Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4342-4354    DOI: 10.1016/j.jia.2025.03.028
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Baseline establishment, susceptibility monitoring and risk assessment of cyproflanilide, a novel meta-diamide insecticide, against Chilo suppressalis (Lepidoptera: Crambidae) in China

Wenchao Ge*, Songtao Qiao*, Chong Liu, Fangrui Guo, Shuai Wang, Hao Sun, Yan Liu, Fengxia Yang, Shunfan Wu, Congfen Gao#

College of Plant Protection/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China

 Highlights 

The baseline of susceptibility of Chilo suppressalis to cyproflanilide was established as LD50=0.122 ng/larva by topical application and LC50=0.026 mg L–1 by the rice-seedling dipping method.
The realized heritability (h2=0.067) indicates a low risk of resistance to cyproflanilide after 19 generations of selection.
The field populations of chlorantraniliprole-resistant C. suppressalis show no cross-resistance to cyproflanilide.
Cyproflanilide can serve as a novel alternative insecticide for controlling chlorantraniliprole-resistant populations of C. suppressalis in China.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
二化螟是水稻种植区最严重的害虫之一,并且已对目前田间使用的大多数杀虫剂产生了不同程度的抗性。环丙氟虫胺是一种新型间二酰胺类杀虫剂,对多种害虫表现出高效活性。评估二化螟对环丙氟虫胺的抗性风险对其制定预防性抗性治理策略是必要的。在此,我们通过稻苗浸渍法和点滴法建立了二化螟对环丙氟虫胺的毒力敏感基线,其LC50和LD50值分别为0.026 mg/L和0.122 ng/头。环丙氟虫胺对37个二化螟田间种群的LC50值范围为0.012至0.061 mg/L,其中25个田间种群对氯虫苯甲酰胺表现出不同程度的抗性,最高LC50值为3770.059 mg/L。此外,种群敏感性分布模型分析表明,0.048 mg/L的环丙氟虫胺即可杀死90%的田间氯虫苯甲酰胺抗性二化螟种群,而氯虫苯甲酰胺需要2087.764 mg/L才能达到类似的防治效果。经过19代的抗性筛选,未发现二化螟对环丙氟虫胺的抗性显著上升(抗性倍数RR=3.1)。通过阈性状分析估计的抗性现实遗传力(h2)为0.067,表明在二化螟敏感品系中对环丙氟虫胺具有较低的抗性风险。环丙氟虫胺筛选种群未表现出明显的适合度代价(相对适合度=0.96),并且对七种杀虫剂的敏感性没有显著变化。这些结果表明,环丙氟虫胺是治理氯虫苯甲酰胺抗性二化螟的一种有效的替代杀虫剂。此外,抗性风险评估为环丙氟虫胺对二化螟的可持续抗性管理提供了科学应用指南。


Abstract  

The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), is one of the most serious pests in rice-growing areas, and it has developed resistance to most insecticides currently used in the field.  Cyproflanilide is a novel meta-diamide insecticide that has shown high activities to multiple pests.  Evaluating the risk of resistance to cyproflanilide in Csuppressalis is necessary for its preventive resistance management.  Here we established the baseline susceptibility of Csuppressalis to cyproflanilide by the rice-seedling dipping method and topical application, and the LC50 and LD50 values were 0.026 mg L–1 and 0.122 ng/larva, respectively.  The LC50 values of cyproflanilide in 37 field populations ranged from 0.012 to 0.061 mg L–1, and 25 field populations exhibited resistance to chlorantraniliprole with the highest LC50 value of 3,770.059 mg L–1.  In addition, a logistic distribution model analysis indicated that only 0.048 mg L–1 of cyproflanilide was required to kill 90% field chlorantraniliprole-resistant populations of Csuppressalis, compared to 2,087.764 mg L–1 of chlorantraniliprole for a similar level of control.  Resistance screening over 19 generations did not result in resistance to cyproflanilide (RR=3.1-fold).  The realized heritability (h2) of resistance was estimated as 0.067 by using threshold trait analysis, suggesting a low risk of cyproflanilide resistance development in susceptible strains.  The Cypro-SEL population (F10) had no obvious fitness cost (relative fitness=0.96), and no significant changes in sensitivity to seven tested insecticides.  These findings suggested that cyproflanilide is a promising insecticide for the management of chlorantraniliprole-resistant Csuppressalis.  Moreover, this integrated risk assessment provides scientific application guidelines for the sustainable resistance management of cyproflanilide for controlling Csuppressalis.


Keywords:  cyproflanilide       Chilo suppressalis       susceptibility baseline       risk assessment       realized heritability  
Received: 02 December 2024   Accepted: 18 February 2025 Online: 27 March 2025  
Fund: 

This study was funded by the National Key Research and Developmental Program of China (2022YFD1700200).  

About author:  Wenchao Ge, E-mail: 1130467864@qq.com; #Correspondence Congfen Gao, Tel: +86-25-84395244, E-mail: gaocongfen@njau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Wenchao Ge, Songtao Qiao, Chong Liu, Fangrui Guo, Shuai Wang, Hao Sun, Yan Liu, Fengxia Yang, Shunfan Wu, Congfen Gao. 2025. Baseline establishment, susceptibility monitoring and risk assessment of cyproflanilide, a novel meta-diamide insecticide, against Chilo suppressalis (Lepidoptera: Crambidae) in China. Journal of Integrative Agriculture, 24(11): 4342-4354.

Cao G C, Han Z J. 2006. Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost. Pest Management Science62, 746–751.

Chang G F, Xue H, Ji J C, Wang L, Zhu X Z, Zhang K X, Li D Y, Gao X K, Niu L, Gao M X, Luo J Y, Cui J J. 2023. Risk assessment of predatory lady beetle Propylea japonica’s multi-generational exposure to three non-insecticidal agrochemicals. Science of the Total Environment886, 163931.

Cheng S H, Li R, Chen Z B, Ni J P, Lv N N, Liang P Z, Guo T F, Zhen C A, Liang P, Gao X W. 2023. Comparative susceptibility of Aphis gossypii Glover (Hemiptera: Aphididae) on cotton crops to imidacloprid and a novel insecticide cyproflanilide in China. Industrial Crops and Products192, 116053.

Cong Y B, Chen J X, Xie Y P, Wang Y X, Cheng C S. 2023. Toxicity and sublethal effects of diamide insecticides on key non-target natural predators, the larvae of Coccinella septempunctata L. (Coleoptera: Coccinellidae). Toxics11, 270.

Duque T, Chowdhury S, Isaia M, Pekár S, Riess K, Scherf G, Schäfer R B, Entling M H. 2023. Sensitivity of spiders from different ecosystems to lambda-cyhalothrin: Effects of phylogeny and climate. Pest Management Science, 80857–865.

Gao C F, Yao R, Zhang Z Z, Wu M, Zhang S, Su J Y. 2013. Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae). Journal of Economic Entomology106, 2190–2194.

Giddings J M, Wirtz J, Campana D, Dobbs M. 2019. Derivation of combined species sensitivity distributions for acute toxicity of pyrethroids to aquatic animals. Ecotoxicology28, 242–250.

Guo L, Wang Y, Zhou X G, Li Z Y, Liu S Z, Liang P, Gao X W. 2013. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole. Pest Management Science70, 1083–1089.

Han L Z, Li S B, Liu P L, Peng Y F, Hou M L. 2012. New artificial diet for continuous rearing of Chilo suppressalis (Lepidoptera: Crambidae). Annals of the Entomological Society of America105, 253–258.

Huang J M, Rao C, Wang S, He L F, Zhao S Q, Zhou L Q, Zhao Y X, Yang F X, Gao C F, Wu S F. 2020. Multiple target-site mutations occurring in lepidopterans confer resistance to diamide insecticides. Insect Biochemistry and Molecular Biology121, 103367.

Huang J M, Sun H, He L F, Liu C, Ge W C, Ni H, Gao C F, Wu S F. 2021a. Double ryanodine receptor mutations confer higher diamide resistance in rice stem borer, Chilo suppressalisPest Management Science77, 4971–4979.

Huang J M, Zhao Y X, Sun H, Ni H, Liu C, Wang X, Gao C F, Wu S F. 2021b. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. Pesticide Biochemistry and Physiology174, 104831.

Jia Z Q, Zhang Y C, Huang Q T, Jones A K, Han Z J, Zhao C Q. 2020. Acute toxicity, bioconcentration, elimination, action mode and detoxification metabolism of broflanilide in zebrafish, Danio rerioJournal of Hazardous Materials394, 122521.

Kliot A, Ghanim M. 2012. Fitness costs associated with insecticide resistance. Pest Management Science68, 1431–1437.

Lai T C, Su J Y. 2011. Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Management Science67, 1468–1472.

Liu J, Zeng J, Huang C, Bian Y, Zhang Y Y, Yang Q B. 2024. Forecast of occurrence trend of major crop diseases and pests in China in 2024. China Plant Protection44, 37–40. (in Chinese)

Liu J Y, Zhou L Q, Xiang J C, Ni J P, Li Z C, Pang H L, Lv L. 2020. The R&D of cyproflanilide. World Pesticides43, 34–38. (in Chinese)

Liu Y, He L F, Wang S C, Yang F X, Gao C F, Wu S F. 2023. Resistance risk, cross resistance and sublethal effects of methoxyfenozide on rice stem borers (Chilo suppressalis). Chinese Journal of Rice Science, 37, 427–435. (in Chinese)

Lu Y H, Wang G R, Zhong L Q, Zhang F C, Bai Q, Zheng X S, Lu Z X. 2017. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Crop Protection100, 196–202.

Luo C Y, Ma W J, Lv L, Pang H L, Xiang J C, Zhou L Q, Yin D L, Liu J Y. 2020. Synthesis and insecticidal activity of novel meta-diamide compounds containing cyclopropyl group. Chinese Journal of Organic Chemistry40, 2963–2970. (in Chinese)

Lv S L, Shi Y, Zhang J C, Liang P, Zhang L, Gao X W. 2021. Detection of ryanodine receptor target-site mutations in diamide insecticide-resistant Spodoptera frugiperda in China. Insect Science28, 639–648.

Nagai T. 2021. Ecological effect assessment by species sensitivity distribution for 38 pesticides with various modes of action. Journal of Pesticide Science46, 366–372.

Nakao T, Banba S, Nomura M, Hirase K. 2013. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists. Insect Biochemistry and Molecular Biology43, 366–375.

Nakao T, Banba S. 2016. Broflanilide: A meta-diamide insecticide with a novel mode of action. Bioorganic & Medicinal Chemistry24, 372–377.

NY/T 2058–2014. 2014. Guideline for Insecticide Resistance Monitoring othe Striped Stem Borer. Agriculture Industry Standard of the People’s Republic of China. (in Chinese)

Patuel S J, English C, Lopez-Scarim V, Konig I, Souders C L, Ivantsova E, Martyniuk C J. 2023. The novel insecticide broflanilide dysregulates transcriptional networks associated with ion channels and induces hyperactivity in zebrafish (Danio rerio) larvae. Science of the Total Environment904, 167072.

Qie X T, Sun A Q, Hao H H, Lv B, Wu W J, Hu Z N. 2021. A potential lignan botanical insecticide from Phryma leptostachya against Aedes aegypti: Laboratory selection, metabolic mechanism, and resistance risk assessment. Journal of Pest Science95, 397–408.

Qu C, Chen C L, Li Y Y, Yin Y Q, Feng Y F, Wang R, Luo C. 2023. Lethal, sublethal and transgenerational effects of broflanilide on Tuta absolutaEntomologia Generalis, 44385–393.

Richardson E B, Troczka B J, Gutbrod O, Davies T G E, Nauen R. 2020. Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science93, 911–928.

Roy D, Biswas S, Sarkar S, Adhikary S, Chakraborty G, Sarkar P K, Al-Shuraym L A, Sayed S, Gaber A, Hossain A. 2023. Risk assessment of fluxametamide resistance and fitness costs in fall armyworm (Spodoptera frugiperda). Toxics11, 307.

Shaw D R, Asmus A B, Schroeder J, Ervin D E. 2023. Changing the paradigm for pesticide resistance management. Pest Management Science79, 4726–4730.

Song R J, Zhang Y P, Lu P, Wu J, Li Q X, Song B A. 2023. Status and perspective on green pesticide utilizations and food security. Annual Review of Food Science and Technology15473–493.

Su J Y, Zhang Z Z, Wu M, Gao C F. 2014. Geographic susceptibility of Chilo suppressalis Walker (Lepidoptera: Crambidae), to chlorantraniliprole in China. Pest Management Science70, 989–995.

Sun H, Wang S, Liu C, Hu W K, Liu J W, Zheng L J, Gao M Y, Guo F R, Qiao S T, Liu J L, Sun B, Gao C F, Wu S F. 2024. Risk assessment, fitness cost, cross-resistance, and mechanism of tetraniliprole resistance in the rice stem borer, Chilo suppressalisInsect Science31, 835–846.

Sun X, Wei R, Li L H, Zhu B, Liang P, Gao X W. 2021. Resistance and fitness costs in diamondback moths after selection using broflanilide, a novel meta-diamide insecticide. Insect Science29, 188–198.

Sun Y, Liu S T, Ling Y, Wang L, Ni H, Guo D, Dong B B, Huang Q, Long L P, Zhang S, Wu S F, Gao C F. 2023. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole. Pest Management Science79, 3290–3299.

Sun Y, Xu L, Chen Q, Qin W J, Huang S J, Jiang Y, Qin H G. 2018. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker). Pest Management Science74, 1416–1423.

Tabashnik B E. 1992. Resistance risk assessment: Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 851551–1559.

Tabashnik B E, Carrière Y, Brewer M. 2020. Evaluating cross-resistance between Vip and Cry Toxins of Bacillus thuringiensisJournal of Economic Entomology113, 553–561.

Tabashnik B E, Unnithan G C, Yelich A J, Fabrick J A, Dennehy T J, Carrière Y. 2022. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins. Pest Management Science78, 3973–3979.

Tadei R, Menezes-Oliveira V B, Silva C I, Mathias Da Silva E C, Malaspina O. 2023. Sensitivity of the neotropical solitary bee Centris analis F. (Hymenoptera, Apidae) to the reference insecticide dimethoate for pesticide risk assessment. Environmental Toxicology and Chemistry42, 2758–2767.

Tang T, Hu F, Wang P, Fu W, Liu X Y. 2020. Broflanilide effectively controls Helicoverpa armigera and Spodoptera exigua exhibiting diverse susceptibilities to chlorantraniliprole and emamectin benzoate. Pest Management Science77, 1262–1272.

Wang SLiu CQiao S TGuo FXie YSun H, LiYZhao S QZhou L QHe L F, Yang F X, Wu S F, Bass C, Gao C F. 2024. The Evolution and mechanisms of multiple-insecticide resistance in rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). Journal of Agricultural and Food Chemistry72, 26475–26490.

Wang W, Zhang R F, Liu H Y, Ding R F, Huang Q S, Yao J, Liang G M. 2024. Resistance development, cross-resistance, and fitness costs associated with Aphis gossypii resistance towards sulfoxaflor and acetamiprid in different geographical regions. Journal of Integrative Agriculture23, 2332–2345.

Wang X L, Shi T L, Tang P, Liu S N, Hou B F, Jiang D, Lu J D, Yang Y H, Carrière Y, Wu Y D. 2022. Baseline susceptibility of Helicoverpa armigeraPlutella xylostella, and Spodoptera frugiperda to the meta-diamide insecticide broflanilide. Insect Science30, 1118–1128.

Wu M, Zhang S, Yao R, Wu S F, Su J Y, Gao C F. 2014. Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China. Journal of Economic Entomology107, 1250–1255.

Xu L, Zhao J, Sun Y, Xu D J, Xu G C, Xu X L, Zhang Y L, Huang S J, Han Z J, Gu Z Y. 2018. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker). Pest Management Science75, 718–725.

Xu L, Zhao J, Xu D J, Xu G C, Peng Y C, Zhang Y N. 2024. New insights into chlorantraniliprole metabolic resistance mechanisms mediated by the striped rice borer cytochrome P450 monooxygenases: A case study of metabolic differences. Science of the Total Environment912, 169229.

Yao R, Zhao D D, Zhang S, Zhou L Q, Wang X, Gao C F, Wu S F. 2016. Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides. Pest Management Science73, 1169–1178.

Zhang Y C, Feng Z R, Zhang S, Pei X G, Zeng B, Zheng C, Gao C F, Yu X Y. 2020. Baseline determination, susceptibility monitoring and risk assessment to triflumezopyrim in Nilaparvata lugens (Stål). Pesticide Biochemistry and Physiology167, 104608.

Zuo Y Y, Wang H, Xu Y J, Huang J L, Wu S W, Wu Y D, Yang Y H. 2017. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochemistry and Molecular Biology89, 79–85.

[1] Zhiwen Wu, Xiaowei Cai, Xuewei Mao, Mingguo Zhou, Yiping Hou. Sensitivity and resistance risk analysis of Didymella bryoniae populations to fluopyram[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2306-2317.
[2] Jie Li, Shanjie Han, Ruhang Xu, Xuchen Zhang, Junquan Liang, Mengxin Wang, Baoyu Han. Insight into the effect of geographic location and intercropping on contamination characteristics and exposure risk of phthalate esters (PAEs) in tea plantation soils[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3896-3911.
[3] ZHAO Man, LI Yun-he, NIU Lin-lin, CHEN Lin, LIANG Ge-mei . Assessment of the potential toxicity of insecticidal compounds to Peristenus spretus, a parasitoid of mirid bugs[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1424-1435.
[4] LIU Yan-min, LI Yun-he, CHEN Xiu-ping, SONG Xin-yuan, SHEN Ping, PENG Yu-fa. No detrimental effect of Bt maize pollen containing Cry1Ab/2Aj or Cry1Ac on adult green lacewings Chrysoperla sinica Tjeder[J]. >Journal of Integrative Agriculture, 2019, 18(4): 893-899.
[5] WANG Yu-jiao, NIE Ji-yun, YAN Zhen, LI Zhi-xia, CHENG Yang, Saqib Farooq. Multi-mycotoxin exposure and risk assessments for Chinese consumption of nuts and dried fruits[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1676-1690.
[6] YANG Gui-ling, WANG Wen, LIANG Sen-miao, YU Yi-jun, ZHAO Hui-yu, WANG Qiang, QIAN Yongzhong. Pesticide residues in bayberry (Myrica rubra) and probabilistic risk assessment for consumers in Zhejiang, China[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2101-2109.
[7] Akhtar Zunnu Raen, DANG Cong, WANG Fang, PENG Yu-fa, YE Gong-yin. Thrips-mediated impacts from transgenic rice expressing Cry1Ab on ecological fitness of non-target predator Orius tantilus (Hemiptera: Anthocoridae)[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2059-2069.
[8] NIE Ji-yun, KUANG Li-xue, LI Zhi-xia, XU Wei-hua, WANG Cheng, CHEN Qiu-sheng, LI An, ZHAO Xu-bo, XIE Han-zhong, ZHAO Duo-yong, WU Yong-long, CHENG Yang. Assessing the concentration and potential health risk of heavy metals in China’s main deciduous fruits[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1645-1655.
[9] LI Bo, LIU Ji-fang, YANG Jun-xing, MA Yi-bing, cHEN Shi-bao. comparison of phytotoxicity of copper and nickel in soils with different chinese plant species[J]. >Journal of Integrative Agriculture, 2015, 14(6): 1192-1201.
[10] LI Zhi-xia, NIE Ji-yun, YAN Zhen, XU Guo-feng, LI Hai-fei, KUANG Li-xue, PAN Li-gang, XIE Han-zhong, WANG Cheng, LIU Chuan-de, ZHAO Xu-bo, GUO Yong-ze. Risk assessment and ranking of pesticide residues in Chinese pears[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2328-2339.
[11] CHENG Yong-xiang, HUANG Jing-feng, HAN Zhong-ling, GUO Jian-ping, ZHAO Yan-xia, WANG Xiu-zhen , GUO Rui-fang. Cold Damage Risk Assessment of Double Cropping Rice in Hunan, China[J]. >Journal of Integrative Agriculture, 2013, 12(2): 352-363.
[12] XU Lei, ZHANG Qiao, ZHOU Ai-lian, HUO Ran. Assessment of Flood Catastrophe Risk for Grain Production at the Provincial Scale in China Based on the BMM Method[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2310-2320.
[13] Akhtar Zunnu Raen, YE Gong-yin, LU Zeng-bin, CHANG Xue, SHEN Xiao-jing, PENG Yu-fa. Impact Assessments of Transgenic cry1Ab Rice on the Population Dynamics of Five Non-Target Thrips Species and Their General Predatory Flower Bug in Bt and Non-Bt Rice Fields Using Color Sticky Card Traps[J]. >Journal of Integrative Agriculture, 2013, 12(10): 1807-1815.
[14] SONG Yu-feng, LU Xiao, REN Feng-shan. Variability of Pesticide Residues in Vegetables from the Marketplaces in Jinan City[J]. >Journal of Integrative Agriculture, 2011, 10(10): 1646-1652.
No Suggested Reading articles found!