Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens
WANG Dan-dan, ZHANG Yan-yan, TENG Meng-lin, WANG Zhang, XU Chun-lin, JIANG Ke-ren, MA Zheng, LI Zhuan-jian, TIAN Ya-dong, Kang Xiang-tao, LI Hong, LIU Xiao-jun
2022, 21 (5): 1457-1474.   DOI: 10.1016/S2095-3119(21)63842-X
Abstract320)      PDF in ScienceDirect      
Indigenous chicken products are increasingly favored by consumers due to their unique meat and egg quality.  However, the relatively poor egg-laying performance largely impacts the economic benefits and hinders sustainable development of the local chicken industry.  Thus, excavating key genes and effective molecular markers associated with egg-laying performance is necessary to improve egg production via genetic selection in indigenous breeds.  In the present study, comparative hypothalamic transcriptome between pre-laying (15 weeks old) and peak-laying (30 weeks old) Lushi blue-shelled-egg (LBS) chicken was performed.  A total of 518 differentially expressed genes (DEGs) were identified.  Among the DEGs, 64 genes were enriched in 10 Gene Ontology (GO) terms associated with reproductive regulation via GO analysis and considered as potential candidate genes regulating egg-laying performance.  Of the 64 genes, 16 showed high connectivity (degree≥12) by protein–protein interaction (PPI) network analysis and were considered as potential core candidate genes (PCCGs).  To further look for key candidate genes from the PCCGs, firstly, the expression patterns of the 16 genes were examined in the hypothalamus of two indigenous breeds (LBS and Gushi (GS) chickens) between the pre-laying and peak-laying stages using quantitative real-time PCR (qRT-PCR).  Eleven out of the 16 genes showed significantly differential expression (P<0.05) with the same changing trends in the two breeds.  Then, correlations between the expression levels of the above 11 genes and egg numbers and reproductive hormone concentrations in serum were investigated in high-yielding and low-yielding GS chickens.  Of the 11 genes, eight showed significant correlations (P<0.05) between their expression levels and egg numbers, and between expression levels and reproductive hormone concentration in serum.  Furthermore, an association study on single nucleotide polymorphisms (SNPs) identified in these eight genes and egg production traits was carried out in 640 GS hens, and a significant association (P<0.05) between the SNPs and egg numbers was confirmed.  In conclusion, the eight genes, including CNR1, AP2M1, NRXN1, ANXA5, PENK, SLC1A2, SNAP25 and TRH, were demonstrated as key genes regulating egg production in indigenous chickens, and the SNPs sites within the genes might be served as markers to provide a guide for indigenous chicken breeding.  These findings provide a novel insight for further understanding the regulatory mechanisms of egg-laying performance and developing molecular markers to improve egg production of indigenous breeds.
Reference | Related Articles | Metrics
Study on PCR rapid molecular detection technique of Meloidogyne vitis
YANG Yan-mei, LIU Pei, LI Hong-mei, PENG Huan, DU Xia, DONG Ye, HU Xian-qi
2022, 21 (11): 3408-3416.   DOI: 10.1016/j.jia.2022.08.100
Abstract235)      PDF in ScienceDirect      
Meloidogyne vitis is a new root-knot nematode parasitic on grape root in Yunnan Province, China.  In order to establish a rapid, reliable and specific molecular detection method for Mvitis, the species-specific primers were designed with rDNA-ITS (ribosomal DNA internal transcribed spacer) gene fragment as the target.  The reaction system was optimized and the reliability, specificity and sensitivity of primer were testified, therefore, a rapid PCR detection method for Mvitis was established.  The result showed that the optimal annealing temperature of the primers was 53°C, which was suitable for the detection of different life stages of Mvitis.  Specificity test showed that the specific fragment size of 174 bp was obtained from Mvitis, but other five non-target nematodes did not have any amplification bands, thus effectively distinguish Mvitis and the other five species, and could specifically detect the Mvitis from mixed populations.  Sensitivity test showed that this PCR technique could detect the DNA of a single second-stage juvenile (J2) and 10–4 female.  Futhermore, this PCR technique could be used to detect directly M. vitis from soil samples.  The rapid, sensitive and specific PCR molecular detection technique could be used for the direct identification of a single J2 of Mvitis and the detection of Mvitis in mixed nematode populations and the detection of two J2s or one male in 0.5 g soil samples, which will provide technical support for the investigation of the occurrence and damage of Mvitis and the formulation of efficient green control strategies.



Reference | Related Articles | Metrics
The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize
SHAO Rui-xin, YU Kang-ke, LI Hong-wei, JIA Shuang-jie, YANG Qing-hua, ZHAO Xia, ZHAO Ya-li, LIU Tian-xu
2021, 20 (7): 1783-1795.   DOI: 10.1016/S2095-3119(20)63304-4
Abstract118)      PDF in ScienceDirect      
Compared to other crops, maize production demands relatively high temperatures. However, temperatures exceeding 35°C lead to adverse effects on maize yield.  High temperatures (≥35°C) are consistently experienced by summer maize during its reproductive growth stage in the North China Plain, which is likely to cause irreversible crop damage.  This study investigated the effects of elevating temperature (ET) treatment on the yield component of summer maize, beginning at the 9th unfolding leaf stage and ending at the tasseling stage.  Results demonstrated that continuous ET led to a decrease in the elongation rate and activity of silks and an elongated interval between anthesis and silking stages, and eventually decreased grain number at ear tip and reduced yield.  Although continuous ET before tasseling damaged the anther structure, reduced pollen activity, delayed the start of the pollen shedding stage, and shortened the pollen shedding time, it was inferred, based on phenotypical and physiological traits, that continuous ET after the 9th unfolding leaf stage influenced ears and therefore may have more significant impacts.  Overall, when maize plants were exposed to ET treatment in the ear reproductive development stage, the growth of ears and tassels was blocked, which increased the occurrence of barren ear tips and led to large yield losses.
Reference | Related Articles | Metrics
Spore production in the solid-state fermentation of stevia residue by Trichoderma guizhouense and its effects on corn growth
LIU Hong-jun, DUAN Wan-dong, LIU Chao, MENG Ling-xue, LI Hong-xu, LI Rong, SHEN Qi-rong
2021, 20 (5): 1147-1156.   DOI: 10.1016/S2095-3119(20)63478-5
Abstract124)      PDF in ScienceDirect      
Trichoderma is an important and widely used plant growth-promoting fungus (PGPF).  In this study, stevia residue amended with amino acids hydrolyzed from animal carcasses was used for the production of Trichoderma guizhouense NJAU 4742 by solid-state fermentation, and then its potential to promote corn plant growth was evaluated in combination with chemical fertilizer (CF) or organic fertilizer (OF).  The highest spore number of 7×109 CFU g–1 fresh weight was obtained under the following optimal parameters: material ratio of 50% (stevia residue:rice bran=1:1), pH value of 3.0 (amended with 6.67% amino acids), initial moisture content of 60%, inoculum size of 10%, material thickness of 3 cm and an incubation time of 4 days.  The aboveground corn plant biomass obtained with T. guizhouense applied alone and with CF treatments were slightly higher than those of no fertilizer control and CF treatments, respectively.  However, T. guizhouense applied with OF significantly (P<0.05) increased aboveground biomass compared to OF and yielded the highest aboveground biomass among all the treatments.  Moreover, T. guizhouense applications primarily in?uenced the fungal bulk soil community composition, among which three OTUs (OTU_2 and OTU_9 classified as Chaetomium, and OTU_4 classified as Trichoderma) were stimulated in both bulk and rhizosphere soil.  Notably, a specific OTU_3 (Phymatotrichopsis) was only stimulated by T. guizhouense applied with OF, possibly leading to high soil productivity.  These results show that it is feasible to employ stevia residue in the eco-friendly fermentation of T. guizhouense, which is strongly suggested for enhancing OF applications.
 
Reference | Related Articles | Metrics
Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields
GUO Xiao-hong*, LAN Yu-chen*, XU Ling-qi, YIN Da-wei, LI Hong-yu, QIAN Yong-de, ZHENG Gui-ping, LÜ Yan-dong
2021, 20 (2): 540-553.   DOI: 10.1016/S2095-3119(20)63479-7
Abstract137)      PDF in ScienceDirect      
Soil salinity and alkalinity can inhibit crop growth and reduce yield, and this has become a global environmental concern. Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment. We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation, translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields. Five N application rates (0 (control), 90, 120, 150, and 180 kg N ha−1 (N0–N4), respectively) and three hill densities (achieved by altering the distance between hills, in rows spaced 30 cm apart: 16.5 cm (D1), 13.3 cm (D2) and 10 cm (D3)) were utilized in a split-plot design with three replicates. Nitrogen application rate and hill density significantly affected grain yield. The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha−1, the highest yield was obtained at 142.61 kg N ha−1 which matched with a planting density of 33.3×104 ha−1. Higher grain yield was mainly attributed to the increase in panicles m–2. Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity. From full heading to maturity, the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3. This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment. Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha−1) were 81.68 and 106.07% higher in 2018 and 2019, respectively, than those in the control. The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density, whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density. Agronomic N-use efficiency decreased with an increase in N application rate, whereas hill density did not significantly affect it. Nitrogen productivity of dry matter and grain, and agronomic N-use efficiency, were negatively correlated with grain yield. Thus, rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation. Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.
Reference | Related Articles | Metrics
Horizontal gene transfer of a syp homolog contributes to the virulence of Burkholderia glumae
WANG Sai, WANG Pei-hong, NIE Wen-han, CUI Zhou-qi, LI Hong-yu, WU Yan, Ayizekeranmu YIMING, FU Luo-yi, Iftikhar AHMAD, CHEN Gong-you, ZHU Bo
2021, 20 (12): 3222-3229.   DOI: 10.1016/S2095-3119(20)63553-5
Abstract176)      PDF in ScienceDirect      
Horizontal gene transfer (HGT) has been proved a major driving force in prokaryotic evolution.  However, the molecular functions of these transferred genes in pathogenic bacteria especially plant pathogenic bacteria are still not fully investigated.  In this study, the whole-genome in silico analysis was performed and found a syringopeptin synthetase (syp) homolog in Burkholderia glumae, which can cause bacterial panicle blight in rice, was predicted to be horizontally transferred from Pseudomonas ancestor with solid confidence by phylogenetic analysis.  The comprehensive molecular experiments were performed to study the potential role of this gene in B. glumae.  Inoculation of rice panicles with the syp mutant resulted in 60% lower disease index compared with the wild type (WT) parent strain, suggesting the requirement of syp for the full virulence of B. glumae.  Chromatography analysis of exudates from B. glumae showed suppression of synthesis of metabolites analogous to syringopeptin in the mutants.  All these data raise the possibility of HGT phenomenon in shaping the virulence and adaptation of B. glumae over evolutionary time.
 
Reference | Related Articles | Metrics
Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)
QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan
2020, 19 (7): 1704-1720.   DOI: 10.1016/S2095-3119(19)62761-9
Abstract193)      PDF in ScienceDirect      
The Sugars Will Eventually be Exported Transporter (SWEET) gene family, identified as sugar transporters, has been demonstrated to play key roles in phloem loading, grain filling, pollen nutrition, and plant-pathogen interactions.  To date, the study of SWEET genes in response to abiotic stress is very limited.  In this study, we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.  We identified a total of 105 wheat SWEET genes, and phylogenic analysis revealed that they fall into five clades, with clade V specific to wheat and its closely related species.  Of the 105 wheat SWEET genes, 59% exhibited significant expression changes after stress treatments, including drought, heat, heat combined with drought, and salt stresses, and more up-regulated genes were found in response to drought and salt stresses.  Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.  Moreover, different phylogenetic clades also showed distinct response to abiotic stress treatments.  Finally, we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.  The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.  The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments.
Reference | Related Articles | Metrics
Strategies for timing nitrogen fertilization of pear trees based on the distribution, storage, and remobilization of 15N from seasonal application of (15N H4)2SO4
JIANG Hai-bo, LI Hong-xu, ZHAO Ming-xin, MEI Xin-lan, KANG Ya-long, DONG Cai-xia, XU Yang-chun
2020, 19 (5): 1340-1353.   DOI: 10.1016/S2095-3119(19)62758-9
Abstract130)      PDF in ScienceDirect      
In order to improve the management of nitrogen (N) fertilization in pear orchards, we investigated the effects of application timing on the distribution, storage, and remobilization of N in mature pear trees in a field experiment at Jingtai County, Gansu Province, China.  Nine trees were selected for the experiment and each received equal aliquots of 83.33 g N in the autumn, spring, and summer, with 15N-labeled (NH4)2SO4 used in one of the aliquots each season.  Results showed that the (15NH4)2SO4 applied in the autumn remained in the soil during the winter.  In the following spring this N was absorbed and rapidly remobilized into each organ, especially new organs (leaves, fruit and new shoots).  The 15N supplied in spring was rapidly transported to developing fruit between the young fruit and fruit enlargement stages.  15N from the summer application of fertilizer was mainly stored in the coarse roots over the winter, then was mobilized to support growth of new organs in spring.  In conclusion, for pear trees we recommend that the autumn application of N-fertilizer be soon after fruit harvest in order to increase N stores in fine roots.  Spring application should be between full bloom and the young fruit stages to meet the high N demands of developing fruit.  Summer application of fertilizer at the fruit enlargement stage does not contemporaneously affect the growth of pears, but increases the N stored in coarse roots, and in turn the amount available for remobilization in spring.
 
Reference | Related Articles | Metrics
Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26
QU Yun-feng, WU Pei-pei, HU Jing-huang, CHEN Yong-xing, SHI Zhan-liang, QIU Dan, LI Ya-hui, ZHANG Hong-jun, ZHOU Yang, YANG Li, LIU Hong-wei, ZHU Tong-quan, LIU Zhi-yong, ZHANG Yan-ming, LI Hong-jie
2020, 19 (4): 931-940.   DOI: 10.1016/S2095-3119(19)62644-4
Abstract122)      PDF in ScienceDirect      
Resistance to powdery mildew is an important trait of interest in many wheat breeding programs.  The information on genes conferring resistance to powdery mildew in wheat cultivars is useful in parental selection.  Winter wheat breeding line DH51302 derived from Liangxing 99 and cultivar Shimai 26 derived from Jimai 22 showed identical infection patterns against 13 isolates of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew.  DH51302 and Shimai 26 were crossed to a powdery mildew susceptible cultivar Zhongzuo 9504 and the F2:3 families were used in molecular localization of the resistance genes.  Fourteen polymorphic markers, which were linked to Pm52 from Liangxing 99, were used to establish the genetic linkage maps for the resistance genes PmDH51302 and PmSM26 in DH51302 and Shimai 26, respectively.  These genes were placed in the same genetic interval where Pm52 resides.  Analysis of gene-linked molecular markers indicated that PmDH51302 and PmSM26 differed from other powdery mildew resistance genes on chromosome arm 2BL, such as Pm6, Pm33, Pm51, MlZec1, MlAB10, and Pm64.  Based on the results of reaction patterns to different Bgt isolates and molecular marker localization, together with the pedigree information, DH51302 and Shimai 26 carried the same gene, Pm52, which confers their resistance to powdery mildew.
 
Reference | Related Articles | Metrics
Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964
ZHANG Hong-jun, LI Teng, LIU Hong-wei, MAI Chun-yan, YU Guang-jun, LI Hui-li, YU Li-qiang, MENG Ling-zhi, JIAN Da-wei, YANG Li, LI Hong-jie, ZHOU Yang
2020, 19 (2): 438-448.   DOI: 10.1016/S2095-3119(19)62627-4
Abstract144)           
Analysis of genetic progress for lodging-related traits provides important information for further improvement of lodging resistance.  Forty winter wheat cultivars widely grown in the Yellow-Huai River Valleys Winter Wheat Zone (YHWZ) of China during the period of 1964–2015 were evaluated for several lodging-related traits in three cropping seasons.  Plant height, height at center of gravity, length of the basal second internode, and lodging index decreased significantly in this period, and the average annual genetic gains for these traits were –0.50 cm or –0.62%, –0.27 cm or –0.60%, –0.06 cm or –0.63%, and –0.01 or –0.94%, respectively.  Different from other traits, stem strength showed a significant increasing trend with the breeding period, and the annual genetic gains were 0.03 N or 0.05%.  Correlation analysis showed that lodging index was positively correlated with plant height, height at center of gravity, and length of the basal second internode, but negatively correlated with stem strength.  Meanwhile, significantly positive correlations were observed between plant height, height at center of gravity, and length of the basal first and second internodes.  By comparison with the wild types, dwarfing genes had significant effects on all lodging-related traits studied except for length of the basal first internode and stem strength.  Principle component analysis demonstrated that plant height and stem strength were the most important factors influencing lodging resistance.  Clustering analysis based on the first two principle components further indicated the targets of wheat lodging-resistant breeding have changed from reducing plant height to strengthening stem strength over the breeding periods.  This study indicates that the increase of stem strength is vital to improve lodging resistance in this region under the high-yielding condition when plant height is in an optimal range.
 
Reference | Related Articles | Metrics
Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China
ZHANG Hang, YANG Feng, LI Xin-pu, LUO Jin-yin, WANG Ling, ZHOU Yu-long, YAN Yong, WANG Xu-rong, LI Hong-sheng
2020, 19 (11): 2784-2791.   DOI: 10.1016/S2095-3119(20)63185-9
Abstract118)      PDF in ScienceDirect      
The objectives of this study were to investigate antimicrobial resistance of Streptococcus uberis and Streptococcus parauberis isolated from cows with bovine clinical mastitis in China and to examine the distribution of resistance- and virulence-related gene patterns.  Antimicrobial susceptibility was determined by the E-test.  Genes encoding antimicrobial resistance and invasiveness factors were examined by PCR.  A total of 27 strains were obtained from 326 mastitis milk samples.  Streptococcus parauberis isolates (n=11) showed high resistance to erythromycin (90.9%), followed by tetracycline (45.5%), chloramphenicol (36.4%) and clindamycin (27.3%).  Streptococcus uberis isolates (n=16) were highly resistant to tetracycline (81.3%) and clindamycin (62.5%).  Both species were susceptible to ampicillin.  The most prevalent resistance gene in S. uberis was tetM (80.0%), followed by blaZ (62.5%) and ermB (62.5%).  However, tetM, blaZ, and ermB genes were only found in 27.3, 45.5, and 27.3%, respectively, of S. parauberis.  In addition, all of the isolates carried at least one selected virulence-related gene.  The most prevalent virulence-associated gene pattern in the current study was sua+pauA/skc+gapC+hasC detected in 22.2% of the strains.  One S. uberis strain carried 7 virulence-associated genes and belonged to the sua+pauA/skc+gapC+cfu+hasA+hasB+hasC pattern.  More than 59.3% of analysed strains carried 4 to 7 virulence-related genes.  Our findings demonstrated that S. parauberis and S. uberis isolated from clinical bovine mastitis cases in China exhibited diverse molecular ecology, and that the strains were highly resistant to antibiotics commonly used in the dairy cow industry.  The data obtained in the current study contribute to a better understanding of the pathogenesis of bacteria in mastitis caused by these pathogens, and the findings are relevant to the development of multivalent vaccines and targeted prevention procedures.
Reference | Related Articles | Metrics
Host status of Brachypodium distachyon to the cereal cyst nematode
CHEN Chang-long, LIU Shu-sen, LIU Qian, NIU Jun-hai, LIU Pei, ZHAO Jian-long, LIU Zhi-yong, LI Hong-jie, JIAN Heng
2018, 17 (2): 381-388.   DOI: 10.1016/S2095-3119(17)61745-3
Abstract726)      PDF in ScienceDirect      
Cereal cyst nematode (Heterodera avenae, CCN) distributes worldwide and has caused severe damage to cereal crops, and a model host will greatly aid in the study of this nematode.  In this research, we assessed the sensitivity of 25 inbred lines of Brachypodium distachyon to H. avenae from Beijing, China.  All lines of B. distachyon were infested by second-stage juveniles (J2s) of H. avenae from Daxing District of Beijing population, but only 13 inbred lines reproduced 0.2–3 cysts/plant, showing resistance.  The entire root system of the infested B. distachyon appeared smaller and the fibrous roots were shorter and less numerous.  We found that a dose of 1 000 J2s of H. avenae was sufficient for nematode infestation.  We showed that Koz-1 of B. distachyon could reproduce more cysts than TR2A line.  Line Koz-1 also supported the complete life cycles of 5 CCN geographical populations belonging to the Ha1 or Ha3 pathotype group.  Our results suggest that B. distachyon is a host for CCN.
Reference | Related Articles | Metrics
Effects of plastic mulching film-induced leaf burning on seedling growth in tobacco cultivation: Different findings beyond conservation view
LIN Ying-chao, WEI Ke-su, GAO Wei-chang, CHEN Yi, LIN Ye-chun, CHEN Wei, LI Hong-xun, PAN Wen-jie
2018, 17 (06): 1327-1337.   DOI: 10.1016/S2095-3119(17)61871-9
Abstract461)      PDF in ScienceDirect      
Solving high-temperature plastic mulching film-induced leaf burning in the first week during tobacco cultivation would take much time and effort.  In the present study, the growth as well as the leaf sugar and nicotine contents of seedlings with or without leaf burning induced by high-temperature plastic mulching film were tested at two independent sites in 2015 and 2016 to identify the influence of leaf burning on seedling growth.  The results showed that the growth of seedlings with leaf burning was improved with increased leaf area, leaf number and plant height compared to those without leaf burning, combined with an increased seedling survival rate at two sites in two years.  In seedlings with leaf burning, the contents of fructose and glucose increased and peaked at 11:00 and 13:00 in the leaf and root, respectively, with an increased root nicotine content beginning at 13:00, highlighting the signalling role of sugars.  Activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were all increased in seedlings with leaf burning.  More plant biomass was allocated to roots in seedlings with leaf burning with increased root volume compared to control seedlings, which might facilitate the absorption of water and nutrients from the soil.  Our findings demonstrate that high-temperature plastic mulching film-induced leaf burning not inhibited but benefited seedling survival and growth, suggesting that the time and labour-consuming manual plucking of burnt leaves can be avoided during tobacco cultivation.
Reference | Related Articles | Metrics
Prevalence and characteristics of extended spectrum β-lactamaseproducing Escherichia coli from bovine mastitis cases in China
YANG Feng, ZHANG Shi-dong, SHANG Xiao-fei, WANG Xu-rong, WANG Ling, YAN Zuo-ting, LI Hong-sheng
2018, 17 (06): 1246-1251.   DOI: 10.1016/S2095-3119(17)61830-6
Abstract524)      PDF in ScienceDirect      
The aim of the study was to investigate the prevalence and characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis cases in China.  ChromID ESBL agar was used to confirm ESBL-producing E. coli.  PCR and DNA sequencing were employed to characterize the genotype of ESBL-producers.  Antimicrobial susceptibility was measured by disc diffusion.  Overall, 73 of 318 E. coli isolates (22.96%) were identified as ESBL-producers.  Of these ESBL-producing E. coli, the prevalence of blaCTX-M and blaTEM-1 was 97.26 and 71.23%, respectively.  The predominant CTX-M-type ESBL was CTX-M-15 (65.75%), followed by CTX-M-14 (10.96%), CTX-M-55 (9.59%), CTX-M-64 (5.48%), CTX-M-65 (4.11%) and CTX-M-3 (1.37%).  This study is the first report of CTX-M-64 and CTX-M-65 in E. coli isolated from bovine mastitis.  Furthermore, 72 ESBL-producing E. coli isolates (98.63%) were found to be multidrug-resistance.  This study noted high prevalence and rates of antimicrobial resistance of ESBL-producing E. coli isolates from bovine mastitis cases in China.
Reference | Related Articles | Metrics
Identification of salinity-related genes in ENO2 mutant (eno2) of Arabidopsis thaliana
ZHANG Yong-hua, CHEN Chao, SHI Zi-han, CHENG Hui-mei, BING Jie, MA Xiao-feng, ZHENG Chao-xing, LI Hong-jie, ZHANG Gen-fa
2018, 17 (01): 94-110.   DOI: 10.1016/S2095-3119(17)61720-9
Abstract668)      PDF in ScienceDirect      
Abiotic stress poses a great threat to plant growth and can lead to huge losses in yield.  Gene enolase2 (ENO2) is important in resistance to abiotic stress in various organisms.  ENO2 T-DNA insertion mutant (eno2) plants of Arabidopsis thaliana showed complete susceptibility to sodium chloride treatment when were analyzed either as whole plants or by measuring root growth during NaCl treatment.  Quantitative real-time RT-PCR (RT-qPCR) was performed to investigate the expression profile of ENO2 in response to NaCl stress in Arabidopsis.  The transcript level of ENO2 was rapidly elevated in 300 mmol L–1 NaCl treatment.  ENO2 also responded to 300 mmol L–1 NaCl treatment at the protein level.  To illuminate the mechanism underlying ENO2 resistance to salt at the transcriptional level, we studied the wild-type and eno2 Arabidopsis lines that were treated with 300 mmol L–1 NaCl for 18 h using 454 GS FLX, which resulted in an expressed sequence tag (EST) dataset.  A total of 961 up-regulated and 746 down-regulated differentially expressed genes (DEGs) were identified in the pairwise comparison WT-18 h:eno2-18 h.  The DEGs were identified and functionally annotated using the databases of Gene Ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG).  The identified unigenes were subjected to GO analysis to determine biological, molecular, and cellular functions.  The biological process was enriched in a total of 20 GO terms, the cellular component was enriched in 13 GO terms, and the molecular function was enriched in 11 GO terms.  Using KEGG mapping, DEGs with pathway annotations contributed to 115 pathways.  The top 3 pathways based on a statistical analysis were biosynthesis of the secondary metabolites (KO01110), plant-pathogen interactions (KO04626), and plant hormone signal transduction (KO04075).  Based on these results, ENO2 contributes to increased resistance to abiotic stress.  In particular, ENO2 is involved in some of the metabolic stress response pathways in Arabidopsis.  Our work also demonstrates that this EST dataset will be a powerful resource for further studies of ENO2, such as functional analyses, investigations of biological roles, and molecular breeding.  Additionally, 3-phosphoglycerate kinase (PGK), 3-phosphoglycerate kinase 1 (PGK1), triosephosphate isomerase (TPI), and pyruvate kinase (PK) in glycolysis interactions with ENO2 were verified using the yeast two-hybrid experiment, and ENO2 may regulate the expression of PGK, PGK1, TPI, and PK.  Taken together, the results from this study reflects that ENO2 gene has an important role in the response to the high salt stress.
Reference | Related Articles | Metrics
FpPDE1 function of Fsarium pseudograminearum on pathogenesis in wheat
WANG Li-min, ZHANG Yi-fan, DU Zhen-lin, Kang Rui-jiao, CHEN Lin-lin, XING Xiao-ping, YUAN Hong-xia, Ding Sheng-li, LI Hong-lian
2017, 16 (11): 2504-2512.   DOI: 10.1016/S2095-3119(17)61689-7
Abstract668)      PDF in ScienceDirect      
Wheat crown rot caused by Fusarium spp. is a common disease worldwide.  Both Fusarium pseudograminearum and Fusarium graminearum infect wheat crown and produce mycotoxin leading to grain loss due to white head.  F. pseudograminearum (Fp) was reported in wheat from Henan Province of China a couple of years ago.  The wheat crown rot (CR) caused by this new pathogen is as an emerging severe disease of wheat, which has recently expanded to several provinces in China and is, therefore, under rapid investigation.  Colonization of wheat tissue by Fp is accomplished though the formation of a septated foot-shaped appressoria and generation of a penetration peg to break through the internal cells of leaf sheath.  The molecular mechanism by which Fp regulates the pathogenesis on wheat host is unclear.  Here, we report FpPDE1, a P-type ATPase-encoding predicted PDE1 orthologue gene of Magnaporthe oryzae, belonging to the DRS2 subfamily of aminophospholipid translocases.  The gene deletion of FpPDE1 with the split-marker approach did not obviously affect hyphae growth and conidiation, but led to an attenuated virulence on wheat base stem and root.  Our finding indicates that the putative aminophospholipid translocases is not essential for the infectious hyphae development in Fp.  
Reference | Related Articles | Metrics
Penicillin-resistant characterization of Staphylococcus aureus isolated from bovine mastitis in Gansu, China
YANG Feng, LIU Long-hai, WANG Ling, WANG Xu-rong, LI Xin-pu, LUO Jin-yin, ZHANG Zhe, ZHANG Shi-dong, YAN Zuo-ting, LI Hong-sheng
2017, 16 (08): 1874-1878.   DOI: 10.1016/S2095-3119(16)61531-9
Abstract1414)      PDF in ScienceDirect      
    Bovine mastitis caused by Staphylococcus aureus is difficult to treat because of increasing resistance against antibiotics, especially penicillin. β-Lactamase and biofilm are responsible for penicillin resistance of S. aureus. The aim of this study was to investigate the β-lactamase activity and biofilm formation capacity of 37 penicillin-resistant S. aureus strains (35 were blaZ positive and 2 were blaZ negative) from bovine mastitis in Gansu Province, China, as well as to measure the intercellular adhesion genes icaA and icaD of these strains. β-Lactamase Test Kit was used to determine the β-lactamase activity, biofilm formation was tested by semi-quantitative adherence assay method. Moreover, the presence of icaA and icaD were measured by PCR. A total of 32 penicillin-resistant S. aureus strains, including the two blaZ-negative strains, were identified as β-lactamase producers. All tested S. aureus isolates produced biofilm in the microtiter plate assay. Meanwhile, all these strains were PCR-positive for the ica locus, icaA and icaD. The study indicated high prevalence of β-lactamase activity, biofilm-forming capacity, and the ica genes among the penicillin-resistant S. aureus isolates, and implied that S. aureus resistant to penicillin was attributed to multiple mechanisms.
Reference | Related Articles | Metrics
Farmer behavior and perceptions to alternative scenarios in a highly intensive agricultural region, south central China
LI Hong-qing, ZHENG Fei, ZHAO Yao-yang
2017, 16 (08): 1852-1864.   DOI: 10.1016/S2095-3119(16)61547-2
Abstract593)      PDF in ScienceDirect      
 Intensive agriculture has caused unintended environmental consequences, such as water quality degradation. It is necessary for policymakers to make proper planning of sustainable agricultural development. Using a Pressure-State-Response (PSR) framework, we conducted surveys focused on farmer behavior toward agriculture and environmental protection in 2009 and 2011. The surveys indicated that farmer behavior was complex and contradictory, and caused some environmental effects. Therefore, we used normative landscape scenario method to develop two scenarios. Both scenarios emphasized on stable economic growth along with water quality improvement and presented good effects. A feedback survey was organized in 2013 to interpret farmers’ perceptions of the alternative scenarios. The results indicate Scenario I is likely to be accepted by farmers; however, the beautiful rural landscape in Scenario II represents what farmers want, and Scenario I or II can be achieved by changing farm behavior in the future. By logistic regression model analysis, increasing agriculture benefits and new technology popularization were key factors affecting farmer behavior. Relevant policy implications on farmers were proposed. This paper showed how important to understand farmer behavior and perceptions to agricultural development, and a description of the alternative scenarios and policy implications are meaningful for policymakers to manage nature resources.
Reference | Related Articles | Metrics
Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China
YANG Feng, WANG Qi, WANG Xu-rong, WANG Ling, LI Xin-pu, LUO Jin-yin, ZHANG Shi-dong, LI Hong-sheng
2016, 15 (12): 2842-2847.   DOI: 10.1016/S2095-3119(16)61368-0
Abstract1119)      PDF in ScienceDirect      
    Staphylococcus aureus is the most common etiological pathogen of bovine mastitis. The resistant strains make the disease difficult to cure. The aim of this study was to characterize the genetic nature of the antimicrobial resistance in S. aureus cultured from bovine mastitis in Northwest China in 2014. A total of 44 S. aureus were isolated for antimicrobial resistance and resistance-related genes. Antimicrobial resistance was determined by disc diffusion and the corresponding resistance genes were detected by PCR. Phenotype indicated that S. aureus isolates were resistant to penicillin (84.09%), erythromycin (20.45%), tetracycline (15.91%), gentamicin (9.09%), tobramycin (6.82%), kanamycin (6.82%) and methicillin (2.27%). 9.09% of the S. aureus isolates were classified as multidrug resistant. In addition, genotypes showed that the isolates were resistant to rifampicin (100%, rpoB), penicillin (95.45%, blaZ), tetracycline (22.73%, tetK, tetM, alone or in combination), erythromycin (22.73%, ermB or ermC), gentamicin/tobramycin/kanamycin (2.27%, aacA-aphD), methicillin (2.27%, mecA) and vancomycin (2.27%, vanA). Resistance to tetracycline was attributed to the genes tetK and tetM (r=0.558, P<0.001). This study noted high-level geno- and phenotypic antimicrobial resistance in S. aureus isolates from bovine mastitis cases in Northwest China.
Reference | Related Articles | Metrics
Effect of heat shock on the susceptibility of Frankliniella occidentalis (Thysanoptera: Thripidae) to insecticides
ZHANG Bin, ZUO Tai-qiang, LI Hong-gang, SUN Li-juan, WANG Si-fang, ZHENG Chang-ying, WAN Fang-hao
2016, 15 (10): 2309-2318.   DOI: 10.1016/S2095-3119(16)61431-4
Abstract1585)      PDF in ScienceDirect      
    Currently, insecticides are considered as the primary approach for controlling western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). However, the heavy use of insecticides resulted in high insect resistance and serious environmental pollution. Given its characteristics of ease of operation and environmental friendliness, insect control using high temperature is receiving considerable renewed research interest. However, although the combination of insecticides and high temperature to control F. occidentalis has been studied before, few studies have focused on the short-term effect of such treatment. In a laboratory study, F. occidentalis adults and second-instar nymphs were exposed to 45°C for 2 h. Then, their susceptibility to acetamiprid, spinosad, methomyl, and beta-cypermethrin was tested after different periods of recovery time (2–36 h). Additionally, the specific activity of three detoxification enzymes (esterase, glutathione S-transferase, and cytochrome p450 (CYP) monooxygenase) of the treated insects was determined. The results indicated that the fluctuation of susceptibility to insecticides and detoxification enzyme activity during F. occidentalis recovery from heat shock are related. Furthermore, several recovery time points (2, 30, and 36 h) of significant susceptibility to four tested insecticides compared with the control were found during the treatment of adults that were heat-shocked. Recovery time points of higher susceptibility compared with the control depended on different insecticides during the second-instar nymph recovery from heat shock. Interestingly, the fluctuation of CYP monooxygenase activity exhibited a trend that was similar to the fluctuation of susceptibility to insecticides (especially spinosad) during the recovery from heat shock of adults. In addition, the glutathione S-transferase and CYP monooxygenase activity trend was similar to the trend of susceptibility to spinosad during the recovery from heat shock of second-instar nymphs. Our results provide a new approach for controlling F. occidentalis using the combined heat shock and insecticide. This effectively enhances the control efficiency of heat shock and significantly reduces the application of insecticides
Reference | Related Articles | Metrics
Assessment of wheat variety distinctness using SSR markers
WANG Li-xin1, QIU Jun2, CHANG Li-fang3, LIU Li-hua1, LI Hong-bo1, PANG Bin-shuang1, ZHAO Chang-ping1
2015, 14 (10): 1923-1935.   DOI: 10.1016/S2095-3119(15)61057-7
Abstract1748)      PDF in ScienceDirect      
Assessment of variety distinctness is important for both the registration and the protection of particular variety. However, the current testing system, which assesses a range of morphological characters of each pair of varieties grown side-by-side, is time-consuming and is not suitable for the assessment of hundreds of samples. The objective of this study was to develop a procedure for the assessment of wheat variety distinctness using simple sequence repeat (SSR) markers. A comparison between the molecular and morphological profile of 797 varieties was made. On the basis of the comparison, pairs of varieties with a genetic similarity value (GSV) ≤90% were deemed to be distinct, accounting for ~85% of varieties assessed in wheat regional trials. For the remaining ~15% of varieties, GSVs between different varieties were >90%, among which ~35% were not distinct and the other ~65% were distinct. Therefore, if given a GSV>90%, the pairs of varieties should be morphologically assessed in the field. To avoid any errors in the assessments, we proposed the elimination of contaminant plants from the sample before comparing the varietal genotypes, scoring of the genotype at each locus with a pair of allele numbers when constructing a molecular profile, and faithfully recording two alleles at a non-homozygous locus. To reduce the workload and cost, a three-grade markers comparison among varieties is suggested. In addition, 80 SSR markers and a technical procedure for assessment of wheat variety distinctness have been proposed. Based on the procedure, the distinctness assessment of ~85% of all wheat varieties is completed in our laboratory annually. Consequently, total field assessment has been reduced considerably.
Reference | Related Articles | Metrics
Pathotypes and Genetic Diversity of Chinese Collections of Elsinoë fawcettii Causing Citrus Scab
HOU Xin, HUANG Feng, ZHANG Tian-yuan, XU Jian-guo, Hyde D Kevin , LI Hong-ye
2014, 13 (6): 1293-1302.   DOI: 10.1016/S2095-3119(13)60522-5
Abstract2316)      PDF in ScienceDirect      
Two scab diseases are currently recognized on citrus: citrus scab, caused by Elsinoë fawcettii, and sweet orange scab, caused by E. australis. Although these pathogens are economically important, there is no molecular data on these species in China. Here we use internal transcribed spacer sequence data to report on host-specificity and genetic relationships among 46 isolates collected from the main citrus varieties grown across China. All strains isolated were E. fawcettii. Based on pathogenicity testing on 9 different citrus species, isolates were divided into 11 pathotypes (SM, FBHR, SJCR, SPOJCR, SR, SOJG, SPOJC, SRGC, Lemon and two unnamed pathotypes). SM is a new pathotype, and two isolates did not fit into any of the known pathotypes of E. fawcettii. Inter-simple sequence repeat (ISSR-PCR) assays separated the E. fawcettii isolates into 10 subgroups; the groupings basically corresponded to the pathogenicity test.
Reference | Related Articles | Metrics
Proteomics Identification of Differentially Expressed Leaf Proteins in Response to Setosphaeria turcica Infection in Resistant Maize
ZHANG Xiao-li, SI Bing-wen, FAN Cheng-ming, LI Hong-jie , WANG Xiao-ming
2014, 13 (4): 789-803.   DOI: 10.1016/S2095-3119(13)60513-4
Abstract2221)      PDF in ScienceDirect      
Northern corn leaf blight (NCLB), caused by the heterothallic ascomycete fungus Setosphaeria turcica, is a destructive foliar disease of maize and represents a serious threat to maize production worldwide. A comparative proteomic study was conducted to explore the molecular mechanisms underlying the defense responses of the maize resistant line A619 Ht2 to S. turcica race 13. Leaf proteins were extracted from mock and S. turcica-infected leaves after inoculated for 72 h and analyzed for differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry identification. 137 proteins showed reproducible differences in abundance by more than 2-fold at least, including 50 up-regulated proteins and 87 down-regulated proteins. 48 protein spots were successfully identified by MS analysis, which included 10 unique, 6 up-regulated, 20 down-regulated and 12 disappeared protein spots. These identified proteins were classified into 9 functional groups and involved in multiple functions, particularly in energy metabolism (46%), protein destination and storage (12%), and disease defense (18%). Some defense-related proteins were upregulated such as β-glucosidase, SOD, polyamines oxidase, HSC 70 and PPIases; while the expressions of photosynthesis- and metabolism-related proteins were down-regulated, by inoculation with S. turcica. The results indicated that a complex regulatory network was functioned in interaction between the resistant line A619 Ht2 and S. turcica. The resistance processes of A619 Ht2 mainly resided on directly releasing defense proteins, modulation of primary metabolism, affecting photosyntesis and carbohydrate metabolism.
Reference | Related Articles | Metrics
The Effects of Three Mineral Nitrogen Sources and Zinc on Maize and Wheat Straw Decomposition and Soil Organic Carbon
Ogunniyi Jumoke Esther, GUO Chun-hui, TIAN Xiao-hong, LI Hong-yun, ZHOU Yang-xue
2014, 13 (12): 2768-2777.   DOI: 10.1016/S2095-3119(13)60679-6
Abstract1157)      PDF in ScienceDirect      
The incorporation of straw in cultivated fields can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows: maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ; MS, MSZ, WS, WSZ; MC, MCZ, WC, WCZ, respectively); straw with zinc only (MZ, WZ); straw with untreated soil (MS, WS); and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80% of the field capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were significantly different (P<0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations.
Reference | Related Articles | Metrics
Differential Proteomic Analysis of Carbon Ion Radiation in Sheep Sperm
HE Yu-xuan, LI Hong-yan, ZHANG Yong, HE Jian-hua, ZHANG Hong, ZHAO Xing-xu
2013, 12 (9): 1629-1637.   DOI: 10.1016/S2095-3119(13)60558-4
Abstract1683)      PDF in ScienceDirect      
This study is first to investigate proteomic changes in sheep sperm induced by carbon ion radiation using two-dimensional electrophoresis (2-DE) analysis in the project of breeding a new variety of sheep. Differential expression proteins were detected using the PDQuest 8.0 software after staining with Coomassie blue. Valid spots were then analyzed through liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 480 total protein spots displayed in 2-D gels, 6 specific protein spots were observed in sperm gels. A search against protein sequences in the National Center for Biotechnology Information databases (NCBI) indicated that differentially expressed proteins correspond to two proteins, identified to be enolase and transcription factor AP-2-alpha (TFAP-2α). The two proteins were up-regulated in the irradiated sperm. To the best of our knowledge, this study is the first to identify proteomic changes induced by carbon ion radiation in sheep sperm. The analysis of differential expression protein may be useful in identifying new breeding markers in sheep reproduction and in clarifying the mechanisms involved in irradiation or space breeding.
Reference | Related Articles | Metrics
Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture
QIU Guo-yu, LI Hong-yong, ZHANG Qing-tao, CHEN Wan, LIANG Xiao-jian , LI Xiang-ze
2013, 12 (8): 1307-1315.   DOI: 10.1016/S2095-3119(13)60543-2
Abstract1995)      PDF in ScienceDirect      
The temperature difference between an urban space and surrounding non-urban space is called the urban heat island effect (UHI). Global terrestrial evapotranspiration (ET) can consume 1.4803×1023 joules (J) of energy annually, which is about 21.74% of the total available solar energy at the top of atmosphere, whereas annual human energy use is 4.935×1020 J, about 0.33% of annual ET energy consumption. Vegetation ET has great potential to reduce urban and global temperatures. Our literature review suggests that vegetation and urban agricultural ET can reduce urban temperatures by 0.5 to 4.0°C. Green roofs (including urban agriculture) and water bodies have also been shown to be effective ways of reducing urban temperatures. The cooling effects on the ambient temperature and the roof surface temperature can be 0.24-4.0°C and 0.8-60.0°C, respectively. The temperature of a water body (including urban aquaculture) can be lower than the temperature of the surrounding built environment by between 2 and 6°C, and a water body with a 16 m2 surface area can cool up to 2 826 m3 of nearby space by 1°C. Based on these findings, it can be concluded that the increase of evapotranspiration in cities, derived from vegetation, urban agriculture, and water body, can effectively mitigate the effect of urban heat islands.
Reference | Related Articles | Metrics
Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures
LU Yun-feng, LI Hong-wei, WU Ke-liang, WU Chang-xin
2013, 12 (7): 1225-1233.   DOI: 10.1016/S2095-3119(13)60439-6
Abstract1506)      PDF in ScienceDirect      
Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity in a closed conserved population. Our study suggested that current managements of conserved populations should emphasize on initial genetic architecture in order to make an effective and feasible conservation scheme.
Reference | Related Articles | Metrics
Microbial Community in the Forestomachs of Alpacas (Lama pacos) and Sheep (Ovis aries)
PEI Cai-xia, LIU Qiang, DONG Chang-sheng, LI Hong-quan, JIANG Jun-bing , GAO Wen-jun
2013, 12 (2): 314-318.   DOI: 10.1016/S2095-3119(13)60230-0
Abstract1540)      PDF in ScienceDirect      
Four 2-yr old alpacas ((48±2.3) kg) and four 2-yr old sheep ((50±1.7) kg) were used to study the pH and microbial community of forestomach from alpacas (Lama pacos) and sheep (Ovis aries) fed fresh alfalfa as the sole forage at low altitude (793 m). The forestomach fluid was taken anaerobically via the esophagus. The electric pH meter and quantitative polymerase chain reaction systems were used to study the the pH and microbial community of forestomach. The results showed that the mean pH of forestomach fluid from alpacas was higher than that from sheep (P<0.01). The percentages of methanogens and Ruminococcus flavefaciens to total bacterial were lower in the forestomach of alpacas than that in the rumen of sheep, while the percentage of fungi and Fibrobacter succinogenes were higher. The percentage of protozoa was similar in the forestomach of alpacas and sheep. These differences can partly explain the reason that alpacas were lower methane production than sheep.
Reference | Related Articles | Metrics
Seed Zone Properties and Crop Performance as Affected by Three No-Till Seeders for Permanent Raised Beds in Arid Northwest China
HE Jin, LI Hong-wen, Allen David McHugh, WANG Qing-jie, LI Hui, Rabi Gautam Rasaily, Khokan Kumer Sarker
2012, 12 (10): 1654-1664.   DOI: 10.1016/S1671-2927(00)8698
Abstract1606)      PDF in ScienceDirect      
The no-till seeders of various soil opener configurations have been shown to produce various soil physical responses in relation to soil and climate conditions, thus affecting crop performance in permanent raised beds (PRB) systems. This is particularly important in arid Northwest China where large volumes of residue are retained on the soil surface after harvest. In Zhangye, Gansu Province, China, a field trial assessed the effects of three typical (powered-chopper, powered-cutter and powered-disc) PRB no-till seeders and one traditional seeder on soil disturbance, residue cover index, bulk density, fuel consumption, plant growth, and subsequent yield. In general, seedbed conditions and crop performance for PRB notill seeders seeded plots were better than for traditional seeded plots. In PRB cropping system, the powered-chopper seeder decreased mean soil disturbance and increased residue cover index compared to powered-disc and -cutter seeders. However, the results indicated that soil bulk density was 2.3-4.8% higher, soil temperature was 0.2-0.6°C lower, and spring wheat emergence was 3.2-4.7% less. This was attributed to greater levels of residue cover and firmer seedbeds. Spring maize and wheat performance in the powered-cutter and -disc treatments was better (non-significant) than poweredchopper treatment. So powered disc no-till seeder, which generally provided the best planting condition and the highest yield, appeared to be the suitable seeder in heavy residue cover conditions. Considering the precision requirements for soil disturbance and residue cover, the powered strip-chopping no-till seeder could be a suitable option for PRB cropping system in Northwest China. Although these results are preliminary, they are still valuable for the design and selection of no-till seeders for PRB cropping systems in arid Northwest China.
Reference | Related Articles | Metrics
Generation and Immunogenicity of a Recombinant Adenovirus Co-Expressing the E2 Protein of Classical Swine Fever Virus and the GP5 Protein of Porcine Reproduction and Respiratory Syndrome Virus 
LI Hong-yu, SUN Yuan, ZHANG Xing-juan, CHANG Tian-ming, WANG Xiang-peng, HE Fan, HUANG Junhua , QIU Hua-ji
2011, 10 (11): 1781-1791.   DOI: 10.1016/S1671-2927(11)60178-8
Abstract1911)      PDF in ScienceDirect      
Classical swine fever (CSF) and porcine reproduction and respiratory syndrome (PRRS) are both economically important, highly contagious diseases of swine worldwide. To develop an effective vaccine to control these two diseases, we constructed a recombinant adenovirus rAdV-GP52AE2, using a replication-defective human adenovirus serotype 5 as a delivery vector, to co-express the GP5 protein of highly pathogenic porcine reproduction and respiratory syndrome virus (PRRSV) and the E2 protein of classical swine fever virus (CSFV). Foot-and-mouth disease virus (FMDV) 2A peptide was used as a linker between the GP5 and E2 proteins to allow automatic self-cleavage of the polyprotein. The GP5 and E2 genes were expressed as demonstrated by immunofluorescence assay and Western blotting. Immunization of mice resulted in a CSFV-neutralizing antibody titer of 1:128 and a PRRSV-neutralizing antibody titer of 1:16. The lymphoproliferative responses were detected by Cell Counting Kit-8 assay and the stimulation index of CFSV-specific and PRRSV-specific lymphocytes in the rAdV-GP52AE2 group was significantly higher than that in the negative control group. The results show that rAdV-GP52AE2 can induce both effective humoral and cell-mediated immune responses in mice. The protective efficacy of the recombinant virus against CSF was evaluated in immunized rabbits, which were protected from fever induced by challenge with C-strain. Our study provides supporting evidence for the use of FMDV 2A to develop a bivalent genetically-engineered vaccine.
Reference | Related Articles | Metrics