Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4271-4281    DOI: 10.1016/j.jia.2025.07.022
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Haplotype-resolved telomere-to-telomere reference genome of sweet cherry ‘Tieton’ v3.0 characterized the large fragment deletion associated with yellow-skinned variety

Ting Yu1*, Ke Lin1, 2*, Dongzi Zhu1, Xingyan Li1, Qian Qiao1, Po Hong1, Shibo Lin3, Quanfu Zhang3, Qingzhong Liu1#, Jiawei Wang1#

1 Shandong Institute of Pomology, Tai’an 271000, China

2 School of Biology and Brewing Engineering, Taishan University, Tai’an 271000, China

3 Yantai Yaohua Agricultural Technology Limited Company, Yantai 264003, China

 Highlights 
This study presents the assembly of a haplotype-resolved telomere-to-telomere reference genome of sweet cherry ‘Tieton’ v3.0.
The sweet cherry ‘Tieton’ v3.0 reference genome enabled the characterization of a large fragment deletion associated with the yellow-skinned variety.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
甜樱桃(Prunus avium)是温带地区的重要核果树种之一。自第一个甜樱桃基因组发布以来,甜樱桃的分子育种取得了重大进展。已发表甜樱桃的基因组中存在的缺口较多,且嵌合序列无法区分单倍型等位基因信息,大大限制了对一些重要农艺性状的遗传研究。在本研究中,我们获得了甜樱桃“美早”单倍型解析端粒到端粒的参考基因组。在“美早”两个单倍型基因组中共有653.03 Mb的序列挂载到16个染色体,共预测了67,012个编码基因,其中,在hapA中包含33,777个基因,hapB中包含33,235个基因。该基因组的单碱基准确率的质量值超过44,conting N50超过17.94 Mb,有胚植物单拷贝同源基因基集(BUSCO)完整性达到98.7%,长末端重复序列组装指数(LAI)超过20,达到了金标准的水平。该基因组提供了单倍型解析的染色体组,全面解析了甜樱桃杂合二倍体基因组的结构差异。此外,利用该参考基因组,我们鉴定了与甜樱桃“13-33”黄色果皮性状相关的一个大片段缺失。期望该基因组能够为甜樱桃育种工作和遗传学研究的提供帮助。


Abstract  

Sweet cherry (Prunus avium) represents a significant stone fruit crop in temperate regions worldwide.  While molecular breeding has progressed substantially following the initial sweet cherry genome release, existing genome assemblies contain unresolved gaps and comprise consensus chimeric sequences that fail to differentiate haplotype alleles, significantly constraining research on important agronomic trait inheritance.  This study presents a phased-resolved telomere-to-telomere reference genome of sweet cherry ‘Tieton’.  The assembly anchors 653.03 Mb of sequence onto 16 pseudochromosomes representing two haplotypes, with 67,012 coding genes identified (33,777 in hapA and 33,235 in hapB).  The genome demonstrates superior quality metrics, including a consensus accuracy exceeding QV44, contig N50 above 17.94 Mb, Benchmarking Universal Single-Copy Orthologs completeness of 98.7%, and a long terminal repeat (LTR) assembly index exceeding 20.  This genome provides phased and annotated chromosome pairs, offering a comprehensive view of sweet cherry’s diploid genome organization.  Utilizing this reference genome, we identified a large fragment deletion associated with yellow-skinned fruit in sweet cherry ‘13-33’.  This resource will significantly enhance breeding efforts and genetic research in sweet cherries.


Keywords:  sweet cherry       nanopore       Hi-C       genomic       chromosomal assembly  
Received: 20 August 2024   Accepted: 09 June 2025 Online: 21 July 2025  
Fund: 

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2021MC117) and the Key R&D Program of Shandong Province, China (2022TZXD006).

About author:  #Correspondence Jiawei Wang, Tel: +86-538-8266605, E-mail: wangjw-sdip@qq.com; Qingzhong Liu, Tel: +86-538-8266663, E-mail: qzliu001@126.com * These authors contributed equally to this study.

Cite this article: 

Ting Yu, Ke Lin, Dongzi Zhu, Xingyan Li, Qian Qiao, Po Hong, Shibo Lin, Quanfu Zhang, Qingzhong Liu, Jiawei Wang. 2025. Haplotype-resolved telomere-to-telomere reference genome of sweet cherry ‘Tieton’ v3.0 characterized the large fragment deletion associated with yellow-skinned variety. Journal of Integrative Agriculture, 24(11): 4271-4281.

Alioto T, Alexiou K G, Bardil A, Barteri F, Castanera R, Cruz F, Dhingra A, Duval H, Martí A F I, Frias L, Galán B, García J L, Howad W, Gómez-Garrido J, Gut M, Julca I, Morata J, Puigdomènech P, Ribeca P, Cabetas M J R, et al. 2020. Transposons played a major role in the diversification between the closely related almond and peach genomes: Results from the almond genome sequence. Plant Journal101, 455–472.

Blazek J, Zeleny L, Suran P. 2022. Sweet cherry research world overview 2015–2017. Horticultural Science49, 121–146.

Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C. 2012. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell24, 1242–1255.

Calle A, Wünsch A. 2020. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Horticulture Research7, 127.

Cao K, Yang X, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Wang L. 2021. New high-quality peach (Prunus persica L. Batsch) genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits. Plant Journal108, 281–295.

Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, Muñoz P, Triviño J C, Caruana J, Liu Z, Cobo N, Hardigan M A, Knapp S J, Vallarino J G, Osorio S, Martín-Pizarro C, Posé D, Toivainen T, Hytönen T, Oh Y, Barbey C R, et al. 2020. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. Plant Cell32, 3723–3749.

Chagné D, Kui L W, Espley R V, Volz R K, How N M, Rouse S, Brendolise C, Carlisle C M, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst R N, Storey R D, Velasco R, Hellens R P, Gardiner S E, Allan A C. 2013. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology161, 225–239.

Cheng H, Concepcion G T, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods18, 170–175.

Danecek P, Bonfield J K, Liddle J, Marshall J, Ohan V, Pollard M O, Whitwham A, Keane T, McCarthy S A, Davies R M, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience10, giab008.

Dong Y X, Qi X L, Liu C L, Song L L, Ming L. 2022. A sweet cherry AGAMOUS-LIKE transcription factor PavAGL15 affects fruit size by directly repressing the PavCYP78A9 expression. Scientia Horticulturae297, 110947.

Donkpegan A S, Bernard A, Barreneche T, Quero-García J, Bonnet H, Fouché M, Le Dantec L, Wenden B, Dirlewanger E. 2023. Genome-wide association mapping in a sweet cherry germplasm collection (Prunus avium L.) reveals candidate genes for fruit quality traits. Horticulture Research10, uhad191.

Dudchenko O, Batra S S, Omer A D, Nyquist S K, Hoeger M, Durand N C, Shamim M S, Machol I, Lander E S, Aiden A P, Aiden E L. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science356, 92–95.

Durand N C, Shamim M S, Machol I, Rao S S, Huntley M H, Lander E S, Aiden E L. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems3, 95–98.

Edger P P, Poorten T J, VanBuren R, Hardigan M A, Colle M, McKain M R, Smith R D, Teresi S J, Nelson D L, Wai C M, Alger E I, Bird K A, Yocca A E, Pumplin N, Ou S, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, et al. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics51, 541–547.

Emms D M, Kelly S. 2019. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology20, 238.

Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell21, 168–183.

Fiol A, García-Gómez B E, Jurado-Ruiz F, Alexiou K, Howad W, Aranzana M J. 2021. Characterization of Japanese plum (Prunus salicinaPsMYB10 alleles reveals structural variation and polymorphisms correlating with fruit skin color. Frontiers in Plant Science12, 655267.

Foster T M, Celton J M, Chagné D, Tustin D S, Gardiner S E. 2015. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Horticulture Research2, 15001.

Fu A, Zheng Y, Guo J, Grierson D, Zhao X, Wen C, Liu Y, Li J, Zhang X, Yu Y, Ma H, Wang Q, Zuo J. 2022. Telomere-to-telomere genome assembly of bitter melon (Momordica charantia L. var. abbreviata Ser.) reveals fruit development, composition and ripening genetic characteristics. Horticulture Research10, uhac228.

Hoff K J, Stanke M. 2019. Predicting genes in single genomes with AUGUSTUS. Current Protocols in Bioinformatics65, e57.

Holusova K, Cmejlova J, Suran P, Cmejla R, Sedlak J, Zeleny L, Bartos J. 2023. High-resolution genome-wide association study of a large Czech collection of sweet cherry (Prunus avium L.) on fruit maturity and quality traits. Horticulture Research10, uhac233.

Huang D, Wang X, Tang Z, Yuan Y, Xu Y, He J, Jiang X, Peng S A, Li L, Butelli E, Deng X, Xu Q. 2018. Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus. Nature Plants4, 930–941.

Hubley R, Finn R D, Clements J, Eddy S R, Jones T A, Bao W, Smit A F, Wheeler T J. 2016. The Dfam database of repetitive DNA families. Nucleic Acids Research44, D81–D89.

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund S K, Cook H, Mende D R, Letunic I, Rattei T, Jensen L J, von Mering C, Bork P. 2019. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research47, D309–D314.

Jin W, Wang H, Li M, Wang J, Yang Y, Zhang X, Yan G, Zhang H, Liu J, Zhang K. 2016. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnology Journal14, 2120–2133.

Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics5, 59.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: An information aesthetic for comparative genomics. Genome Research19, 1639–1645.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. BMC Bioinformatics26, 589–595.

Kui L W, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T K, Espley R V, Hellens RP, Allan A C. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in RosaceaeBMC Plant Biology10, 50.

Lin Y, Ye C, Li X, Chen Q, Wu Y, Zhang F, Pan R, Zhang S, Chen S, Wang X, Cao S, Wang Y, Yue Y, Liu Y, Yue J. 2023. quarTeT: A telomere-to-telomere toolkit for gap-free genome assembly and centromeric repeat identification. Horticulture Research10, uhad127.

Liu C, Qi X, Song L, Chen L, Dong Y, Pan F, Zheng W, Li Y, Zhao B, Guo W, Li M, Wang Z. 2023. Large-fragment deletion encompasses the R2R3 MYB transcription factor, PavMYB10.1, causes yellow fruits in sweet cherry (Prunus avium L.). Scientia Horticulturae309, 111648.

Lomsadze A, Ter-Hovhannisyan V, Chernoff Y O, Borodovsky M. 2005. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research33, 6494–6506.

Majoros W H, Pertea M, Salzberg S L. 2004. TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. BMC Bioinformatics20, 2878–2879.

Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Research46, e126.

Rautiainen M, Nurk S, Walenz B P, Logsdon G A, Porubsky D, Rhie A, Eichler E E, Phillippy A M, Koren S. 2023. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nature Biotechnology41, 1474–1482.

Rhie A, Walenz B P, Koren S, Phillippy A M. 2020. Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biology21, 245.

Seppey M, Manni M, Zdobnov E M. 2019. BUSCO: Assessing genome assembly and annotation completeness. Methods in Molecular Biolgy1962, 227–245.

Shen T J, Wen X P, Wen Z, Qiu Z L, Hou Q D, Li Z C, Mei L N, Yu H H, Qiao G. 2021. Genome-wide identification and expression analysis of bHLH transcription factor family in response to cold stress in sweet cherry (Prunus avium L.). Scientia Horticulturae279, 109905.

Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S. 2017. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Research24, 499–508.

Sooriyapathirana S S, Khan A, Sebolt A M, Wang D, Bushakra J M, Kui L W, Allan A C, Gardiner S E, Chagné D, Iezzoni A F. 2010. QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genetics & Genomes, 6, 821–832.

Sun C, Wang C, Zhang W, Liu S, Wang W, Yu X, Song T, Yu M, Yu W, Qu S. 2021. The R2R3-type MYB transcription factor MdMYB90-like is responsible for the enhanced skin color of an apple bud sport mutant. Horticulture Research8, 156.

Sun X, Jiao C, Schwaninger H, Chao C T, Ma Y, Duan N, Khan A, Ban S, Xu K, Cheng L, Zhong G Y, Fei Z. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics52, 1423–1432.

Tang H, Bowers J E, Wang X, Ming R, Alam M, Paterson A H. 2008. Synteny and collinearity in plant genomes. Science320, 486–488.

Testa A C, Hane J K, Ellwood S R, Oliver R P. 2015. CodingQuarry: Highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics16, 170.

Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori M T, Schmutz J. 2017. The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics18, 225.

Walker A R, Lee E, Bogs J, McDavid D A, Thomas M R, Robinson S P. 2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant Journal49, 772–785.

Wan T, Feng Y, Liang C L, Pan L Y, He L, Cai Y L. 2021. Metabolomics and transcriptomics analyses of two contrasting cherry rootstocks in response to drought stress. Biology-Basel10, 201.

Wang J, Liu W, Zhu D, Hong P, Zhang S, Xiao S, Tan Y, Chen X, Xu L, Zong X, Zhang L, Wei H, Yuan X, Liu Q. 2020. Chromosome-scale genome assembly of sweet cherry (Prunus avium L.) cv. Tieton obtained using long-read and Hi-C sequencing. Horticulture Research7, 122.

Wang J Y, Sun W X, Wang L, Liu X J, Xu Y, Sabir I A, Jiu S T, Wang S P, Zhang C X. 2022. FRUITFULL is involved in double fruit formation at high temperature in sweet cherry. Environmental and Experimental Botany201, 104986.

Wang L, Feng Y, Wang Y, Zhang J, Chen Q, Liu Z, Liu C, He W, Wang H, Yang S, Zhang Y, Luo Y, Tang H, Wang X. 2022. Accurate chromosome identification in the Prunus Subgenus Cerasus (Prunus pseudocerasus) and its relatives by Oligo-FISH. International Journal of Molecular Sciences23, 13213.

Wang Z, Meng D, Wang A, Li T, Jiang S, Cong P, Li T. 2013. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology162, 885–896.

Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q. 2015. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS ONE10, e0121164.

Xu M, Guo L, Gu S, Wang O, Zhang R, Peters B A, Fan G, Liu X, Xu X, Deng L, Zhang Y. 2020. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience9, giaa094.

Yue J, Chen Q, Wang Y, Zhang L, Ye C, Wang X, Cao S, Lin Y, Huang W, Xian H, Qin H, Wang Y, Zhang S, Wu Y, Wang S, Yue Y, Liu Y. 2023. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensisHorticulture Research10, uhac264.

Zhang L, Hu J, Han X, Li J, Gao Y, Richards C M, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, et al. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications10, 1494.

Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, Hamilton J P, Visser R G F, Bachem C W B, Robin Buell C, Zhang Z, Zhang C, Huang S. 2020. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics52, 1018–1023.

Zhou Y H, Xiong J S, Shu Z Q, Dong C, Gu T T, Sun P C, He S, Jiang M, Xia Z Q, Xue J Y, Khan W U, Chen F, Cheng Z M. 2023. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. Horticulture Research10, uhad027.

[1] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[2] Min Tu, Zhongfeng Zhu, Xinyang Zhao, Haibin Cai, Yikun Zhang, Yichao Yan, Ke Yin, Zhimin Sha, Yi Zhou, Gongyou Chen, Lifang Zou. The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3112-3126.
[3] Shihui Chu, Xinghua Nie, Chaoxin Li, Wenyan Sun, Yang Liu, Kefeng Fang, Ling Qin, Yu Xing. Development and characterization of genome-wide microsatellite molecular markers for Chinese chestnut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2655-2669.
[4] Martín Flores-Saavedra, Pietro Gramazio, Santiago Vilanova, Diana M. Mircea, Mario X. Ruiz-González, Óscar Vicente, Jaime Prohens, Mariola Plazas. Introgressed eggplant lines with the wild Solanum incanum evaluated under drought stress conditions[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2203-2216.
[5] Xi Tang, Lei Xie, Min Yan, Longyun Li, Tianxiong Yao, Siyi Liu, Wenwu Xu, Shijun Xiao, Nengshui Ding, Zhiyan Zhang, Lusheng Huang . Genomic selection for meat quality traits based on VIS/NIR spectral information[J]. >Journal of Integrative Agriculture, 2025, 24(1): 235-245.
[6] Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao.

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1634-1643.

[7] Jun Zhou, Qing Lin, Xueyan Feng, Duanyang Ren, Jinyan Teng, Xibo Wu, Dan Wu, Xiaoke Zhang, Xiaolong Yuan, Zanmou Chen, Jiaqi Li, Zhe Zhang, Hao Zhang.

Evaluating the performance of genomic selection on purebred population by incorporating crossbred data in pigs [J]. >Journal of Integrative Agriculture, 2024, 23(2): 639-648.

[8] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
[9] Jie Cheng, Xiukai Cao, Shengxuan Wang, Jiaqiang Zhang, Binglin Yue, Xiaoyan Zhang, Yongzhen Huang, Xianyong Lan, Gang Ren, Hong Chen. 3D genome organization and its study in livestock breeding[J]. >Journal of Integrative Agriculture, 2024, 23(1): 39-58.
[10] ZHAO Chun-hua, ZHANG Na, FAN Xiao-li, JI Jun, SHI Xiao-li, CUI Fa, LING Hong-qing, LI Jun-ming. Dissecting the key genomic regions underlying high yield potential in common wheat variety ‘Kenong 9204’[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2603-2616.
[11] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
[12] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[13] YANG Ning, YANG Dan-dan, YU Xu-chen, XU Cao. Multi-omics-driven development of alternative crops for natural rubber production[J]. >Journal of Integrative Agriculture, 2023, 22(4): 959-971.
[14] TENG Jin-yan, YE Shao-pan, GAO Ning, CHEN Zi-tao, DIAO Shu-qi, LI Xiu-jin, YUAN Xiao-long, ZHANG Hao, LI Jia-qi, ZHANG Xi-quan, ZHANG Zhe. Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1126-1136.
[15] WU Fan-lin, QU De-hui, TIAN Wei, WANG Meng-yun, CHEN Fei-yan, LI Ke-ke, SUN Ya-dong, SU Ying-hua, YANG Li-na, SU Hong-yan, WANG Lei. Transcriptome analysis for understanding the mechanism of dark septate endophyte S16 in promoting the growth and nitrate uptake of sweet cherry[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1819-1831.
No Suggested Reading articles found!