Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3895-3908    DOI: 10.1016/j.jia.2025.06.024
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparative transcriptomic analysis of Chinese cabbage’s defense responses to Alternaria brassicae

Qi Zeng1, Qingguo Sun1, Xinru Hou1, Lin Chen1, Ruixing Zhang1, Xue Bai1, Xifan Liu1, Xiaowu Wang2, Lugang Zhang1, Baohua Li1#

1 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, China

2 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 
BrERF109 is identified as a key positive regulator in Chinese cabbage against Alternaria brassicae infection.
BrERF109 activates BrIGMT4 expression through binding to its promoter.
BrERF109 enhances plant defense against A. brassicae through indolic glucosinolates accumulation.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
大白菜黑斑病是由芸苔链格孢(Alternaria brassicae)引起的真菌病害,对大白菜造成严重的危害。通过转录组学的分析,我们探讨了大白菜对芸苔链格孢防御反应的分子机制。值得注意的是,我们发现BrERF109在大白菜受到芸苔链格孢侵染后显著上调。通过优化的VIGS技术,在大白菜中沉默BrERF109降低了大白菜对芸苔链格孢的抗病性,而在拟南芥中过表达BrERF109增强了对芸苔链格孢的抗病性。进一步,我们发现在大白菜中沉默BrERF109抑制了吲哚族芥子油苷基因的表达,吲哚族芥子油苷含量显著降低,而在拟南芥中过表达BrERF109增加了吲哚族芥子油苷的含量。进一步研究发现,BrERF109可以直接结合BrIGMT4的启动子,从而促进吲哚族芥子油苷的积累,积极防御芸苔链格孢的侵染。我们的研究揭示了BrERF109-BrIGMT4 调控模块在大白菜防御芸苔链格孢中的作用,并进一步为探索植物与芸苔链格孢的相互作用提供有价值的数据。


Abstract  

Black spot, a fungal disease caused by Alternaria brassicae infection, inflicts severe damage on Chinese cabbage.  Through comparative transcriptomic analysis, this study investigated the molecular mechanisms underlying Chinese cabbage’s defense responses to Abrassicae infection.  Notably, we found that the expression of BrERF109 was induced by Abrassicae infection.  Silencing of BrERF109 by an optimized virus-induced gene silencing (VIGS) assay in Chinese cabbage diminished disease resistance, while BrERF109-overexpression in Arabidopsis enhanced it.  Additionally, BrERF109 silencing in Chinese cabbage suppressed indolic glucosinolates gene expression, substantially reducing indolic glucosinolates levels, whereas BrERF109-overexpression in Arabidopsis promoted their accumulation.  BrERF109 directly interacts with the BrIGMT4 promoter, thereby facilitating indolic glucosinolates accumulation and enhancing defense against Abrassicae.  This study elucidates the BrERF109-BrIGMT4 regulatory module in Chinese cabbage’s defense against Abrassicae infection, while providing valuable data for further investigation of plant–Abrassicae interactions.


Keywords:  Chinese cabbage       black spot       RNA-seq       BrERF109       indolic glucosinolates  
Received: 07 July 2024   Online: 24 June 2025   Accepted: 08 April 2025
Fund: 

This work was supported by the National Key Research and Development Program of China (2022YFF1003003), the National Natural Science Foundation of China (32070333), and the Key Research and Development Program of Yangling Seed Innovative Center (Ylzy-sc-04). 

About author:  Qi Zeng, E-mail: zengqi@nwafu.edu.cn; #Correspondence Baohua Li, E-mail: baohuali@nwafu.edu.cn

Cite this article: 

Qi Zeng, Qingguo Sun, Xinru Hou, Lin Chen, Ruixing Zhang, Xue Bai, Xifan Liu, Xiaowu Wang, Lugang Zhang, Baohua Li. 2025. Comparative transcriptomic analysis of Chinese cabbage’s defense responses to Alternaria brassicae. Journal of Integrative Agriculture, 24(10): 3895-3908.

Ahmed S S, Gong Z H, Ji J J, Yin Y X, Xiao H J, Khan M A, Rehman A, Ahmad I. 2012. Construction of the intermediate vector pVBG2307 by incorporating vital elements of expression vectors pBI121 and pBI221. Genetics and Molecular Research11, 3091–3104.

Al-Lami H F D, You M P, Banga S S, Barbetti M J. 2023. Novel resistances provide new avenues to manage Alternaria leaf spot (Alternaria brassicae) in canola (Brassica napus), mustard (Bjuncea), and other Brassicaceae crops. Plant Disease107, 372–381.

Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology55, 373–399.

Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics25, 25–29.

Bai X, Zhang R, Zeng Q, Yang W, Fang F, Sun Q, Yan C, Li F, Liu X, Li B. 2024. The RNA-binding protein BoRHON1 positively regulates the accumulation of aliphatic glucosinolates in cabbage. International Journal of Molecular Sciences25, 5314.

Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science323, 101–106.

Birkenbihl R P, Diezel C, Somssich I E. 2012. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiology159, 266–285.

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. 2023. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant16, 1733–1742.

Chen H, Wang T, He X, Cai X, Lin R, Liang J, Wu J, King G, Wang X. 2022. BRAD V3.0: An upgraded Brassicaceae database. Nucleic Acids Research50, D1432–D1441.

Chen J, Wang H, Li Y, Pan J, Hu Y, Yu D. 2018. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinereaJournal of Integrative Plant Biology60, 956–969.

Chen L, Li C, Zhang J, Li Z, Zeng Q, Sun Q, Wang X, Zhao L, Zhang L, Li B. 2024. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress. Journal of Integrative Agriculture23, 2255–2269.

Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D. 2021. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. Journal of Experimental Botany72, 1473–1489.

Chen W, Zhang Q, Kong J, Hu F, Li B, Wu C, Qin C, Zhang P, Shi N, Hong Y. 2015. MR VIGS: MicroRNA-based virus-induced gene silencing in plants. Methods in Molecular Biology1287, 147–157.

Clay N K, Adio A M, Denoux C, Jander G, Ausubel F M. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science323, 95–101.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaThe Plant Journal16, 735–743.

Dai Y, Zhang L, Sun X, Li F, Zhang S, Zhang H, Li G, Fang Z, Sun R, Hou X, Zhang S. 2022. Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures. Scientific Reports12, 6308.

Dangl J L, Jones J D. 2001. Plant pathogens and integrated defence responses to infection. Nature411, 826–833.

Del Carmen Martínez-Ballesta M, Moreno D A, Carvajal M. 2013. The physiological importance of glucosinolates on plant response to abiotic stress in BrassicaInternational Journal of Molecular Sciences14, 11607–11625.

Dhiman S, Singh S, Varma A, Goel A. 2021. Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of BrassicaBiometals34, 1275–1293.

Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology40, 750–776.

Frerigmann H, Gigolashvili T. 2014. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thalianaMolecular Plant7, 814–828.

Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. 2022. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. The Plant Journal111, 473–495.

Ghosh S K, Banerjee S, Pal S, Chakraborty N. 2018. Encountering epidemic effects of leaf spot disease (Alternaria brassicae) on Aloe vera by fungal biocontrol agents in agrifields - An ecofriendly approach. PLoS ONE13, e0193720.

Gong B Q, Wang F Z, Li J F. 2020. Hide-and-seek: Chitin-triggered plant immunity and fungal counterstrategies. Trends in Plant Science25, 805–816.

Guo L, Li C, Jiang Y, Luo K, Xu C. 2020. Heterologous expression of poplar WRKY18/35 paralogs in Arabidopsis reveals their antagonistic regulation on pathogen resistance and abiotic stress tolerance via variable hormonal pathways. International Journal of Molecular Sciences21, 5440.

Hao D, Ohme-Takagi M, Sarai A. 1998. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. Journal of Biological Chemistry273, 26857–26861.

Javed T, Gao S J. 2023. WRKY transcription factors in plant defense. Trends in Genetics39, 787–801.

Kamble S, Mukherjee P K, Eapen S. 2016. Expression of an endochitinase gene from Trichoderma virens confers enhanced tolerance to Alternaria blight in transgenic Brassica juncea (L.) czern and coss lines. Physiology and Molecular Biology of Plants22, 69–76.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research36, D480–D484.

Kliebenstein D J, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiology126, 811–825.

Li J, Meng Y, Zhang K, Li Q, Li S, Xu B, Georgiev M I, Zhou M. 2021. Jasmonic acid-responsive RRTF1 transcription factor controls DTX18 gene expression in hydroxycinnamic acid amide secretion. Plant Physiology185, 369–384.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Madloo P, Lema M, Francisco M, Soengas P. 2019. Role of major glucosinolates in the defense of Kale against Sclerotinia sclerotiorum and Xanthomonas campestris pv. campestrisPhytopathology109, 1246–1256.

Meena P D, Awasthi R, Chattopadhyay C, Kolte S J, Kumar A. 2016. Alternaria blight: A chronic disease in rapeseed-mustard. Journal of Oilseed Brassica1, 1–11.

Michereff S J, Noronha M A, Filha M S X, Câmara M P S, Reis A. 2012. Survey and prevalence of species causing Alternaria leaf spots on brassica species in Pernambuco. Horticultura Brasileira30, 345–348.

Mir Z A, Ali S, Shivaraj S M, Bhat J A, Singh A, Yadav P, Rawat S, Paplao P K, Grover A. 2020. Genome-wide identification and characterization of chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicaeGenomics112, 749–763.

Mondal K K, Chatterjee S C, Viswakarma N, Bhattacharya R C, Grover A. 2003. Chitinase-mediated inhibitory activity of Brassica transgenic on growth of Alternaria brassicaeCurrent Microbiology47, 171–173.

Nowakowska M, Wrzesinska M, Kaminski P, Szczechura W, Lichocka M, Tartanus M, Kozik E U, Nowicki M. 2019. Alternaria brassicicola–Brassicaceae pathosystem: Insights into the infection process and resistance mechanisms under optimized artificial bio-assay. European Journal of Plant Pathology153, 131–151.

Nowicki M, Nowakowska M, Niezgoda A, Kozik E. 2012. Alternaria black spot of Crucifers: Symptoms, importance of disease, and perspectives of resistance breeding. Vegetable Crops Research Bulletin76, 5–19.

Parada R Y, Sakuno E, Mori N, Oka K, Egusa M, Kodama M, Otani H. 2008. Alternaria brassicae produces a host-specific protein toxin from germinating spores on host leaves. Phytopathology98, 458–463.

Rajarammohan S. 2023. Transcriptome analysis of the necrotrophic pathogen Alternaria brassicae reveals insights into its pathogenesis in Brassica junceaMicrobiology Spectrum11, e0293922.

Rajarammohan S, Kumar A, Gupta V, Pental D, Pradhan A K, Kaur J. 2017. Genetic architecture of resistance to Alternaria brassicae in Arabidopsis thaliana: QTL mapping reveals two major resistance-conferring loci. Frontiers in Plant Science8, 260.

Rajarammohan S, Paritosh K, Pental D, Kaur J. 2019a. Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae - a pathogen of the Brassicaceae family. BMC Genomics20, 1036.

Rajarammohan S, Pental D, Kaur J. 2019b. Near-complete genome assembly of Alternaria brassicae-a necrotrophic pathogen of Brassica crops. Molecular Plant-Microbe Interactions32, 928–930.

Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research13, 2498–2504.

Sharma G, Dinesh Kumar V, Haque A, Bhat S R, Prakash S, Chopra V L. 2002. Brassica coenospecies: A rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicaeEuphytica125, 411–417.

Shen Y, Wang J, Shaw R K, Sheng X, Yu H, Branca F, Gu H. 2023. Comparative transcriptome and targeted metabolome profiling unravel the key role of phenylpropanoid and glucosinolate pathways in defense against Alternaria brassicicola in broccoli. Journal of Agricultural and Food Chemistry71, 6499–6510.

Shinya T, Nakagawa T, Kaku H, Shibuya N. 2015. Chitin-mediated plant-fungal interactions: Catching, hiding and handshaking. Current Opinion in Plant Biology26, 64–71.

Sønderby I E, Geu-Flores F, Halkier B A. 2010. Biosynthesis of glucosinolates-gene discovery and beyond. Trends in Plant Science15, 283–290.

Tang Y, Lai Y, Liu Y. 2013. Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamianaMethods in Molecular Biology975, 99–107.

Tao H, Miao H, Chen L, Wang M, Xia C, Zeng W, Sun B, Zhang F, Zhang S, Li C, Wang Q. 2022. WRKY33-mediated indolic glucosinolate metabolic pathway confers resistance against Alternaria brassicicola in Arabidopsis and Brassica crops. Journal of Integrative Plant Biology64, 1007–1019.

Vahabi K, Reichelt M, Scholz S S, Furch A C U, Matsuo M, Johnson J M, Sherameti I, Gershenzon J, Oelmüller R. 2018. Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformsopora indica hyphal network and activate abscisic acid responses. Frontiers in Plant Science9, 626.

Wang H, Guo Y, Luo Z, Gao L, Li R, Zhang Y, Kalaji H M, Qiang S, Chen S. 2022a. Recent advances in Alternaria phytotoxins: A review of their occurrence, structure, bioactivity, and biosynthesis. Journal of Fungi (Basel), 8, 168.

Wang H, Zheng Y, Xiao D, Li Y, Liu T, Hou X. 2022b. BcWRKY33A enhances resistance to Botrytis cinerea via activating BcMYB51-3 in non-heading Chinese cabbage. International Journal of Molecular Sciences23, 8222.

Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. 2020. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. Planta252, 42.

Yang L, Zhang Y, Guan R, Li S, Xu X, Zhang S, Xu J. 2020. Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways. Journal of Integrative Plant Biology62, 1780–1796.

Zhang R, Liu Y, Pan Q, Khan A, Bai X, Ali M, Yang W, Zhang L, Li B. 2023. The effects of short term blue light treatment on promoting nutrition value in Chinese cabbage. Food Chemistry412, 135542.

Zhao M, Ma L, Song N, Cheng J, Zhao Z, Wu J. 2022. The regulation of Alternaria alternata resistance by LRR-RK4 through ERF109, defensin19 and phytoalexin scopoletin in Nicotiana attenuataPlant Science323, 111414.

Zheng Z, Qamar S A, Chen Z, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal48, 592–605.

Zhu Y, Zhang X, Zhang Q, Chai S, Yin W, Gao M, Li Z, Wang X. 2022. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Molecular Plant Pathology23, 1415–1432.

[1] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[2] Changning Wei, Hui Cao, Chenxu Li, Hongyu Song, Qing Liu, Xingquan Zhu, Wenbin Zheng. Differences in N6-methyladenosine (m6A) methylation among the three major clonal lineages of Toxoplasma gondii tachyzoites[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2810-2825.
[3] Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng, Jianjun Zhao. The circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2155-2170.
[4] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[5] Xiaochun Wei, Yuanlin Zhang, Yanyan Zhao, Weiwei Chen, Ujjal Kumar Nath, Shuangjuan Yang, Henan Su, Zhiyong Wang, Wenjing Zhang, Baoming Tian, Fang Wei, Yuxiang Yuan, Xiaowei Zhang. Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1092-1107.
[6] Jiamao Gu, Pengkun Liu, Wenting Nie, Zhijun Wang, Xiaoyu Cui, Hongdan Fu, Feng Wang, Mingfang Qi, Zhouping Sun, Tianlai Li, Yufeng Liu. Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystem II from damage via the WRKY22–PsbA complex under low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(2): 546-563.
[7] Lin Chen, Chao Li, Jiahao Zhang, Zongrui Li, Qi Zeng, Qingguo Sun, Xiaowu Wang, Limin Zhao, Lugang Zhang, Baohua Li. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2255-2269.
[8] Yuan Gao, Fuxia Bai, Qi Zhang, Xiaoya An, Zhaofei Wang, Chuzhao Lei, Ruihua Dang. Dynamic transcriptome profiles and novel markers in bovine spermatogenesis revealed by single-cell sequencing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2362-2378.
[9] Ying Ding, Qiong Zhi, Qisheng Zuo, Kai Jin, Wei Han, Bichun Li.

Transcriptome-based analysis of key signaling pathways affecting the formation of primordial germ cell in chickens [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1644-1657.

[10] Liping Song, Xia Li, Liguang Tang, Chuying Yu, Bincai Wang, Changbin Gao, Yanfeng Xie, Xueli Zhang, Junliang Wang, Chufa Lin, Aihua Wang.

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis) [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1195-1204.

[11] Jing Zhang, Zhaochen Wu, Shuo Li, He Huang, Suning Liu, Weimin Liu, Xiaoming Zhao, Jianzhen Zhang.

Development and formation of wing cuticle based on transcriptomic analysis in Locusta migratoria during metamorphosis [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1285-1299.

[12] Dongfang Zhao, Haobo Zhang, Xinyang Zhang, Fengwei Jiang, Yijing Li, Wentong Cai, Ganwu Li.

The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology [J]. >Journal of Integrative Agriculture, 2024, 23(2): 649-668.

[13] Lan Huang, Qixin Guo, Yong Jiang, Zhixiu Wang, Guohong Chen, Guobin Chang, Hao Bai. Transcriptome analysis reveals the genetic basis of crest cushion formation in duck[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4172-4185.
[14] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[15] Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu.

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts [J]. >Journal of Integrative Agriculture, 2024, 23(1): 239-250.

No Suggested Reading articles found!