Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (3): 533-540    DOI: 10.1016/S2095-3119(13)60709-1
Section 2: Crop Improvement by iochar Soil Amendment Advanced Online Publication | Current Issue | Archive | Adv Search |
Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures
 LUO Yu, JIAO Yu-jie, ZHAO Xiao-rong, LI Gui-tong, ZHAO Li-xin , MENG Hai-bo
1、Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, Beijing 100125, P.R.China
2、College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R.China
3、Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture/Chinese Academy of Agricultural Engineering, Beijing 100125, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.

Abstract  Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.
Keywords:  biochar       feedstock       temperature       maize       soil  
Received: 09 October 2013   Accepted:
Fund: 

The study was supported by the National Natural Science Foundation of China (41171211) and the Special Fund for Agro-Scientific Research in the Public Interest, China (201303095-2).

Corresponding Authors:  LI Gui-tong, Tel: +86-10-62732963, E-mail: lgtong@cau.edu.cn     E-mail:  lgtong@cau.edu.cn
About author:  LUO Yu

Cite this article: 

LUO Yu, JIAO Yu-jie, ZHAO Xiao-rong, LI Gui-tong, ZHAO Li-xin , MENG Hai-bo. 2014. Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures. Journal of Integrative Agriculture, 13(3): 533-540.

Asadullah M, Zhang S, Min Z H, Yimsiri P, Li C. 2010. Evaluation of structural features of chars from pyrolysis of biomass of different particle sizes. Fuel Processing Technology, 91, 877-881

 Baldock J A, Smernik R J. 2002. Chemical composition and bioavailability of thermally altered Pinusresinosa (Red pine) wood. Organic Geochemistry, 33, 1093-1109

 Bauer A, Black A L. 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58, 185-193

 Beesley L, Moreno-Jiménez E, Gomez-Eyles L, Harris E, Robinson B, Sizmur T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269-3282

 Chan K Y, Xu Z. 2009. Biochar for environmental management science and technology. In: Lehmann J, Joseph S, eds., Biochar: Nutrient Properties and their Enhancement. Earthscan, London. pp. 67-84

 DeLuca T H, MacKenzie M D, Gundale M J. 2009. Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S, eds., Biochar for Environmental Management. Sterling, London. pp. 251-270

 DeLuca T H, MacKenzie M D, Gundale M J, Holben W E. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal, 70, 448.

Enders A, Whitman T, Joseph S, Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644-653

 Goldberg E D. 1985. Black Carbon in the Environment. John Wiley, New York. pp. 198-199

 Hossain M K, Strezov V, Chan K Y, Ziolkowski A, Nelson P F. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92, 223-228

 Jeffery S, Verheijen F G A, Van V M, Bastos A C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144, 175-187

 Kwapinski W, Byrne C M P, Kryachko E, Wolfram P, Adley C, Novotny E H, Hayes M H B. 2010. Biochar from biomass and waste. Waste Biomass Valorization, 1, 177-189

 Kuzyakov Y, Subbotina I, Chen H Q, Bogomolova I, Xu X L. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry, 41, 210-219

 Laird D, Fleming P, Wang B, Horton R, Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, 436-442

 Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623- 1627.

Lehmann J. 2007a. A handful of carbon. Nature, 447, 143- 144.

Lehmann J. 2007b. Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381-387

 Lehmann J, Gaunt J. 2006. Bio-char sequestration in terrestrial ecosystems. Mitigation and Adaptation Strategies for Global Change, 11, 395-419

 Lehmann J, Joseph S. 2009. Biochar for Environmental Management: Science and Technology. Sterling, VA, Earthscan, London. p. 416.

Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad J, Thies J, Luizão F J, Petersen J, et al. 2006. Black carbon increases cationexchange capacity in soils. Soil Science Society of America Journal, 70, 1719.

Luo R K. 1996. Soil Chemistry Analytical Method. China Agricultural Science and Technology Publishing House, Beijing.

Luo Y, Durenkamp M, Denobili, Lin Q M, Brookes P C. 2011. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology & Biochemistry, 43, 2304-2314

 Luo Y, Durenkamp M, Denobili, Lin Q M, Devonshire B J, Brookes P C. 2013. Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH. Soil Biology and Biochemistry, 57, 513-523

 Mathews J A. 2008. Carbon-negative biofuels. Energy Policy, 36, 940-945

 Nguyen B T, Lehmann J. 2009. Black carbon decomposition under varying water regimes. Organic Geochemistry, 40, 846-853

 Peng X, Ye L L, Wang C H, Zhou H, Sun B. 2011. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 112, 159-166

 Ro K S, Cantrell K B, Hunt P G. 2010. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Industrial & Engineering Chemistry Research, 49, 10125-10131

 Sanchez M E, Lindao E, Margaleff D, Martinez O, Moran A. 2009. Bio-Fuels and bio-char production from pyrolysis of sewage sludge. Journal of Residuals Science & Technology, 6, 35-41

 Steiner C, Teixeira W G, Lehmann J, Nehls T, Macêdo J L V, Blum W E H, Zech W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291, 275-290

 Verheijen F G A, Jeffery S, Bastos A C, Vander V M, Diafas I. 2010. Biochar Application to Soils: a Critical Scientific Review of Effects on Soil Properties, Processes and Functions. Office for the Official Publications of the European Communities, Luxembourg. Woolf D, Amonette J E, Street P, Alayne F, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications, 1, 1-9

 Yuan J H, Xu R K, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488-3497

 van Zwieten L, Kimber S, Morris S. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235- 246.
[1] Xiaotong Liu, Siwei Liang, Yijia Tian, Xiao Wang, Wenju Liang, Xiaoke Zhang. Effect of land use on soil nematode community composition and co-occurrence network relationship[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2807-2819.
[2] Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2820-2841.
[3] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[4] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[5] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[6] Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2446-2457.
[7] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[8] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[9] Guilong Li, Xiaofen Chen, Wenjing Qin, Jingrui Chen, Ke Leng, Luyuan Sun, Ming Liu, Meng Wu, Jianbo Fan, Changxu Xu, Jia Liu.

Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2099-2111.

[10] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[11] Shanshan Cai, Lei Sun, Wei Wang, Yan Li, Jianli Ding, Liang Jin, Yumei Li , Jiuming Zhang, Jingkuan Wang, Dan Wei.

Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1703-1717.

[12] Jiangkuan Cui, Haohao Ren, Bo Wang, Fujie Chang, Xuehai Zhang, Haoguang Meng, Shijun Jiang, Jihua Tang.

Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1593-1603.

[13] Jialin Yang, Liangqi Ren, Nanhai Zhang, Enke Liu, Shikun Sun, Xiaolong Ren, Zhikuan Jia, Ting Wei, Peng Zhang.

Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region? [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1541-1556.

[14] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[15] Jie Song, Dongsheng Yu, Siwei Wang, Yanhe Zhao, Xin Wang, Lixia Ma, Jiangang Li. Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales[J]. >Journal of Integrative Agriculture, 2024, 23(4): 1393-1408.
No Suggested Reading articles found!