Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The enhancements of pore morphology and size distribution by straw return are mediated by increases in aggregate-associated carbon and nitrogen
Ying Zhao, Xiaozeng Han, Chen Qiu, Wenxiu Zou, Xinchun Lu, Jun Yan, Xu Chen
2025, 24 (4): 1562-1576.   DOI: 10.1016/j.jia.2024.08.003
Abstract78)      PDF in ScienceDirect      

The accumulation of soil organic carbon (SOC) and total nitrogen (TN) is easily accomplished by returning crop straw, which strongly affects the formation and pore structure of aggregates, especially in black soil.  We returned maize straw at different rates (6,000, 9,000, 12,000 and 15,000 kg ha–1) for nine years to investigate its influence on the SOC and TN contents in the SOC fractions of aggregates by combining size and density fractionation.  Their subsequent influences on pore morphology and size distribution characteristics were examined using X-ray micro-computed tomography scanning (μCT).  The results showed that returning straw significantly increased the contents of C and N in the SOC fractions of aggregates, especially at the return rates of 12,000 and 15,000 kg ha–1, which in turn promoted aggregate formation and stability, and ultimately amended pore structure.  The pore size>100 μm, porosity (>2 μm), and morphological characteristics (anisotropy, circularity, connectivity and fractal dimension) significantly increased, but the total number of pores significantly decreased (P<0.05).  Our results indicated that the amendment of the pore morphology and size distribution of soil aggregates was primarily controlled by the higher contents of C and N in the density fractions of aggregates, rather than in the aggregate sizes.  Furthermore, this pore network reconfiguration favored the storage of C and N simultaneously.  The findings of this study offer valuable new insights into the relationships between C and N storage and the pore characteristics in soil aggregates under straw return. 

Reference | Related Articles | Metrics
Food security amid the COVID-19 pandemic in Central Asia: Evidence from rural Tajikistan
Yuhan Zhao, Chen Qian, Yumei Zhang, Xiande Li, Kamiljon T. Akramov
2024, 23 (8): 2853-2867.   DOI: 10.1016/j.jia.2023.12.001
Abstract99)      PDF in ScienceDirect      
Food security has been long understudied in the context of Central Asia.  We present an analysis examining household-level food demand for Tajikistan and assessing the magnitude of its food security changes during the COVID-19 pandemic.  Based on an extensive household survey data set from Tajikistan, we estimate the expenditure, income, and price elasticities for nine food categories using the QUAIDS model.  Then, we develop a microsimulation model using the estimated elasticities to assess the dual impact of declining remittance income and rising food prices stemming from the pandemic shock.  There are significant differences in demand elasticities across food groups, with high elasticities observed for nutritious foods, such as meat, fruit, eggs, and milk, in rural households.  Moreover, our findings show that changes in remittance income and food prices significantly negatively affected food security for rural households during the COVID-19 pandemic.  These findings have important implications for policymakers concerned about rural livelihoods and food security in remittance-receiving economies during the post-pandemic period.
Reference | Related Articles | Metrics
Effect of high-molecular-weight glutenin subunit Dy10 on wheat dough properties and end-use quality
WANG Yan, GUO Zhen-ru, CHEN Qing, LI Yang, ZHAO Kan, WAN Yong-fang, Malcolm J. HAWKESFORD, JIANG Yun-feng, KONG Li, PU Zhi-en, DENG Mei, JIANG Qian-tao, LAN Xiu-jin, WANG Ji-rui, CHEN Guo-yue, MA Jian, ZHENG You-liang, WEI Yu-ming, QI Peng-fei
2023, 22 (6): 1609-1617.   DOI: 10.1016/j.jia.2022.08.041
Abstract423)      PDF in ScienceDirect      
High-molecular-weight glutenin subunits (HMW-GSs) are the most critical grain storage proteins that determine the unique processing qualities of wheat. Although it is a part of the superior HMW-GS pair (Dx5+Dy10), the contribution of the Dy10 subunit to wheat processing quality remains unclear. In this study, we elucidated the effect of Dy10 on wheat processing quality by generating and analyzing a deletion mutant (with the Dy10-null allele), and by elucidating the changes to wheat flour following the incorporation of purified Dy10. The Dy10-null allele was transcribed normally, but the Dy10 subunit was lacking. These findings implied that the Dy10-null allele reduced the glutenin:gliadin ratio and negatively affected dough strength (i.e., Zeleny sedimentation value, gluten index, and dough development and stability times) and the bread-making quality; however, it positively affected the biscuit-making quality. The incorporation of various amounts of purified Dy10 into wheat flour had a detrimental effect on biscuit-making quality. The results of this study demonstrate that the Dy10 subunit is essential for maintaining wheat dough strength. Furthermore, the Dy10-null allele may be exploited by soft wheat breeding programs.
Reference | Related Articles | Metrics
Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)
YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong
2023, 22 (2): 495-504.   DOI: 10.1016/j.jia.2022.08.003
Abstract291)      PDF in ScienceDirect      

As intracellular fatty acid (FA) carriers, FA-binding proteins (FABPs) widely participate in the absorption, transport, and metabolism of FAs.  It is a key protein in insect lipid metabolism and plays an important role in various physiological activities of insects.  An FABP gene (HvFABP) was cloned from the transcriptional library of Heortia vitessoides Moore (Lepidoptera: Crambidae), and its expression patterns were determined using reverse transcription quantitative PCR (RT-qPCR).  Stage- and tissue-specific expression profiles indicated that HvFABP highly expressed from prepupal to adult stages and in larval midgut and adult wings.  HvFABP expression may be induced through starvation, mRNA expression was downregulated at 24 and 48 h and upregulated at 72 h after starvation.  Furthermore, 20-hydroxyecdysone can induce the upregulation of its expression.  RNA interference-mediated silencing of HvFABP significantly inhibited HvFABP expression, resulting in delayed development, abnormal molting or lethal phenotypes, and a significantly reduced survival rate.  These results indicate that HvFABP plays a key role in the molting of Hvitessoides

Reference | Related Articles | Metrics
Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean
ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui
2022, 21 (8): 2197-2210.   DOI: 10.1016/S2095-3119(21)63658-4
Abstract197)      PDF in ScienceDirect      
Soybean is one of the most important food crops worldwide.  Like other legumes, soybean can form symbiotic relationships with Rhizobium species.  Nitrogen fixation of soybean via its symbiosis with Rhizobium is pivotal for sustainable agriculture.  Type III effectors (T3Es) are essential regulators of the establishment of the symbiosis, and nodule number is a feature of nitrogen-affected nodulation.  However, genes encoding T3Es at quantitative trait loci (QTLs) related to nodulation have rarely been identified. Chromosome segment substitution lines (CSSLs) have a common genetic background but only a few loci with heterogeneous genetic information; thus, they are suitable materials for identifying candidate genes at a target locus.  In this study, a CSSL population was used to identify the QTLs related to nodule number in soybean.  Single nucleotide polymorphism (SNP) markers and candidate genes within the QTLs interval were detected, and it was determined which genes showed differential expression between isolines.  Four candidate genes (GmCDPK28, GmNAC1, GmbHLH, and GmERF5) linked to the SNPs were identified as being related to nodule traits and pivotal processes and pathways involved in symbiosis establishment.  A candidate gene (GmERF5) encoding a transcription factor that may interact directly with the T3E NopAA was identified.  The confirmed CSSLs with important segments and candidate genes identified in this study are valuable resources for further studies on the genetic network and T3Es involved in the signaling pathway that is essential for symbiosis establishment. 
Reference | Related Articles | Metrics
Genome-wide identification and characterization of the abiotic-stress-responsive lipoxygenase gene family in diploid woodland strawberry (Fragaria vesca)
LI Zhi-qi, Xie Qian, YAN Jia-hui, CHEN Jian-qing, CHEN Qing-xi
2022, 21 (7): 1982-1996.   DOI: 10.1016/S2095-3119(21)63819-4
Abstract288)      PDF in ScienceDirect      
Lipoxygenase (LOXs) is a kind of dioxygenase without heme and iron, which plays an important role in the development and adaptation of many plants to the environment.  However, the study of strawberry LOX gene family has not been reported.  In this study, 14 LOX genes were identified from the diploid woodland strawberry genome.  The phylogenetic tree divides the FvLOX gene into two subfamilies: 9-LOX and 13-LOX.  Gene duplication event analysis showed that whole-genome duplication (WGD)/segmental duplication and dispersed duplication effectively promoted the expansion of strawberry LOX family.  QRT-PCR analysis showed that FvLOX genes were expressed in different tissues.  Expression profile analysis showed that FvLOX1 and FvLOX8 were up-regulated under low temperature stress, FvLOX3 and FvLOX7 were up-regulated under drought stress, FvLOX6 and FvLOX9 were up-regulated under salt stress, FvLOX2, FvLOX3 and FvLOX6 were up-regulated under salicylic acid (SA) treatment, FvLOX3, FvLOX11 and FvLOX14 were up-regulated under methyl jasmonate (MeJA) treatment, FvLOX4 and FvLOX14 were up-regulated under abscisic acid (ABA) treatment.  Promoter analysis showed that FvLOX genes were involved in plant growth and development and stress response.  We analyzed and identified the whole genome of strawberry FvLOX family and characterized a variety of FvLOX candidate genes involved in abiotic stress response.  This study laid a theoretical and empirical foundation for the response mechanism of strawberry to abiotic stress.
Reference | Related Articles | Metrics
Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses
PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming
2022, 21 (7): 1886-1902.   DOI: 10.1016/S2095-3119(21)63653-5
Abstract268)      PDF in ScienceDirect      
Soluble sugar content in seeds is an important quality trait of soybean.  In this study, 57 quantitative trait loci (QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published papers.  After meta-overview-collinearity integrated analysis to refine QTL intervals, eight consensus QTLs were identified.  To further verify the consensus QTLs, a population of chromosome segment substitution lines (CSSLs) was analyzed.  Two lines containing fragments covering the regions of consensus QTLs and the recurrent parent were selected: one line showed high soluble sugar contents associated with a consensus QTL fragment, and the other line showed low soluble sugar contents.  Transcriptome sequencing was conducted for these two lines at the early, middle, and late stages of seed development, which identified 158, 109 and 329 differentially expressed genes, respectively.  Based on the analyses of re-sequencing data of the CSSLs and the consensus QTL region, three candidate genes (Glyma.19G146800, Glyma.19G122500, and Glyma.19G128500) were identified in the genetic fragments introduced from wild soybean.  Sequence comparisons between the two CSSL parents SN14 and ZYD00006 revealed a single nucleotide polymorphism (SNP) mutation in the coding sequence of Glyma.19G122500, causing a non-synonymous mutation in the amino acid sequence that affected the predicted protein structure.  A Kompetitive allele-specific PCR (KASP) marker was developed based on this SNP and used to evaluate the CSSLs.  These results lay the foundation for further research to identify genes related to soluble sugar contents in soybean seeds and for future soybean breeding.
Reference | Related Articles | Metrics
Interactions between phosphorus availability and microbes in a wheat–maize double cropping system: a reduced fertilization scheme
YU Xiao-jing, CHEN Qi, SHI Wen-cong, GAO Zheng, SUN Xiao, DONG Jing-jing, LI Juan, WANG Heng-tao, GAO Jian-guo, LIU Zhi-guang, ZHANG Min
2022, 21 (3): 840-854.   DOI: 10.1016/S2095-3119(20)63599-7
Abstract197)      PDF in ScienceDirect      
Mechanisms controlling phosphorus (P) availability and the roles of microorganisms in the efficient utilization of soil P in the wheat–maize double cropping system are poorly understood.  In the present study, we conducted a pot experiment for four consecutive wheat–maize seasons (2016–2018) using calcareous soils with high (30.36 mg kg–1) and low (9.78 mg kg–1) initial Olsen-P content to evaluate the effects of conventional P fertilizer application to both wheat and maize (Pwm) along with a reduced P fertilizer application only to wheat (Pw).  The microbial community structure along with soil P availability parameters and crop yield were determined.  The results showed that the Pw treatment reduces the annual P input by 33.3% without affecting the total yield for at least two consecutive years as compared with the Pwm treatment in the high Olsen-P soil.  Soil water-soluble P concentrations in the Pw treatment were similar to those in the Pwm treatment at the 12-leaf collar stage when maize requires the most P.  Furthermore, the soil P content significantly affected soil microbial communities, especially fungal communities.  Meanwhile, the relative abundances of Proteobacteria and alkaline phosphatase (ALP) activity of Pw were significantly higher (by 11.4 and 13.3%) than those of Pwm in soil with high Olsen-P.  The microfloral contribution to yield was greater than that of soil P content in soil with high Olsen-P.  Relative abundances of Bacillus and Rhizobium were enriched in the Pw treatment compared with the Pwm treatment.  Bacillus showed a significant positive correlation with acid phosphatase (ACP) activity, and Rhizobium displayed significant positive correlations with ACP and ALP in soil with high Olsen-P, which may enhance P availability.  Our findings suggested that the application of P fertilization only to wheat is practical in high P soils to ensure optimal production in the wheat and maize double cropping system and that the soil P availability and microbial community may collaborate to maintain optimal yield in a wheat–maize double cropping system.


Reference | Related Articles | Metrics
Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application
ZHANG Jing, ZHANG Yan-yan, SONG Ning-yuan, CHEN Qiu-li, SUN Hong-zheng, PENG Ting, HUANG Song, ZHAO Quan-zhi
2021, 20 (6): 1465-1473.   DOI: 10.1016/S2095-3119(20)63311-1
Abstract145)      PDF in ScienceDirect      
Nitrogen is one of the important factors for high yield of rice.  Apart from high yield, high quality has become the current urgent demand for rice production.  Grain-filling stage is crucial for rice yield and quality formation.  However, the effect of nitrogen on grain-filling characteristics and the relationship of grain-filling characteristics and rice quality of mid-season indica rice were still unclear.  A field experiment was carried out to ascertain the critical grain-filling characteristics that contribute to rice milling quality, appearance quality and cooking and eating quality under nitrogen applications.  The results showed that nitrogen applications prolonged the duration of superior and inferior grain filling.  The mean grain-filling rate (Gmean) and the maximum grain-filling rate (Gmax) of the inferior grains were positively correlated with chalky kernel rate, chalkiness, and amylose content.  The time reaching the maximum grain-filling rate (Tmax G) of the inferior grains was positively correlated with brown rice rate, milled rice rate, and head milled rice rate.  Chalky kernel rate and chalkiness were negatively correlated with peak paste viscosity and breakdown viscosity.  Less amylose content and more crude protein content were detected in nitrogen application of Liangyoupei 9 and Y Liangyou 2 both in 2016 and 2017.  According to the correlation analysis, better cooking and eating quality of Y Liangyou 2 which had less amylose content might result from its higher Gmax and Gmean of inferior grain than that of Liangyoupei 9 in the treatments of nitrogen application.  These results indicated that the prolonging grain-filling duration and increasing grain weight at the maximum grain-filling rate of inferior grains contributed to the improvement of milling quality, appearance quality, and cooking and eating quality of mid-season indica rice under appropriate nitrogen applications.
Reference | Related Articles | Metrics
Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants
YUAN Long-yu, HAO Yuan-hao, CHEN Qiao-kui, PANG Rui, ZHANG Wen-qing
2020, 19 (11): 2758-2766.   DOI: 10.1016/S2095-3119(20)63188-4
Abstract116)      PDF in ScienceDirect      
The brown planthopper (BPH), Nilaparvata lugens, an important rice insect pest, can enhance its virulence to BPH-resistant rice within as short a span as several generations.  Here, we cloned a pancreatic triglyceride lipase (PTL) gene (NlPTL) in N. lugens, and found that its mRNA level was higher in the high virulence population (fed on variety Rathu Heenati, P-RH) than in the low virulence population (fed on variety Taichung Native 1, P-TN1).  Knocking down NlPTL caused BPH individuals to spend more time in non-penetration and the pathway phases and less time feeding on the phloem of rice plants; these changes consequently decreased food intake, lipid content, survival rate, and fecundity in the insects.  These findings reveal for the first time that PTL in BPH is involved in its virulence to rice plants.
Reference | Related Articles | Metrics
Consumer confidence and consumers’ preferences for infant formulas in China
LI Sai-wei, ZHU Chen, CHEN Qi-hui, LIU Yu-mei
2019, 18 (8): 1793-1803.   DOI: 10.1016/S2095-3119(19)62589-X
Abstract153)      PDF in ScienceDirect      
A series of safety incidents related to domestically-produced infant formulas (DIFs) almost destroyed Chinese consumer confidence in domestic dairy products.  Understanding consumer confidence and its effect on consumption behavior is important to restore consumer confidence and enhance the competitiveness of domestic dairy industry.  This article first measures Chinese consumer confidence in DIFs safety using a two-dimension scale (optimism and pessimism) and then investigates its effect on consumers’ preferences for DIFs through a choice experiment.  Involving 450 consumers residing in Beijing, Tianjin and Shijiazhuang, the experiment elicited information on their preferences for DIFs with six attributes (organic raw milk, farm-to-table traceability, region of origin, quality certification, animal welfare, and price).  Our analysis yields four findings.  First, Chinese consumers still lack confidence in DIFs safety.  Second, quality certification is the most preferred product characteristic, followed by organic raw milk and farm-to-table traceability.  Third, serving as a signal of high quality, price exerts a positive impact on choices of DIFs for pessimistic consumers.  Finally, consumer preferences for farm-to-table traceability and region of origin are significantly influenced by consumer confidence.
Reference | Related Articles | Metrics
Better nutrition, healthier mind?  Experimental evidence from primary schools in rural northwestern China
LIU Xiao-yue, ZHAO Qi-ran, CHEN Qi-hui
2019, 18 (8): 1768-1779.   DOI: 10.1016/S2095-3119(19)62587-6
Abstract131)      PDF in ScienceDirect      
Malnutrition and mental health problems are both prevalent among rural students in China.  To provide a better understanding of the functional linkage between these two problems, this study estimates the causal effect of improved nutrition on rural students’ mental health status, exploiting a randomized controlled trial involving 6 044 fourth and fifth graders in rural northwestern China.  Estimation results show that a nutrition subsidy provided by the project significantly improved students’ mental health status (measured by their anxiety scale).  However, an add-on incentive provided to school principals, which was tied to anemia reduction, almost entirely offset the beneficial impact of the nutrition subsidy.  These findings suggest that to improve students’ mental health in rural China, not only direct subsidies, such as low-priced school meals, but also correct incentives, especially those tied closely to students’ mental health outcomes, should be provided.
Reference | Related Articles | Metrics
Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato
ZHAO Ting-ting, WANG Zi-yu, BAO Yu-fang, ZHANG Xiao-chun, YANG Huan-huan, ZHANG Dong-ye, JIANG Jing-bin, ZHANG He, LI Jing-fu, CHEN Qing-shan, XU Xiang-yang
2019, 18 (7): 1579-1586.   DOI: 10.1016/S2095-3119(19)62621-3
Abstract293)      PDF in ScienceDirect      
Zinc finger-homeodomain proteins (ZF-HDs) are transcription factors that regulate plant growth, development, and abiotic stress tolerance.  The SL-ZH13 gene was found to be significantly upregulated under drought stress treatment in tomato (Solanum lycopersicum) leaves in our previous study.  In this study, to further understand the role that the SL-ZH13 gene plays in the response of tomato plants to drought stress, the virus-induced gene silencing (VIGS) method was applied to downregulate SL-ZH13 expression in tomato plants, and these plants were treated with drought stress to analyze the changes in drought tolerance.  The SL-ZH13 silencing efficiency was confirmed by quantitative real-time PCR (qRT-PCR) analysis.  In SL-ZH13-silenced plants, the stems wilted faster, leaf shrinkage was more severe than in control plants under the same drought stress treatment conditions, anyd the mean stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants.  Physiological analyses showed that the activity of superoxide dismutase (SOD) and peroxidase (POD) and the content of proline (Pro) in SL-ZH13-silenced plants were lower than those in control plants after 1.5 and 3 h of drought stress treatment.  The malondialdehyde (MDA) content in SL-ZH13-silenced plants was higher than that in control plants after 1.5 and 3 h of drought stress treatment, and H2O2 and O2-· accumulated much more in the leaves of SL-ZH13-silenced plants than in the leaves of control plants.  These results suggested that silencing the SL-ZH13 gene affected the response of tomato plants to drought stress and decreased the drought tolerance of tomato plants. 
Reference | Related Articles | Metrics
Protective roles of trehalose in Pleurotus pulmonarius during heat stress response
LIU Xiu-ming, WU Xiang-li, GAO Wei, QU Ji-bin, CHEN Qiang, HUANG Chen-yang, ZHANG Jin-xia
2019, 18 (2): 428-437.   DOI: 10.1016/S2095-3119(18)62010-6
Abstract620)      PDF (948KB)(311)      
High temperature is one of the major abiotic stresses that limit edible mushroom growth and development.  The understanding of physiological alterations in response to heat stress and the corresponding mechanisms involved is vital for the breeding of heat-resistant edible mushroom strains.  Although trehalose functions as a protectant against abiotic stresses in fungi, the putative role of trehalose in thermotolerance remains to be elucidated.  In this study, we found heat stress inhibited the growth of two Pleurotus pulmonarius strains, heat-sensitive and less-sensitive, and the inhibition was more significant for the sensitive strain.  Heat stress leads to the increase of lipid peroxidation and intracellular trehalose accumulation, with a higher level in the heat-sensitive strain, and this effect is independent of exogenous trehalose application. In addition, a lower concentration of exogenous trehalose application in sensitive strain than in less-sensitive strain was found to alleviate the inhibition of mycelium growth and further increase the intracellular trehalose concentration by heat stress.  Thus, the protective effects of trehalose were more remarkable in the sensitive strain.  The activities of intracellular trehalose metabolic enzymes, i.e., trehalose-6-phosphate synthase, trehalose phosphorylase and neutral trehalase, were determined, and our data indicated that the changes of these enzymes activities in the sensitive strain were more beneficial to accumulate trehalose than that in the less-sensitive strain.
Reference | Related Articles | Metrics
A major pathway for carbon and nitrogen losses- Gas emissions during storage of solid pig manure in China
SHAN Nan, LI Hu, LI Jian-zheng, Ee Ling Ng, MA Yan, WANG Li-gang, CHEN Qing
2019, 18 (1): 190-200.   DOI: 10.1016/S2095-3119(17)61902-6
Abstract341)      PDF (1246KB)(334)      
This study investigated the carbon (C) and nitrogen (N) gas emissions (N2O, NH3, CO2 and CH4) from solid pig manure management in China.  Gas emissions were quantified from static piles over 60 days during summer in China’s Yangtze River Basin, using Drager-Tube and static chamber-gas chromatography techniques.  High emissions of NH3 and N2O were observed at the early stage of storage, but high emission of CH4 occured later during storage.  Overall, 62% of the total C in the original pile was lost; CO2 and CH4 emissions accounted for 57 and 0.2% of C lost respectively.  Over the same time, 41% of the total N in the original pile was lost; NH3 and N2O emissions accounted for 15 and 0.3% of N lost respectively.  The volatilization of NH3 during storage in summer was 4.56 g NH3 per kg dry weight.  The total greenhouse gas (GHG) emissions during storage accounted for 67.93 g CO2 equivalent per kg dry weight; N2O and CH4 contributed to 46 and 55% of total GHG emissions respectively.  Given China’s major role in pig production, further attention should given to pig manure management to mitigate its contribution to atmospheric pollution.
 
Reference | Related Articles | Metrics
Determinants of cooperative pig farmers' safe production behaviour in China – Evidences from perspective of cooperatives' services
JI Chen, CHEN Qin, Jacques Trienekens, WANG Hai-tao
2018, 17 (10): 2345-2355.   DOI: 10.1016/S2095-3119(18)62058-1
Abstract346)      PDF in ScienceDirect      
Farmers’ production behaviour is a key to ensuring the safety and quality of their final products, and cooperatives play an important role in shaping that behaviour.  This paper aims to explore the determinants of pig farmers' safe production behaviour, giving special focus from the perspective of cooperatives’ services.  This study adopted cross sectional survey data from 27 pig cooperatives and their 540 farmers in China to test the influence of cooperatives’ services on farmers’ safe production behaviour.  The hypotheses were tested using a logit regression model.  The findings indicated that although the number of services is not a key determinant of farmers’ safe production behaviour, service quality matters.  When a cooperative is strongly capable of involving more farmers in certain services, and provides certain services in more frequency, member farmers behave more safely.  The results also show that veterinarian and pig-selling services play an important role in ensuring farmers’ safe production behaviour.  For this study, the quality of cooperatives’ services is implied to have a positive impact on farmers’ safe production behaviour.  Leaders/managers of cooperatives must try to improve the quality of their services instead of merely attempting to provide a large number of services.  For government officials and policy makers, designing policies that encourage cooperatives to improve their service quality is important.  This research contributes to the scant literature on how cooperative services could help farmers engage in safer production behaviour, which would improve the safety of pork products in the future.
Reference | Related Articles | Metrics
Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots
WANG Ling-shuang, CHEN Qing-shan, XIN Da-wei, QI Zhao-ming, ZHANG Chao, LI Si-nan, JIN Yang-mei, LI Mo, MEI Hong-yao, SU An-yu, WU Xiao-xia
2018, 17 (09): 1959-1971.   DOI: 10.1016/S2095-3119(17)61863-X
Abstract530)      PDF in ScienceDirect      
Glycogen synthase kinase 3 (GSK3) is a kind of serine/threonine kinase widely found in eukaryotes.  Many plant GSK3 kinases play important roles in regulating stress responses.  This study investigated BRASSINOSTEROID-INSENSITIVE 2 (GmBIN2) gene, a member of the GSK3 protein kinase family in soybean and an orthologue of Arabidopsis BIN2/AtSK21GmBIN2 expression was increased by salt and drought stresses, but was not significantly affected by the ABA treatment.  To examine the function of GmBIN2, transgenic Arabidopsis and transgenic soybean hairy roots were generated.  Overexpression of GmBIN2 in Arabidopsis resulted in increased germination rate and root length compared with wild-type plants under salt and mannitol treatments.  Overexpression of GmBIN2 increased cellular Ca2+ content and reduced Na+ content, enhancing salt tolerance in transgenic Arabidopsis plants.  In the soybean hairy root assay, overexpression of GmBIN2 in transgenic roots also showed significantly higher relative root growth rate than the control when subjected to salt and mannitol treatments.  Measurement of physiological indicators, including proline content, superoxide dismutase (SOD) activity, and relative electrical conductivity, supported this conclusion.  Furthermore, we also found that GmBIN2 could up-regulate the expression of some stress-related genes in transgenic Arabidopsis and soybean hairy roots.  Overall, these results indicated that GmBIN2 improved tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots.
 
Reference | Related Articles | Metrics
Identification of novel soybean oil content-related genes using QTLbased collinearity analysis from the collective soybean genome
XU Ming-yue, LIU Zhang-xiong, QIN Hong-tao, QI Hui-dong, WANG Zhong-yu, MAO Xin-rui, XIN Dawei, HU Zhen-bang, WU Xiao-xia, JIANG Hong-wei, QI Zhao-ming, CHEN Qing-shan
2018, 17 (08): 1727-1735.   DOI: 10.1016/S2095-3119(17)61862-8
Abstract413)      PDF in ScienceDirect      
Soybean is a global principal source of edible plant oil.  As more soybean oil-related quantitative trait loci (QTLs) have been located in the collective genome, it is urgent to establish a classification system for these distributed QTLs.  A collinear platform may be useful to characterize and identify relationships among QTLs as well as aid in novel gene discovery.  In this study, the collinearity MCScanX algorithm and collective soybean genomic information were used to construct collinearity blocks, to which soybean oil-related QTLs were mapped.  The results demonstrated that 666 collinearity blocks were detected in the soybean genome across 20 chromosomes, and 521 collinearity relationships existed in 231 of the 242 effective soybean oil-related QTLs.  This included 214 inclusion relationships and 307 intersecting relationships.  Among them, the collinearity among QTLs that are related to soybean oil content was shown on a maximum of seven chromosomes and minimum of one chromosome, with the majority of QTLs having collinearity on two chromosomes.  Using overlapping hotspot regions in the soybean oil QTLs with collinearity, we mined for novel oil content-related genes.  Overall, we identified 23 putatively functional genes associated with oil content in soybean and annotated them using a number of annotation databases.  Our findings provide a valuable framework for elucidating evolutionary relationships between soybean oil-related QTLs and lay a foundation for functional marker-assisted breeding relating to soybean oil content.
Reference | Related Articles | Metrics
GmDRR1, a dirigent protein resistant to Phytophthora sojae in Glycine max (L.) Merr.
CHEN Qing-shan, YU Guo-long, ZOU Jia-nan, WANG Jing, QIU Hong-mei, ZHU Rong-sheng, CHANG Hui-lin, JIANG Hong-wei, HU Zhen-bang, LI Chang-yu, ZHANG Yan-jiao, WANG Jin-hui, WANG Xueding, GAO Shan...
2018, 17 (06): 1289-1298.   DOI: 10.1016/S2095-3119(17)61821-5
Abstract553)      PDF in ScienceDirect      
Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield.  To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease.  In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by two-dimensional gel electrophoresis.  Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay.  One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family.  Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1).  Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean.  GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane.  qRT-PCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars.  By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties.  The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions.  The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs.  The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.
Related Articles | Metrics
Meta-analysis of soybean amino acid QTLs and candidate gene mining
GONG Qian-chun, YU Hong-xiao, MAO Xin-rui, QI Hui-dong, SHI Yan, XIANG Wei, CHEN Qing-shan,
2018, 17 (05): 1074-1084.   DOI: 10.1016/S2095-3119(17)61783-0
Abstract471)      PDF in ScienceDirect      
The composition and quantity of amino acids influence the protein content and nutritional value of soybeans and also have an important impact upon soybean quality.  After integrating and proofreading 140 original QTLs associated with amino acid contentfrom soybase (http://www.soybase.org/), 138 QTLs were further analyzed to determine high-confidence QTL regions.  Meta-analysis was first carried out using the BioMercator ver. 2.1 software, yielding 33 consensus QTLs.  The consensus QTL confidence intervals (CIs) ranged from 0.07 to 19.85 Mb.  Next, the overview method was used to optimize the CIs, and 57 “real” QTLs were mapped.  Candidate genes in the consensus QTL regions were obtained from Phytozome and were annotated using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Swissprot, and gene annotation databases.  Finally, 16 unpublished candidate genes controlling the content of five types of amino acids were identified with Blast.  These results laid the foundation for fine mapping of soybean amino acid-related QTLs and marker-assisted selection.
Reference | Related Articles | Metrics
A callus transformation system for gene functional studies in soybean
XU Kun, ZHANG Xiao-mei, FAN Cheng-ming, CHEN Fu-lu, ZHU Jin-long, ZHANG Shi-long, CHEN Qing-shan, FU Yong-fu
2017, 16 (09): 1913-1922.   DOI: 10.1016/S2095-3119(16)61621-0
Abstract748)      PDF in ScienceDirect      
    Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants (e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies.
Reference | Related Articles | Metrics
Association of CYP19A1 gene polymorphisms with reproductive traits in pigs
ZHOU Rong, YANG Ya-lan, LIU Ying, CHEN Qi-mei, CHEN Jie, LI Kui
2017, 16 (07): 1558-1565.   DOI: 10.1016/S2095-3119(16)61520-4
Abstract841)      PDF in ScienceDirect      
    Porcine reproductive traits are characterized by low heritability, making improvement by traditional selective breeding rather difficult. Molecular breeding offers powerful approaches to overcome previous limitations and is expected to generate economic benefits via progress in pig breeding. Cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1) gene is a key enzyme of estradiol biosynthesis that plays an important role in the establishment of gestation and maintenance of pregnancy. In this study, the sequence and structure characteristics of the porcine CYP19A1 gene was analyzed and expression patterns of CYP19A1 in different tissues of adult female pigs were detected. Fourteen single-nucleotide polymorphisms (SNPs) in the exons and introns of porcine CYP19A1 were identified and genotyped using the Sequenom MassARRAY platform, after which the allele frequency of each SNP was analyzed. The association between CYP19A1 SNPs and litter size and piglet birth weight was assessed in a crossbred pig population (n=375). The expression pattern of CYP19A1 revealed that it was highly expressed in the ovary, spleen, and uterus and lowly expressed in the other tissues. Moreover, one SNP, rs341891833, was significantly associated with piglet birth weight during the multiparity period (P<0.01). We concluded that CYP19A1 could be used as a candidate molecular marker in breeding aimed at rapid improvement of the reproductive characteristics of pigs.  
Reference | Related Articles | Metrics
Assessing the concentration and potential health risk of heavy metals in China’s main deciduous fruits
NIE Ji-yun, KUANG Li-xue, LI Zhi-xia, XU Wei-hua, WANG Cheng, CHEN Qiu-sheng, LI An, ZHAO Xu-bo, XIE Han-zhong, ZHAO Duo-yong, WU Yong-long, CHENG Yang
2016, 15 (7): 1645-1655.   DOI: 10.1016/S2095-3119(16)61342-4
Abstract1754)      PDF in ScienceDirect      
To assess levels of contamination and human health risk, we analyzed the concentrations of the heavy metals lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni) in China’s main deciduous fruits - apple, pear, peach, grape, and jujube. The concentration order of the heavy metals was Ni>Cr>Pb>Cd. In 97.5% of the samples, heavy metal concentrations were within the maximum permissible limits. Among the fruits studied, the heavy metal concentrations in jujube and peach proved to be the highest, and those in grape proved to be the lowest. Only 2.2% of the samples were polluted by Ni, only 0.4% of the samples were polluted by Pb, and no samples were polluted by Cd or Cr. Compared with the other fruits, the combined heavy metal pollution was significantly higher (P<0.05) in peach and significantly lower (P<0.05) in grape. For the combined heavy metal pollution, 96.9% of the samples were at safe level, 2.32% at warning level, 0.65% at light level, and 0.13% at moderate level. In the fruits studied, the contribution of heavy metals to the daily intake rates (DIR) followed the order of Ni>Cr>Pb>Cd. The highest DIR came from apple, while the lowest DIR came from grape. For each of the heavy metals, the total DIR from five studied fruits corresponded to no more than 1.1% of the tolerable daily intake, indicating that no significant adverse health effects are expected from the heavy metals and the fruits studied. The target hazard quotients and the total target hazard quotients demonstrated that none of the analyzed heavy metals may pose risk to consumers through the fruits studied. The highest risk was posed by apple, followed in decreasing order by peach and pear, jujube, and grape. We suggest that the main deciduous fruits (apple, pear, peach, grape, and jujube) of China’s main producing areas are safe to eat.
Reference | Related Articles | Metrics
Genetic variation and population structure of the mushroom Pleurotus ferulae in China inferred from nuclear DNA analysis
ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li, CHEN Qiang, QU Ji-bin, LI Yan-chun, GAO Wei, ZHANG Jin-xia
2016, 15 (10): 2237-2246.   DOI: 10.1016/S2095-3119(16)61383-7
Abstract1594)      PDF in ScienceDirect      
    To investigate the genetic diversity of an edible fungus Pleurotus ferulae, a total of 89 wild samples collected from six geographical locations in the Xinjiang Uygur Autonomous Region of China and two geographical locations in Italy, were analyzed using three DNA fragments including the translation elongation factor (EF1α), the second largest subunit of the RNA polymerase II (RPB2) and the largest subunit of the RNA polymerase II (RPB1). The results indicated relatively abundant genetic variability in the wild resources of P. ferulae. The analysis of molecular variance (AMOVA) showed that the vast majority of the genetic variation was found within geographical populations. Both the Chinese populations and the Italian populations of P. ferulae displayed a limited genetic differentiation. The degree of differentiation between the Chinese populations and the Italian populations was obviously higher than that between the populations from the same region, and moreover the genetic differentiation among all the tested populations was correlated to the geographical distance. The phylogeny analyses confirmed that samples from China and Italy belonged to another genetic group separated from Pleurotus eryngii. They were closely related to each other but were clustered according to their geographical origins, which implied the Chinese populations were highly differentiated from the Italian populations because of distance isolation, and the two populations from different regions might be still in the process of allopatric divergence.
Reference | Related Articles | Metrics
Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves
MIAO Yan-xiu, WANG Xiao-zhuo, GAO Li-hong, CHEN Qing-yun, QU Mei
2016, 15 (1): 87-100.   DOI: 10.1016/S2095-3119(15)61202-3
Abstract2017)      PDF in ScienceDirect      
Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m–2 s–1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETRII) and in PSI (ETRI) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (ΦNO) and limitation of donor side in PSI (ΦND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETRII and ETRI by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.
Reference | Related Articles | Metrics
Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field
GAO Miao, ZHOU Jian-jiao, WANG En-tao, CHEN Qian, XU Jing, SUN Jian-guang
2015, 14 (9): 1855-1863.   DOI: 10.1016/S2095-3119(14)60932-1
Abstract1700)      PDF in ScienceDirect      
Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identified as Burkholderia sp. based on 16S rDNA sequence analysis, as well as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability; inhibited the growth of Sclerotinia sclerotiorum, Gibberella zeae and Verticillium dahliae; and produced small quantities of indole acetic acid (IAA). In green house experiments, significant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the field experiments, Burkholderia sp. 7016 enhanced the tomato yield and significantly promoted activities of soil urease, phosphatase, sucrase, and catalase. All these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.
Reference | Related Articles | Metrics
The puzzle of the missing meat: Food away from home and China’s meat statistics
XIAO Hong-bo, CHEN Qiong, WANG Ji-min, Les Oxley, MA Heng-yun
2015, 14 (6): 1033-1044.   DOI: 10.1016/S2095-3119(14)60987-4
Abstract1707)      PDF in ScienceDirect      
From 1985, an increasing gap has emerged between the official statistical measures of meat production and meat consumption in China, which has raised concerns from many researchers using such data. In this paper we report the results of 428 observations (survey of 107 urban and rural households×4 quarters) from 7 provinces conducted in 2010, and compare them with the official statistical data from the National Bureau of Statistics of China (NBSC). We conclude that the main reason for the discrepancy is due to the underreporting of consumption, which is due mainly to the omission of consumption away from home.
Reference | Related Articles | Metrics
Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China
FAN Hong-zhu, CHEN Qing-rui, QIN Yu-sheng, CHEN Kun, TU Shi-hua, XU Ming-gang, ZHANG Wen-ju
2015, 14 (12): 2417-2425.   DOI: 10.1016/S2095-3119(15)61225-4
Abstract1209)      PDF in ScienceDirect      
Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sichuan Basin of China, it is of great importance to study and understand the impacts of different fertilizer amendments on soil organic carbon (SOC) changes with time. A research was carried out to investigate the relationship between soil carbon sequestration and organic carbon input as affected by different fertilizer treatments at two long-term rice-based cropping system experiments set up in early 1980s. Each experiment consisted of six identical treatments, including (1) no fertilizer (CK), (2) nitrogen and phosphorus fertilizers (NP), (3) nitrogen, phosphorus and potassium fertilizers (NPK), (4) fresh pig manure (M), (5) nitrogen and phosphorus fertilizers plus manure (MNP), and (6) nitrogen, phosphorus and potassium fertilizers plus manure (MNPK). The results showed that annual harvestable carbon biomass was the highest in the treatment of MNPK, followed by MNP and NPK, then M and NP, and the lowest in CK. Most of fertilizer treatments resulted in a significant gain in SOC ranging from 6.48 to 29.13% compared with the CK, and raised soil carbon sequestration rate to 0.10–0.53 t ha–1 yr−1. Especially, addition of manure on the basis of mineral fertilizers was very conducive to SOC maintenance in this soil. SOC content and soil carbon sequestration rate under balanced fertilizer treatments (NPK and MNPK) in the calcareous purple soil (Suining) were higher than that in the acid purple soil (Leshan). But carbon conversion rate at Leshan was 11.00%, almost 1.5 times of that (7.80%) at Suining. Significant linear correlations between soil carbon sequestration and carbon input were observed at both sites, signifying that the purple soil was not carbon-saturated and still had considerable potential to sequestrate more carbon.
Reference | Related Articles | Metrics
Emerging frontier technologies for food safety analysis and risk assessment
DONG Yi-yang, LIU Jia-hui, WANG Sai, CHEN Qi-long, GUO Tian-yang, ZHANG Li-ya, JIN Yong, SU Hai-jia, TAN Tian-wei
2015, 14 (11): 2231-2242.   DOI: 10.1016/S2095-3119(15)61123-6
Abstract1620)      PDF in ScienceDirect      
Access to security and safe food is a basic human necessity and essential for a sustainable world. To perform hi-end food safety analysis and risk assessment with state of the art technologies is of utmost importance thereof. With applications as exemplified by microfluidic immunoassay, aptasensor, direct analysis in real time, high resolution mass spectrometry, benchmark dose and chemical specific adjustment factor, this review presents frontier food safety analysis and risk assessment technologies, from which both food quality and public health will benefit undoubtedly in a foreseeable future.
Reference | Related Articles | Metrics
Replanting Affects the Tree Growth and Fruit Quality of Gala Apple
LIU En-tai, WANG Gong-shuai, LI Yuan-yuan, SHEN Xiang, CHEN Xue-sen, SONG Fu-hai, WU Shu-jing, CHEN Qiang, MAO Zhi-quan
2014, 13 (8): 1699-1706.   DOI: 10.1016/S2095-3119(13)60620-6
Abstract1364)      PDF in ScienceDirect      
Apple replant disease (ARD) causes the inhibition of root system development, stunts tree growth and so on. To further investigate the effects of ARD on apple fruits, a 25-year-old apple orchard was remediated to establish a replant orchard between November 2008 and March 2009. A rotational cropping orchard was established on an adjacent wheat field. The cultivar and rootstock-scion combination used in the newly established orchards was Royal Gala/M26/Malus hupehensis Rehd. Ripe fruits were collected in mid-August 2011 and mid-August 2012, meanwhile, the following indices were measured: yield per plant; fruit weight; the fruit shape index; the contents of anthocyanin, carotenoid and chlorophyll; the soluble sugar content in the flesh; titratable acid; the sugar-acid ratio; firmness; and aroma components; apple plant ground diameter, plant height increment and the total length of the current-year shoots. The results showed that compared to rotational cropping, continuous cropping yielded statistically significant reductions in fruit weight and yield per plant of 39.8 and 76.5%, respectively. However, there were no changes in the fruit shape index. The anthocyanin and carotenoid contents decreased by 81.7 and 37.7%, respectively, while the chlorophyll content increased by 251.0%. All of these differences in content were statistically significant. The soluble sugar levels and sugar-acid ratio decreased by 25.4 and 60.9%, respectively, but the titratable acid levels and fruit firmness increased by 90.9 and 42.8%, respectively. Ten of the most important esters contributing to the apple aroma were analyzed, and the following changes were observed: hexyl acetate, butyl acetate, hexyl butyrate, acetate-2-methyl butyl, 2-methyl-hexyl butyrate, amyl acetate, butyl butyrate, 2-methyl-butyl butyrate, hexyl propionate and hexyl hexanoate decreased by 25.5, 78.4, 89.1, 55.5, 79.5, 77.2, 86.8, 69.9, 61.2, and 68.1%, respectively. The contents of three other aroma components, (E)-2-hexenal, hexanal and 1-hexanol, significantly increased. Eight characteristic aroma components were found in the rotational cropping fruits: hexyl acetate, butyl acetate, acetate-2-methyl butyl, 2-methyl-hexyl butyrate, amyl acetate, 2-methyl- butyl butyrate, hexyl acetate and hexyl propionate. There were four characteristic ester components (hexyl acetate, butyl acetate, acetate-2-methyl butyl, 2-methyl-hexyl butyrate) and two characteristic aldehyde aroma components ((E)-2-hexenal and hexanal) in the continuous cropping fruits. Compared with the rotational cropping fruits, four characteristic ester components were declined and two characteristic aldehyde aroma components were increased. Compared with the control, replanted apple plant ground diameter, plant height increment and the total length of the current-year shoots were reduced by 27.6, 40.6 and 72.2%, respectively.
Reference | Related Articles | Metrics