little is known about its effects on stem lodging resistance, grain yield, and yield stability of wheat. In this study, a 4-year field experiment (from 2017 to 2021) was conducted to analyze the effects of N fertilizer types (CRUNU and normal urea (NU)) and application rates (low level (L), 135 kg ha–1; medium level (M), 180 kg ha–1; high level (H), 225 kg ha–1) on population lodging resistance, basal internode strength, lignin content and synthetase activity, stem lodging resistance, grain yield, and yield stability of wheat. Our results showed that the two N fertilizer types had the highest lodging rate under high N application rates, and the M-CRUNU treatment showed the lowest lodging rate. Compared with NU, CRUNU improved the wheat population lodging resistance under the three N application rates, mainly related to improving wheat population characteristics and breaking the strength of the second basal internode. Correlation analysis showed that the breaking strength of the second basal internode was related to the physical characteristics, chemical components, and micro-structure of the internode. Compared with NU, CRUNU significantly increased wheat grain yield by 4.47, 14.62, and 3.12% under low, medium, and high N application rates, respectively. In addition, CRUNU showed no significant difference in grain yield under medium and high N application rates, but it presented the highest yield stability under the medium N application rate. In summary, CRUNU, combined with the medium N application rate, is an efficient agronomic management strategy for wheat production.
Potassium (K), an important nutrient element, can improve the stress resistance/tolerance of crops. The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield. However, data on K2SO4 induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking. In this work, K2SO4 treatment reduced galls and nematodes in rice plants and delayed the development of nematodes. Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites, such an effect is achieved by rapidly priming hydrogen peroxide (H2O2) accumulation and increasing callose deposition. Meanwhile, galls and nematodes in rice roots were more in the potassium channel OsAKT1 and transporter OsHAK5 gene-deficient plants than in wild-type, while the K2SO4-induced resistance showed weaker in the defective plants. In addition, during the process of nematode infection, the expression of jasmonic acid (JA)/ethylene (ET)/brassinolide (BR) signaling pathway-related genes and pathogenesis-related (PR) genes OsPR1a/OsPR1b was up-regulated in rice after K2SO4 treatment. In conclusion, K2SO4 induced rice resistance against M. graminicola. The mechanism of inducing resistance was to prime the basal defense and required the participation of the K+ channel and transporter in rice. These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.
Soybean cyst nematode (SCN) Heterodera glycines is considered as the major constraint to soybean production. GmSHMT08 at Rhg4 locus on chromosome 08, encoding a serine hydroxylmethyltransferase, is a major gene underlying resistance against H. glycines in Peking-type soybeans. However, the molecular mechanism underpinning this resistance is less well characterized, and whether GmSHMT08 could interact with proteins in H. glycines remains unclear. In this study, yeast two-hybrid screening was conducted using GmSHMT08 as a bait protein, and a fragment of a 70-kDa heat shock protein (HgHSP70) was screened from H. glycines that exhibited interaction with GmSHMT08. This interaction was verified by both GST pull-down and bimolecular fluorescence complementation assays. Our finding reveals HgHSP70 could be applied as a potential candidate gene for further exploring the mechanism on GmSHMT08-mediated resistance against SCN H. glycines.