Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (10): 2268-2275    DOI: 10.1016/S2095-3119(14)60844-3
Animal Science · Veterinary Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Construction and Virulence of Filamentous Hemagglutinin Protein B1 Mutant of Pasteurella multocida in Chickens
 GUO Dong-chun, SUN Yan, ZHANG Ai-qin, LIU Jia-sen, LU Yan, LIU Pei-xin, YUAN Dongwei, JIANG Qian, SI Chang-de , QU Lian-dong
1、State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin
150001, P.R.China
2、College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 159001, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Pasteurella multocida, a Gram-negative nonmotile coccobacillus, is the causative agent of fowl cholera, bovine hemorrhagic septicemia, enzoonotic pneumonia and swine atropic rhinitis. Two filamentous hemagglutinin genes, fhaB1 and fhaB2, are the potential virulence factors. In this study, an inactivation fhaB1 mutant of P. multocida in avian strain C48-102 was constructed by a kanamycin-resistance cassette. The virulence of the fhaB1 mutant and the wild type strain was assessed in chickens by intranasal and intramuscular challenge. The inactivation of fhaB1 resulted in a high degree of attenuation when the chickens were challenged intranasally and a lesser degree when challenged intramuscularly. The fhaB1 mutant and the wild type strain were investigated their sensitivity to the antibody-dependent classical complement-mediated killing pathway in 90% convalescent chicken serum. The fhaB1 mutant was serum sensitive as the viability has reduced between untreated serum and heat inactivated chicken serum (P<0.007). These results confirmed that FhaB1 played the critical roles in the bacterial pathogenesis and further studies were needed to investigate the mechanism which caused reduced virulence of the fhaB1 mutant.

Abstract  Pasteurella multocida, a Gram-negative nonmotile coccobacillus, is the causative agent of fowl cholera, bovine hemorrhagic septicemia, enzoonotic pneumonia and swine atropic rhinitis. Two filamentous hemagglutinin genes, fhaB1 and fhaB2, are the potential virulence factors. In this study, an inactivation fhaB1 mutant of P. multocida in avian strain C48-102 was constructed by a kanamycin-resistance cassette. The virulence of the fhaB1 mutant and the wild type strain was assessed in chickens by intranasal and intramuscular challenge. The inactivation of fhaB1 resulted in a high degree of attenuation when the chickens were challenged intranasally and a lesser degree when challenged intramuscularly. The fhaB1 mutant and the wild type strain were investigated their sensitivity to the antibody-dependent classical complement-mediated killing pathway in 90% convalescent chicken serum. The fhaB1 mutant was serum sensitive as the viability has reduced between untreated serum and heat inactivated chicken serum (P<0.007). These results confirmed that FhaB1 played the critical roles in the bacterial pathogenesis and further studies were needed to investigate the mechanism which caused reduced virulence of the fhaB1 mutant.
Keywords:  Pasteurella multocida       filamentous hemagglutinin B1       pathogenicity       virulence  
Received: 06 August 2013   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31302109).

Corresponding Authors:  QU Lian-dong, Tel: +86-451-51997165, E-mail: qld@hvri.ac.cn     E-mail:  qld@hvri.ac.cn
About author:  GUO Dong-chun, E-mail: gdongchun@126.com

Cite this article: 

GUO Dong-chun, SUN Yan, ZHANG Ai-qin, LIU Jia-sen, LU Yan, LIU Pei-xin, YUAN Dongwei, JIANG Qian, SI Chang-de , QU Lian-dong. 2014. Construction and Virulence of Filamentous Hemagglutinin Protein B1 Mutant of Pasteurella multocida in Chickens. Journal of Integrative Agriculture, 13(10): 2268-2275.

Berggard K, Johnsson E, Mooi F R, Lindahl G. 1997.Bordetella pertussis binds the human complementC4BP: Role of filamentous hemagglutinin. Infectionand Immunity, 65, 638-643

Boyce J D, Adler B. 2000. The capsule is a virulencedeterminant in the pathogenesis of Pasteurella multocidaM1404 (B:2). Infection and Immunity, 68, 3463-3468

Carter G R. 1955. Studies on Pasteurella multocida I: Ahaemagglutination test for the identification of serologicaltypes. America Journal of Veterinary Research, 16, 481- 484.

Chung J Y, Wilkie I, Boyce J D, Adler B. 2005. Vaccinationagainst fowl cholera with acapsular Pasteurella multocidaA:1. Vaccine, 23, 2751-2755

Chung J Y, Wilkie I, Boyce J D, Townsend K M, Frost AJ, Ghoddusi M, Adler B. 2001. Role of capsule in thepathogenesis of fowl cholera caused by Pasteurellamultocida serogroup A. Infection and Immunity, 69,2487-2492

Cole S P, Guiney D G, Corbeil L B. 1993. Molecular analysisof a gene encoding a serum-resistance-associated 76 kDasurface antigen of Haemophilus somnus. Journal GeneralMicrobiology, 9, 2135-2143

Dabo S M, Confer A W, Hartson S D. 2005. Adherenceof Pasteurella multocida to fibronectin. VeterinaryMicrobiology, 110, 265-275

Dabo S M, Confer A W, Quijano-Blas R A. 2003. Molecularand immunological characterization of Pasteurellamultocida serotype A:3 OmpA: Evidence of its role in P.multocida interaction with extracellular matrix molecules.Microbial Pathogenesis, 35, 147-157

Fernandez de Henswtrosa A R, Badiola I, Caco M, Perez deRozas A M, Campoy S, Barbe J. 1997. Importance of thegalE gene on the virulence of Pasteurella multocida. FEMSMicrobiology Letter, 154, 311-316

Fuller T E, Kennedy M J, Lowery D E. 2000. Identificationof Pasteurella multocida virulence genes in a septicemiamouse model using signature-tagged mutagenesis.Microbial Pathogenesis, 29, 25-38

Guo D C, Lu Y, Zhang A Q, Liu J S, Yuan D W, Jiang Q, Lin H,Si C D, Qu L D. 2012. Identification of genes transcribed byPasteurella multocida in rabbit livers through the selectivecapture of transcribed sequences. FEMS MicrobiologyLetters, 331, 105-112

Harper M, Cox A D, St Michael F, Wilkie I W, Boyce J D,Adler B. 2004. A heptosyltransferase mutant of Pasteurellamultocida produces a truncated lipopolysaccharidestructure and is attenuated in virulence. Infectionand Immunity, 72, 3436-3443

Harper M, Cox A D, Adler B, Boyce J D. 2011. Pasteurellamultocida lipopolysaccharide structures: The long and theshort of it. Veterinary Microbiology, 153, 109-115

Harper M, Cox A D, St Michael F, Ford M, Wilkie I W,Boyce J D, Adler B. 2010. Natural selection in the chickenhost inditifies 3-deoxy-D-manno-octuosonic acid kinaseresidues essential for phosphorylation of Pasteurellamultocida lipopolysaccharide. Infection and Immunity,78, 3669-3677

Heddleston K L, Gallagher J E, Rebers P A. 1972. Fowlcholera: Gel diffusion precipitin test for serotypingPasteurella multocida from avian species. Avian Diseases,16, 925-936

Johnson T J, Abrahante J E, Hunter S S, Hauglund M, TatumF M, Maheswaran S K, Briggs R E. 2013. Comparativegenome analysis of an avirulent and two virulent strainsof avian Pasteurella multocida reveals candidate genesinvolved in fitness and pathogenicity. BMC Microbiology,13, 106.

Kim T J, Lee J, Lee B. 2006. Develpment of a toxA geneknock-out mutant of Pasteurella multocida and evaluationof its protective effects. Journal of Microbiology, 44,320-326

Lainson F A, Dagleish M P, Fontaine M C, Bayne C, HodgsonJ C. 2013. Draft genome sequence of Pasteurella multocidaA:3 strain 671/90. Genome Announcements, 1, e00803-13

May B J, Zhang Q, Li L L, Paustian M L, Whittam T S, KapurV. 2001. Complete genomic sequence of Pasteurellamultocida, Pm70. Proceedings of the National Academyof Sciences of the United States of America, 98, 3460-3465

Steen J A, Steen J A, Harrison P, Seemann, Wilkie I, HarperM, Adler B, Boyce J D. 2010. Fis is essential for capsuleproduction in Pasteurella multocida and regulatesexpression of other important virulence factors. PLoSPathogens, 6, e1000750.

Tatum F M, Tabatabai L B, Briggs R E. 2009a. Protection againstfowl cholera conferred by vaccination with recombinantPasteurella multocida filamentous hemagglutinin peptides.Avian Diseases, 53, 169-174

Tatum F M, Tabatabai L B, Briggs R E. 2009b. Sialicacid uptake is necessary for virulence of Pasteurellamultocidain turkeys. Microbial Pathogenesis, 46, 337-344

Tatum F M, Yersin A G, Briggs R E. 2005. Construction andvirulence of a Pasteurella multocida fhaB2 mutant inturkeys. Microbial Pathogenesis, 39, 9-17

Wilson B A, Ho M. 2013. Pasteurella multocisa: from zoonosisto cellular microbiology. Clinical Microbiology Reviews,26, 631-654.
[1] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[2] Wei Wang, Renfu Zhang, Haiyang Liu, Ruifeng Ding, Qiushi Huang, Ju Yao, Gemei Liang. Development of a stable attenuated double-mutant of tobacco mosaic virus for cross-protection[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2318-2331.
[3] Yuhan Yang, Dou Wang, Yaning Bai, Wenyan Huang, Shimin Gao, Xingchen Wu, Ying Wang, Jianle Ren, Jinxin He, Lin Jin, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li, Libin Liang. Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2407-2420.
[4] Yue Jiang, Rong Wang, Lili Du, Xueyu Wang, Xi Zhang, Pengfei Qi, Qianfei Wu, Baoyi Peng, Zonghua Wang, Mo Wang, Ya Li.

The DNA damage repair complex MoMMS21–MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1956-1966.

[5] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[6] ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha. SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2126-2137.
[7] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[8] ZHAO Yi-ran, ZHAO Yu-zhong, LIU Si-dang, XIAO Yi-hong, LI Ning, LIU Kui-hao, MENG Fan-liang, ZHAO Jun, LIU Meng-da, LI Bao-quan.

Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021 [J]. >Journal of Integrative Agriculture, 2023, 22(3): 881-896.

[9] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[10] XU Bin, MA Zhe, ZHOU Hong, LIN Hui-xing, FAN Hong-jie. The vital role of CovS in the establishment of Streptococcus equi subsp. zooepidemicus virulence[J]. >Journal of Integrative Agriculture, 2023, 22(2): 568-584.
[11] CAO Peng, CHEN Jia-lan, LI Ning-ning, ZHANG Shuang-xi, WANG Rong-bo, LI Ben-jin, LIU Pei-qing, AN Yu-yan, ZHANG Mei-xiang. Seedling Petri-dish inoculation method: A robust, easy-to-use and reliable assay for studying plant–Ralstonia solanacearum interactions[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3709-3719.
[12] TANG Yang-yang, CUI Ying-ying, JIANG Yan-yan, SHAO Ming-zhu, ZANG Xin-xin, DANG Guang-hui, LIU Si-guo. Characteristics of Mycobacterium tuberculosis serine protease Rv1043c in enzymology and pathogenicity in mice[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3755-3768.
[13] ZHANG Xing-zhi, CHEN Shuang, Yakubu Saddeeq ABUBAKAR, MAO Xu-zhao, MIAO Peng-fei, WANG Zong-hua, ZHOU Jie, ZHENG Hua-wei. FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3444-3457.
[14] YANG Si-hua, ZHAO Li-rong, DING Sha, TANG Shi-qiao, CHEN Chun, ZHANG Huan-xin, XU Chun-ling, XIE Hui. Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2652-2664.
[15] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
No Suggested Reading articles found!