Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 36-60    DOI: 10.1016/j.jia.2024.05.012
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer

Lingxiao Zhu1*, Hongchun Sun1*, Liantao Liu1#, Ke Zhang1, Yongjiang Zhang1, Anchang Li1, Zhiying Bai1, Guiyan Wang1, Xiaoqing Liu1, Hezhong Dong1, 2#, Cundong Li1#

1 State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding 071001, China

2 Institute of Industrial Crops, State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China

 Highlights 
● Summarizes the advancements in deep placement of nitrogen fertilizers and discusses the critical factors influencing placement depth.
● Elucidates the benefits and underlying mechanisms of deep nitrogen fertilizer placement.
● Identifies current challenges and proposes future enhancements for the deep placement of nitrogen fertilizers.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
氮(N)是作物产量形成的重要营养元素。然而,农业生产面临着许多挑战,特别是氮肥用量高而利用效率低,环境污染严重。深施氮肥(DPNF)是一种农艺措施,对上述问题的解决表现出了很好的前景。本综述旨在全面解析DPNF。首先简要概述了其发展和实施方法。随后,对不同作物的最佳施肥深度及其影响因素进行了分析和讨论。此外,还探讨了DPNF对作物发育、产量、氮利用效率和温室气体排放的调控规律及其机制。最后,概述了该技术的局限性和面临的挑战,并提出了相应的建议。本综述为DPNF在农业实践中的推广和应用提供了重要的见解和参考。


Abstract  
Nitrogen (N) serves as an essential nutrient for yield formation across diverse crop types.  However, agricultural production encounters numerous challenges, notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.  Deep placement of nitrogen fertilizer (DPNF) is an agronomic measure that shows promise in addressing these issues.  This review aims to offer a comprehensive understanding of DPNF, beginning with a succinct overview of its development and methodologies for implementation.  Subsequently, the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.  Additionally, it investigates the regulation and mechanism underlying the DPNF on crop development, yield, N use efficiency and greenhouse gas emissions.  Finally, the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.  This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.
Keywords:  deep placement of N fertilizer       optimal fertilization depth       yield        N use efficiency        greenhouse gas emissions  
Received: 10 January 2024   Accepted: 09 April 2024
Fund: The study was funded by grants from the National Natural Science Foundation of China (32301947, 32272220 and 32172120), and the China Postdoctoral Science Foundation (2023M730909). 
About author:  Lingxiao Zhu, E-mail: 574740516@qq.com; Hongchun Sun, E-mail: sunhongchun@126.com; #Correspondence Liantao Liu, E-mail: liultday@126.com; Hezhong Dong, E-mail: donghezhong@163.com; Cundong Li, E-mail: nxylcd@hebau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Lingxiao Zhu, Hongchun Sun, Liantao Liu, Ke Zhang, Yongjiang Zhang, Anchang Li, Zhiying Bai, Guiyan Wang, Xiaoqing Liu, Hezhong Dong, Cundong Li. 2025. Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer. Journal of Integrative Agriculture, 24(1): 36-60.

Abalos D, Jeffery S, Sanz-Cobena A, Guardia G, Vallejo A. 2014. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture Ecosystem Environment189, 136–144.

Adviento-Borbe M, Linquist B. 2016. Assessing fertilizer n placement on CH4 and N2O emissions in irrigated rice systems. Geoderma266, 40–45.

Ahmad I, Kamran M, Yang X, Meng X, Ali S, Ahmad S, Zhang X, Bilegjargal B, Ahmad B, Liu T, Cai T, Han Q. 2019. Effects of applying uniconazole alone or combined with manganese on the photosynthetic efficiency, antioxidant defense system, and yield in wheat in semiarid regions. Agricultural Water Management216, 400–414.

Ansari T, Yamamoto Y, Yoshida T, Sakagami K, Miyazaki A. 2004. Relation between bleeding rate during panicle formation stage and sink size in rice plant. Soil Science and Plant Nutrition50, 57–66.

Azam F, Müller C, Weiske A, Benckiser G, Ottow J. 2002. Nitrification and denitrification as sources of atmospheric nitrous oxide - role of oxidizable carbon and applied nitrogen. Biology and Fertility of Soils35, 54–61.

Bai B, Jin J, Bai S, Huang L. 1994. Improvement of TTC method determining root activity in corn. Maize Science4, 44–47. (in Chinese)

Bautista E, Koike M, Suministrado D. 2001. Mechanical deep placement of nitrogen in wetland rice. Journal of Agricultural Engineering Research78, 333–346.

Bhuiyan M, Rahman A, Loladze I, Das S, Kim P. 2023. Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. Science of the Total Environment876, 162712.

Blackshaw R, Semach G, Janzen H. 2002. Fertilizer application method affects nitrogen uptake in weeds and wheat. Weed Science50, 634–641.

Bodelier P, Roslev P, Henckel T, Frenzel P. 2000. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature403, 421–424.

Bozkurt S, Mansuroglu G S. 2018. Responses of unheated greenhouse grown green bean to buried drip tape placement depth and watering levels. Agricultural Water Management197, 1–8.

Bryant S, Dhillon J, Wehmeyer G, Raun W. 2020. Wheat grain yield and nitrogen uptake as influenced by fertilizer placement depth. Agriculture Geoscience Environment3, e20025.

Butterbach-Bahl K, Baggs E, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society (B: Biological Science), 368, 20130122.

Cai G, Chen D, Ding H, Pacholski A, Fan X, Zhu Z. 2002. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutrient Cycling in Agroecosystems63, 187–195.

Can Z, Huang H, Qian Z, Jiang H, Liu G, Xu K, Hu Y, Dai Q, Huo Z. 2021. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. Journal of Integrative Agriculture20, 1487–1502.

Cao Y, Tian Y, Yin B, Zhu Z. 2013. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research147, 23–31.

Cao Z, De Datta S, Fillery I. 1984. Effect of placement methods on floodwater properties and recovery of applied nitrogen (15N-labeled urea) in wetland rice. Soil Science Society of America Journal48, 196–203.

Cassman K, Dobermann A, Walters D. 2002. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio31, 132–140.

Chaparro J, Badri D, Vivanco J. 2014. Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal8, 790–803.

Chassot A, Stamp P, Richner W. 2001. Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement. Plant and Soil231, 123–135.

Chatterjee D, Mohanty S, Guru P, Swain C, Tripathi R, Shahid M, Kumar U, Kumar A, Bhattacharyya P, Gautam P, Lal B, Dash P, Nayak A. 2018. Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. AgricultureEcosystems & Environment252, 178–190.

Chaudhary M, Prihar S. 1974. Comparison of banded and broadcast fertilizer applications in relation to compaction and irrigation in maize and wheat. Agronomy Journal66, 560–564.

Chen G, Cai T, Wang J, Wang Y, Ren L, Wu P, Zhang P, Jia Z. 2022a. Suitable fertilizer application depth enhances the efficient utilization of key resources and improves crop productivity in rainfed farmland on the Loess Plateau, China. Frontiers in Plant Science13, 900352.

Chen G, Ren L, Wang J, Liu F, Liu G, Li H, Zhang P, Jia Z. 2022b. Optimizing fertilization depth can promote sustainable development of dryland agriculture in the Loess Plateau region of China by improving crop production and reducing gas emissions. Plant and Soil49, 73–89.

Chen G, Wu P, Wang J, Zhou Y, Ren L, Cai T, Zhang P, Jia Z. 2023. How do different fertilization depths affect the growth, yield, and nitrogen use efficiency in rain-fed summer maize? Field Crops Research290, 108759.

Chen H, Gao L, Li M, Liao Y, Liao Q. 2023. Fertilization depth effect on mechanized direct-seeded winter rapeseed yield and fertilizer use efficiency. Journal of the Science of Food and Agriculture103, 2574–2584.

Chen H, Liao Q, Liao Y. 2021. Response of area- and yield-scaled N2O emissions from croplands to deep fertilization: A meta-analysis of soil, climate, and management factors. Journal of the Science of Food and Agriculture101, 4653–4661.

Chen Y, Fan P, Mo Z, Kong L, Tian H, Duan M, Li L, Wu L, Wang Z, Tang X, Pan S. 2021. Deep placement of nitrogen fertilizer affects grain yield, nitrogen recovery efficiency, and root characteristics in direct-seeded rice in South China. Journal of Plant Growth Regulation40, 379–387.

Chen Z, Wang H, Liu X, Liu Y, Gao S, Zhou J. 2016. The effect of N fertilizer placement on the fate of urea-15N and yield of winter wheat in Southeast China. PLoS ONE11, e153701.

Cheng Y, Wang H, Liu P, Dong S, Zhang J, Zhao B, Ren B. 2020. Nitrogen placement at sowing affects root growth, grain yield formation, NUE efficiency in maize. Plant and Soil457, 355–373.

Christianson C, Baethgen W, Carmona G, Howard R. 1993. Microsite reactions of urea-nBTPT fertilizer on the soil surface. Soil Biology and Biochemistry25, 1107–1117.

Clough T, Jarvis S, Dixon E, Stevens R, Laughlin R, Hatch D. 1998. Carbon induced subsoil denitrification of 15N-labelled nitrate in 1 m deep soil columns. Soil Biology and Biochemistry31, 31–41.

Coskun D, Britto D, Shi W, Kronzucker H. 2017. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants3, 1–10.

Crews T, Peoples M. 2005. Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutrient Cycling in Agroecosystems72, 101–120.

Cui Z, Chen X, Zhang F. 2010. Current nitrogen management status and measures to improve the intensive wheat–maize system in China. Ambio39, 376–384.

Cui Z, Zhang F, Chen X, Miao Y, Li J, Shi L, Xu J, Ye Y, Liu C, Yang Z. 2008. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research105, 48–55.

Dai J, Wang Z, Li M, He G, Li Q, Gao H, Wang S, Gao Y, Hui X. 2016. Winter wheat grain yield and summer nitrate leaching: Long-term effects of nitrogen and phosphorus rates on the Loess Plateau of China. Field Crops Research196, 180–190.

Ding H, Li S, Zhang Y, Hu X, Zheng X, Zhang J, Weng B, Chen D. 2015. The fate of urea nitrogen applied to a vegetable crop rotation system. Nutrient Cycling in Agroecosystems103, 279–292.

Ding Z, Li J, Hu R, Xiao D, Huang F, Peng S, Huang J, Li C, Hou J, Tian Y, Zhou J, Cao B. 2022. Root-zone fertilization of controlled-release urea reduces nitrous oxide emissions and ammonia volatilization under two irrigation practices in a ratoon rice field. Field Crops Research287, 108673.

Dini-Andreote F, Raaijmakers J. 2018. Embracing community ecology in plant microbiome research. Trends in Plant Science23, 467–469.

Dinnes D, Karlen D, Jaynes D, Kaspar T, Hatfield J, Colvin T, Cambardella C. 2002. Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agronomy Journal94, 153–171.

Dong H, Kong X, Li W, Tang W, Zhang D. 2010. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Research119, 106–113.

Dong H, Li W, Eneji A, Zhang D. 2012. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research126, 137–144.

Dong Q, Dang T, Guo S, Hao M. 2019. Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau. Agricultural Water Management213, 654–658.

Chen Z, Ren W, Yi X, Li Q, Cai H G, Farhan A, Yuan L X, Mi G H, Pan Q C, Chen F F. 2023. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth. Journal of Integrative Agriculture22, 235–250.

Drury C, Reynolds W, Tan C, Welacky T, Calder W, McLaughlin N. 2006. Emissions of nitrous oxide and carbon dioxide: Influence of tillage type and nitrogen placement depth. Soil Science Society of America Journal70, 570–581.

Eden M, Bachmann J, Cavalaris C, Kostopoulou S, Kozaiti M, Kozaiti M, Böttcher J. 2020. Soil structure of a clay loam as affected by long-term tillage and residue management. Soil and Tillage Research204, 104734.

Eriksen A, Nilsen S. 1982. Effects of deep placement and surface application of urea on the yield of wetland rice in pot trials. Plant and Soil66, 29–36.

Fan D, He W, Smith W, Drury C, Jiang R, Grant B, Shi Y, Song D, Chen Y, Wang X. 2022. Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: A meta-analysis. Global Change Biology28, 5121–5141.

Fan D, Liu T, Sheng F, Li S, Cao C, Li C. 2020. Nitrogen deep placement mitigates methane emissions by regulating methanogens and methanotrophs in no-tillage paddy fields. Biology and Fertility of Soils56, 711–727.

Fujii T, Hasegawa H, Ohyama T, Sinegovskaya V. 2015. Evaluation of tillage efficiency and power requirements for a deep-placement fertilizer applicator with reverse rotational rotary. Russian Agricultural Sciences41, 498–503.

Fukao T, Yeung E, Bailey-Serres J. 2012. The submergence tolerance gene SUBE1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiology160, 1795–1807.

Gaihre Y, Singh U, Islam S, Huda A, Islam M, Satter M, Sanabria J, Islam M, Shah A. 2015. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma259, 370–379.

Gao Y, Qi S, Wang Y. 2022. Nitrate signaling and use efficiency in crops. Plant Communications3, 100353.

Gilbert B, Frenzel P. 1998. Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biology and Biochemistry30, 1903–1916.

Godfray H, Beddington J, Crute I, Haddad L, Lawrence D, Muir J, Pretty J, Robinson S, Thomas S, Toulmin C. 2010. Food security: The challenge of feeding 9 billion people. Science327, 812–818.

Good A, Shrawat A, Muench D. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science9, 597–605.

Gregersen P. 2011. Senescence and nutrient remobilization in crop plants. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, 83–102.

Guo R, Li X, Christie P, Chen Q, Jiang R, Zhang F. 2008. Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant and Soil313, 55–70.

Guo X, Li G, Ding X, Zhang J, Ren B, Liu P, Zhang S, Zhao B. 2022. Response of leaf senescence, photosynthetic characteristics, and yield of summer maize to controlled-release urea-based application depth. Agronomy12, 687.

Guo Y, Ji Y, Zhang J, Liu Q, Han J, Zhang L. 2022. Effects of water and nitrogen management on N2O emissions and NH3 volatilization from a vineyard in North China. Agricultural Water Management266, 107601.

Hartmann T, Yue S, Schulz R, Chen X, Zhang F, Müller T. 2014. Nitrogen dynamics, apparent mineralization and balance calculations in a maize–wheat double cropping system of the North China Plain. Field Crops Research160, 22–30.

Hayashi K, Nishimura S, Yagi K. 2006. Ammonia volatilization from the surface of a Japanese paddy field during rice cultivation. Soil Science and Plant Nutrition52, 545–555.

Hayashi K, Nishimura S, Yagi K. 2008. Ammonia volatilization from a paddy field following applications of urea: Rice plants are both an absorber and an emitter for atmospheric ammonia. Science of the Total Environment390, 485–494.

He T, Wang Y, Shi Z. 2019. Movement law of soil temperature and soil water under annual film mulching in loess hilly region. Southwest China Journal of Agricultural Sciences32, 1314–1322. (in Chinese)

He Y, Wei Y, DePauw R, Qian B, Lemke R, Singh A, Cuthbert R, McConkey B, Wang H. 2013. Spring wheat yield in the semiarid Canadian prairies: Effects of precipitation timing and soil texture over recent 30 years. Field Crops Research149, 329–337.

Hogan K, Hoffman J, Thompson A. 1991. Methane on the greenhouse agenda. Nature354, 181–182.

Hosen Y, Paisancharoen K, Tsuruta H. 2002. Effects of deep application of urea on NO and N2O emissions from an andisol. Nutrient Cycling in Agroecosystems63, 197–206.

Hou P, Yuan W, Li G, Petropoulos E, Xue L, Feng Y, Xue L, Yang L, Ding Y. 2021. Deep fertilization with controlled-release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth. Agronomy Journal113, 5027–5039.

Hu K, Zhao P, Wu K, Yang H, Yang Q, Fan M, Long G. 2023. Reduced and deep application of controlled-release urea maintained yield and improved nitrogen-use efficiency. Field Crops Research295, 108876.

Huang M, Chen J, Cao F, Zou Y. 2018. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Research221, 333–338.

Huang Q, Fan X, Tang S, Zhang M, Huang X, Yi Q, Pang Y, Huang J. 2019. Seasonal differences in N release dynamic of controlled-released urea in paddy field and its impact on the growth of rice under double rice cropping system. Soil and Tillage Research195, 104371.

Huang S, Lv W, Bloszies S, Shi Q, Pan X, Zeng Y. 2016. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis. Field Crops Research192, 118–125.

Ikezawa H, Nagumo Y, Hattori M, Nonaka M, Ohyama T, Harada N. 2022. Suppressive effect of the deep placement of lime nitrogen on N2O emissions in a soybean field. Science of the Total Environment804, 150246.

IPCC. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK.

Islam S, Gaihre Y, Biswas J, Jahan M, Singh U, Adhikary S, Satter M, Saleque M. 2018a. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield. Agricultural Water Management196, 144–153.

Islam S, Gaihre Y, Biswas J, Singh U, Ahmed M, Sanabria J, Saleque M. 2018b. Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation. Scientific Reports8, 17623.

Jeschke W, Baig A, Hilpert A. 1997. Sink-stimulated photosynthesis, increased transpiration and increased demand-dependent stimulation of nitrate uptake: Nitrogen and carbon relations in the parasitic association Cuscuta reflexa–Coleus blumeiJournal of Experimental Botany48, 915–925.

Jia Q, Sun L, Mou H, Ali S, Liu D, Zhang Y, Zhang P, Ren X, Jia Z. 2018. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agricultural Water Management201, 287–298.

Jiang C, Lu D, Zu C, Shen J, Wang S, Guo Z, Zhou J, Wang H. 2018a. One-time root-zone n fertilization increases maize yield, NUE and reduces soil N losses in lime concretion black soil. Scientific Reports8, 10258.

Jiang C, Lu D, Zu C, Zhou J, Wang H. 2018b. Root-zone fertilization improves crop yields and minimizes nitrogen loss in summer maize in China. Scientific Reports8, 15139.

Jiang M, Liu C, Wei D, Du X, Cai P, Song J. 2019. Design and test of wide seedling strip wheat precision planter. Transactions of the Chinese Society for Agricultural Machinery50, 53–62. (in Chinese)

Jing J, Zhang F, Rengel Z. 2012. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Research133, 176–185.

Joel RC, Lincoln Z, Michael D, Diane L, Steven A. 2016. Soil moisture distribution under drip irrigation and seepage for potato production. Agricultural Water Management169, 183–192.

Ju X, Christie P. 2011. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China Plain. Field Crops Research124, 450–458.

Kapoor V, Singh U, Patil S, Magre H, Shrivastava L, Mishra V, Das R, Samadhiya V, Sanabria J, Diamond R. 2008. Rice growth, grain yield, and floodwater nutrient dynamics as affected by nutrient placement method and rate. Agronomy Journal100, 526–536.

Kargbo M, Pan S, Mo Z, Wang Z, Luo X, Tian H, Hossain M, Ashraf U, Tang X. 2016. Physiological basis of improved performance of super rice (Oryza sativa) to deep placed fertilizer with precision hill-drilling machine. International Journal of Agriculture and Biology18, 797–804.

Kaushal T, Suganuma T, Fujikake H, Ohtake N, Sueyoshi K, Takahashi Y, Ohyama T. 2002. Effect of deep placement of calcium cyanamide, coated urea, and urea on soybean (Glycine max (L.) Merr.) seed yield in relation to different inoculation methods. Soil Science and Plant Nutrition48, 855–863.

Ke J, He R, Hou P, Ding C, Ding Y, Wang S, Liu Z, Tang S, Ding C, Chen L. 2018. Combined controlled-released nitrogen fertilizers and deep placement effects of n leaching, rice yield and N recovery in machine-transplanted rice. AgricultureEcosystems & Environment265, 402–412.

Keerthisinghe D, Lin X, Luo Q, Mosier A. 1995. Effect of encapsulated calcium carbide and urea application methods on denitrification and N loss from flooded rice. Fertilizer Research45, 31–36.

Khalil M, Buegger F, Schraml M, Gutser R, Richards K, Schmidhalter U. 2009. Gaseous nitrogen losses from a cambisol cropped to spring wheat with urea sizes and placement depths. Soil Science Society of America Journal73, 1335–1344.

Kim D, Saggar S, Roudier P. 2012. The effect of nitrification inhibitors on soil ammonia emissions in nitrogen managed soils: A meta-analysis. Nutrient Cycling in Agroecosystems93, 51–64.

Van Kooten O, Snel J. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research25, 147–150.

Koudjega K, Ablede K, Lawson I, Abekoe M, Owusu-Bennoah E, Tsatsu D. 2019. Reducing ammonia volatilization and improving nitrogen use efficiency of rice at different depths of urea supergranule application. Communications in Soil Science and Plant Analysis50, 974–986.

Larson W, Lovely W, Pesek J, Burwell R. 1960. Effect of subsoiling and deep fertilizer placement on yields of corn in Iowa and Illinois. Agronomy Journal52, 185–189.

Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J. 2014. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environmental Research Letters9, 105011.

Laza M, Peng S, Akita S, Saka H. 2003. Contribution of biomass partitioning and translocation to grain yield under sub-optimum growing conditions in irrigated rice. Plant Production Science6, 28–35.

Li B, Fan C, Zhang H, Chen Z, Sun L, Xiong Z. 2015. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment100, 10–19.

Li C, Wang Y, Li Y, Zhu L, Cao Y, Zhao X, Feng G, Gao Q. 2020. Mixture of controlled-release and normal urea to improve nitrogen management for maize across contrasting soil types. Agronomy Journal112, 3101–3113.

Li L, Tian H, Zhang M, Fan P, Ashraf U, Liu H, Chen X, Duan M, Tang X, Wang Z, Zhang Z, Pan S. 2021a. Deep placement of nitrogen fertilizer increases rice yield and nitrogen use efficiency with fewer greenhouse gas emissions in a mechanical direct-seeded cropping system. The Crop Journal9, 1386–1396.

Li L, Zhang Z, Tian H, Ashraf U, Mo Z, Tang X, Duan M, Wang Z, Wu T, Pan S. 2021b. Productivity and profitability of mechanized deep nitrogen fertilization in mechanical pot-seedling transplanting rice in South China. Agronomy Journal113, 1664–1680.

Li L, Zhang Z, Tian H, Mo Z, Ashraf U, Duan M, Wang Z, Wang S, Tang X, Pan S. 2020. Roles of nitrogen deep placement on grain yield, nitrogen use efficiency, and antioxidant enzyme activities in mechanical pot-seedling transplanting rice. Agronomy10, 1252.

Li M, Wang Y, Adeli A, Yan H. 2018. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crops Research218, 115–125.

Li T, Zhang Z, Chen P, Qi Z, Nie T, Zhang Z, Sun D, Du S, Zhou X. 2023. The effect of deep placement of basal nitrogen fertilizer on gaseous nitrogen losses and nitrogen use efficiency of paddy fields under water-saving irrigation in northeast China. Agronomy13, 842.

Li Y, Liu H, Huang G, Zhang R, Yang H. 2016. Nitrate nitrogen accumulation and leaching pattern at a winter wheat: Summer maize cropping field in the North China Plain. Environmental Earth Sciences75, 1–12.

Liang X, Feng G, Ye F, Zhang J, Yang S, Meng J, Li X, Wan S. 2020. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaeaJournal of Integrative Agriculture4, 1019–1032.

Lin L, Zheng Z, Hua T, Ashraf U, Hamoud Y, Alaa A, Tang X, Duan M, Wang Z, Pan S. 2022. Nitrogen deep placement combined with straw mulch cultivation enhances physiological traits, grain yield and nitrogen use efficiency in mechanical pot-seedling transplanting rice. Rice Science29, 89–100.

Linquist B, Adviento-Borbe M, Pittelkow C, van Kessel C, van Groenigen K. 2012. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research135, 10–21.

Liu A, Ma X, Zhang Z, Liu J, Luo D, Yang L, Lv N, Zhang Y, Yang G, Dong H. 2022a. Single dose fertilization at reduced nitrogen rate improves nitrogen utilization without yield reduction in late-planted cotton under a wheat–cotton cropping system. Industrial Crops & Products176,114346.

Liu A, Li Z, Zhang D, Cui Z, Zhan L, Xu S, Zhang Y, Dai J, Li W, Nie J, Yang G, Li C, Dong H. 2022b. One-off basal application of nitrogen fertilizer increases the biological yield but not the economic yield of cotton in moderate fertility soil. Field Crops Research288, 108702.

Liu H, Wang Z, Yu R, Li F, Li K, Cao H, Yang N, Li M, Dai J, Zan Y, Li Q, Xue C, He G, Huang D, Huang M, Liu J, Qiu W, Zhao H, Mao H. 2016. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. AgricultureEcosystems & Environment224, 1–11.

Liu P, Yan H, Xu S, Lin X, Wang W, Wang D. 2022. Moderately deep banding of phosphorus enhanced winter wheat yield by improving phosphorus availability, root spatial distribution, and growth. Soil and Tillage Research220, 105388.

Liu S, Pubu C, Zhu Y, Hao W, Zhang G, Han J. 2023. Optimizing nitrogen application depth can improve crop yield and nitrogen uptake - A global meta-analysis. Field Crops Research295, 108895.

Liu T, Li S, Guo L, Cao C, Li C, Zhai Z, Zhou J, Mei Y, Ke H. 2020. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. Journal of Cleaner Production263, 121322.

Liu T Q, Fan D, Zhang X, Chen J, Li C, Cao C. 2015. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research184, 80–90.

Liu W, Xiong Y, Xu X, Xu F, Hussain S, Xiong H, Yuan J. 2019. Deep placement of controlled-release urea effectively enhanced nitrogen use efficiency and fresh ear yield of sweet corn in fluvo-aquic soil. Scientific Reports9, 20307.

Liu X, Mosier A, Halvorson A, Zhang F. 2006. The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant and Soil280, 177–188.

Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman J, Goulding K, Christie P, Fangmeier A, Zhang F. 2013. Enhanced nitrogen deposition over China. Nature494, 459–462.

López-Bellido L, López-Bellido R, Redondo R. 2005. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Research94, 86–97.

Luo Z, Liu H, Li W, Zhao Q, Dai J, Tian L, Dong H. 2018. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research218, 150–157.

Lynch J. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology156, 1041–1049.

Ma Q, Rengel Z, Rose T. 2009. The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: A review. Soil Research47, 19–32.

Ma Q, Sun L, Tian H, Rengel Z, Shen J. 2021. Deep banding of phosphorus and nitrogen enhances Rosa multiflora growth and nutrient accumulation by improving root spatial distribution. Scientia Horticulturae277, 109800.

Ma Q, Zhang F, Rengel Z, Shen J. 2013. Localized application of NH4+-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant and Soil372, 65–80.

Ma R, Zou J, Han Z, Yu K, Wu S, Li Z, Liu S, Niu S, Horwath W, Zhu-Barker X. 2021. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Global Change Biology27, 855–867.

Ma S, Wang T, Ma S. 2022. Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat. Agricultural Water Management271, 107783.

Masclaux C, Valadier M, Brugière N, Morot-Gaudry J, Hirel B. 2000. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta211, 510–518.

Min J, Sun H, Wang Y, Pan Y, Kronzucker H, Zhao D, Shi W. 2021. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio. Journal of Cleaner Production316, 128370.

Mo F, Yu K, Crowther T, Wang J, Zhao H, Xiong Y, Liao Y. 2020. How plastic mulching affects net primary productivity, soil C fluxes and organic carbon balance in dry agroecosystems in China. Journal of Cleaner Production263, 121470.

Mohanty S, Singh U, Balasubramanian V, Jha K. 1998. Nitrogen deep-placement technologies for productivity, profitability, and environmental quality of rainfed lowland rice systems. Nutrient Cycling in Agroecosystems53, 43–57.

Nash P, Nelson K, Motavalli P. 2013. Corn yield response to timing of strip-tillage and nitrogen source applications. Agronomy Journal105, 623–630.

Nerva L, Sandrini M, Moffa L, Velasco R, Balestrini R, Chitarra W. 2022. Breeding toward improved ecological plant-microbiome interactions. Trends in Plant Science27, 1134–1143.

Ni K, Kage H, Pacholski A. 2018. Effects of novel nitrification and urease inhibitors (DCD/TZ and 2-NPT) on N2O emissions from surface applied urea: An incubation study. Atmospheric Environment175, 75–82.

Nieder R, Benbi D, Scherer H. 2011. Fixation and defixation of ammonium in soils: A review. Biology and Fertility of Soils47, 1–14.

Nishimura S, Komada M, Takebe M, Yonemura S, Kato N. 2012. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biology and Fertility of Soils48, 787–795.

Nkebiwe P, Weinmann M, Bar-Tal A, Müller T. 2016. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Research196, 389–401.

Novoa R, Loomis R. 1981. Nitrogen and plant production. Plant and Soil58, 177–204.

Owino J, Owido S, Chemelil M. 2006. Nutrients in runoff from a clay loam soil protected by narrow grass strips. Soil and Tillage Research88, 116–122.

Pan S, Wen X, Wang Z, Ashraf U, Tian H, Duan M, Mo Z, Fan P, Tang X. 2017. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Research203, 139–149.

Park S, Croteau P, Boering K, Etheridge D, Ferretti D, Fraser P, Kim K, Krummel P, Langenfelds R, van Ommen T, Steele L, Trudinger C. 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience5, 261–265.

Patel N, Rajput T. 2007. Effect of drip tape placement depth and irrigation level on yield of potato. Agricultural Water Management88, 209–223.

Patuk I, Hasegawa H, Borodin I, Whitaker A, Borowski P. 2020. Simulation for design and material selection of a deep placement fertilizer applicator for soybean cultivation. Open Engineering10, 733–743.

Peng S, Buresh R, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. 2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research96, 37–47.

Peng S, Buresh R, Huang J, Zhong X, Zou Y, Yang J, Wang G, Liu Y, Hu R, Tang Q, Cui K, Zhang F, Dobermann A. 2010. Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development30, 649–656.

Petersen J. 2001. Recovery of 15N-ammonium-15N-nitrate in spring wheat as affected by placement geometry of the fertilizer band. Nutrient Cycling in Agroecosystems61, 215–221.

Qi W, Zhang J, Wang K, Liu P, Dong S. 2010. Effects of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance. Chinese Journal of Applied Ecology21, 48–52. (in Chinese)

Qiang S, Sun X, Zhang Y, Zhao H, Fan J, Zhang F, Sun M, Gao Z. 2021. Deep placement of mixed controlled-release and conventional urea improves grain yield, nitrogen use efficiency of rainfed spring maize. Archives of Agronomy and Soil Science67, 1848–1858.

Qiang S, Zhang Y, Zhao H, Fan J, Zhang F, Sun M, Gao Z. 2022. Combined effects of urea type and placement depth on grain yield, water productivity and nitrogen use efficiency of rain-fed spring maize in northern China. Agricultural Water Management262, 107442.

Qiao J, Yang L, Yan T, Xue F, Zhao D. 2012. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. AgricultureEcosystems & Environment146, 103–112.

Qin R, Stamp P, Richner W. 2005. Impact of tillage and banded starter fertilizer on maize root growth in the top 25 centimeters of the soil. Agronomy Journal97, 674–683.

Qin X, Li Y, Liu K, Wan Y. 2006. Methane and nitrous oxide emission from paddy field under different fertilization treatments. Transactions of the Chinese Society of Agricultural Engineering7, 143–148. (in Chinese)

Rasmussen I, Dresbøll D, Thorup-Kristensen K. 2015. Winter wheat cultivars and nitrogen (N) fertilization - Effects on root growth, N uptake efficiency and N use efficiency. European Journal of Agronomy68, 38–49.

Reddy K, Patrick W. 1976. Yield and nitrogen utilization by rice as affected by method and time of application of labelled nitrogen. Agronomy Journal68, 965–969.

Rees R, Roelcke M, Li S, Wang X, Li S, Stockdale E, McTaggart I, Smith K, Richter J. 1996. The effect of fertilizer placement on nitrogen uptake and yield of wheat and maize in Chinese loess soils. Nutrient Cycling in Agroecosystems47, 81–91.

Ren B, Huang Z, Liu P, Zhao B, Zhang J. 2023. Urea ammonium nitrate solution combined with urease and nitrification inhibitors jointly mitigate NH3 and N2O emissions and improves nitrogen efficiency of summer maize under fertigation. Field Crops Research296, 108909.

Robinson C. 2002. Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil242, 65–81.

Rochette P, Angers D, Chantigny M, Gasser M, MacDonald J, Pelster D, Bertrand N. 2013. Ammonia volatilization and nitrogen retention: How deep to incorporate urea? Journal of Environmental Quality42, 1635–1642.

Rychel K, Meurer K, Börjesson G, Strömgren M, Getahun G, Kirchmann H, Kätterer T. 2020. Deep N fertilizer placement mitigated N2O emissions in a Swedish field trial with cereals. Nutrient Cycling in Agroecosystems118, 133–148.

Sarker M, Murayama S, Akamine H, Nakamura I. 2002. Effect of nitrogen fertilization on photosynthetic characters and dry matter production in F1 hybrids of rice (Oryza sativa L.). Plant Production Science5, 131–138.

Savant N, Stangel P. 1990. Deep placement of urea supergranules in transplanted rice: Principles and practices. Fertilizer Research25, 1–83.

Scherer H, Ahrens G. 1996. Depletion of non-exchangeable NH4+-N in the soil-root interface in relation to clay mineral composition and plant species. European Journal of Agronomy5, 1–7.

Schimel J. 2000. Rice, microbes and methane. Nature403, 375–377.

Shao J, Miao Y, Liu K, Ren Y, Xu Z, Zhang N, Feng H, Shen Q, Zhang R, Xun W. 2021. Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization. Soil Biology and Biochemistry159, 108273.

Shen Y, Xu L, Guo H, Ismail H, Ran X, Zhang C, Peng Y, Zhao Y, Liu W, Ding Y, Tang S. 2023. Mitigating the adverse effect of warming on rice canopy and rhizosphere microbial community by nitrogen application: An approach to counteract future climate change for rice. Science of the Total Environment905, 167151.

Shi W, Zhang Q, Li L, Tan J, Xie R, Wang Y. 2023. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation. Journal of Integrative Agriculture22, 1184–1198.

Shiga H, Ventura W, Yoshida T. 1977. Effect of deep placement of ball-type fertilizer at different growth stages on yield and yield components of the rice plant in the philippines. Plant and Soil47, 351–361.

Singh S, Prasad R, Sharma S. 1989. Growth and yield of rice as affected by spacing, time and depth of placement of urea briquettes. Fertilizer Research19, 99–101.

Skiba U, Fowler D, Smith K. 1997. Nitric oxide emissions from agricultural soils in temperate and tropical climates: Sources, controls and mitigation options. Nutrient Cycling in Agroecosystems48, 139–153.

Skiba U, Smith K. 1993. Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biology and Biochemistry25, 1527–1536.

Sommer S, Schjoerring J, Denmead O. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Advances in Agronomy82, 82004–82008.

Song C, Guan Y, Wang D, Zewudie D, Li F. 2014. Palygorskite-coated fertilizers with a timely release of nutrients increase potato productivity in a rain-fed cropland. Field Crops Research166, 10–17.

Song Q L, Zhang J, Zhang F F, Shen Y F, Yue S C, Li S Q. 2024. Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China. Journal of Integrative Agriculture23, 1671–1684.

Steusloff T, Nelson K, Motavalli P, Singh G. 2019. Urea nitrapyrin placement effects on soil nitrous oxide emissions in claypan soil. Journal of Environmental Quality48, 1444–1453.

Strasser R, Tsimilli-Michael M, Srivastava A. 2004. Analysis of the Chlorophyll a Fluorescence Transient. Springer, Netherlands. pp. 321–362.

Su W, Liu B, Liu X, Li X, Ren T, Cong R, Lu J. 2015. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). European Journal of Agronomy62, 38–45.

Sun H, Zhang H, Powlson D, Min J, Shi W. 2015. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro–6-(trichloromethyl)-pyridine. Field Crops Research173, 1–7.

Takahashi Y, Chinushi T, Nagumo Y, Nakano T, Ohyama T. 1991. Effect of deep placement of controlled release nitrogen fertilizer (coated urea) on growth, yield, and nitrogen fixation of soybean plants. Soil Science and Plant Nutrition37, 223–231.

Tawfik A, Bazaraa A, El-Ayoty S. 2012. Performance of subsurface drip irrigation under different conditions. Journal of Engineering and Applied Science59, 23–37.

Tewari K, Sato T, Abiko M, Ohtake N, Sueyoshi K, Takahashi Y, Nagumo Y, Tutida T, Ohyama T. 2007. Analysis of the nitrogen nutrition of soybean plants with deep placement of coated urea and lime nitrogen. Soil Science and Plant Nutrition53, 772–781.

Tian Y, Yin B, Yang L, Yin S, Zhu Z. 2007. Nitrogen runoff and leaching losses during rice–wheat rotations in Taihu Lake Region, China. Pedosphere17, 445–456.

Tilman D, Balzer C, Hill J, Befort B. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America108, 20260–20264.

Tilman D, Cassman K, Matson P, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature418, 671–677.

Wang D, Ye C, Xu C, Wang Z, Chen S, Chu G, Zhang X. 2019. Soil nitrogen distribution and plant nitrogen utilization in direct-seeded rice in response to deep placement of basal fertilizer-nitrogen. Rice Science26, 404–415.

Wang S, Hou Y. 2004. Changes of soil properties in the courses of urea patch diffusion. Journal of Agro-Environment23, 263–266. (in Chinese)

Wang X, Wang N, Xing Y, Yun J, Zhang H. 2018. Effects of plastic mulching and basal nitrogen application depth on nitrogen use efficiency and yield in maize. Frontiers in Plant Science9, 1446.

Wang Y, Guo Q, Xu Y, Zhang P, Cai T, Jia Z. 2023a. Sustainable nitrogen placement depth under different rainfall levels can enhance crop productivity and maintain the nitrogen balance in winter wheat fields. Soil & Tillage Research233, 105817.

Wang Y, Guo Q, Xu Y, Zhang P, Cai T, Jia Z. 2023b. Optimizing urea deep placement to rainfall can maximize crop water-nitrogen productivity and decrease nitrate leaching in winter wheat. Agricultural Water Management274, 107971.

Wang Y, Xu Y, Guo Q, Zhang P, Cai T, Jia Z. 2023c. Adopting nitrogen deep placement based on different simulated precipitation year types enhances wheat yield and resource utilization by promoting photosynthesis capacity. Field Crops Research294, 108862.

Wang Y, Xu Y, Guo Q, Zhang P, Cai T, Jia Z. 2023d. Advantages of deep fertilizer placement in environmental footprints and net ecosystem economic benefits under the variation of precipitation year types from winter wheat fields. Field Crops Research303, 109142.

Wu C, Yan B, Wei F, Wang H, Gao L, Ma H, Liu Q, Liu Y, Liu G, Wang G. 2023. Long-term application of nitrogen and phosphorus fertilizers changes the process of community construction by affecting keystone species of crop rhizosphere microorganisms. Science of the Total Environment897, 165239.

Wu M, Li G, Li W, Liu J, Liu M, Jiang C, Li Z. 2017a. Nitrogen fertilizer deep placement for increased grain yield and nitrogen recovery efficiency in rice grown in subtropical China. Frontiers in Plant Science8, 1227.

Wu M, Liu M, Liu J, Li W, Jiang C, Li Z. 2017b. Optimize nitrogen fertilization location in root-growing zone to increase grain yield and nitrogen use efficiency of transplanted rice in subtropical China. Journal of Integrative Agriculture16, 2073–2081.

Wu P, Liu F, Chen G, Wang J, Huang F, Cai T, Zhang P, Jia Z. 2022a. Can deep fertilizer application enhance maize productivity by delaying leaf senescence and decreasing nitrate residue levels? Field Crops Research277, 108417.

Wu P, Liu F, Li H, Cai T, Zhang P, Jia Z. 2021. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Science of the Total Environment781, 146787.

Wu P, Liu F, Wang J, Liu Y, Gao Y, Zhang X, Chen G, Huang F, Ahmad S, Zhang P, Cai T, Jia Z. 2022b. Suitable fertilization depth can improve the water productivity and maize yield by regulating development of the root system. Agricultural Water Management271, 107784.

Wu P, Liu F, Zhao Y, Bai Y, Feng B, Li Y, Nan W, Chen J, Cai T, Zhang P, Jia Z. 2023. Diffusion and transformation of methane within the soil profile and surface uptake in dryland spring maize fields under different fertilizer application depths. AgricultureEcosystems and Environment344, 108305.

Wu Q, Du B, Jiang S, Zhang H, Zhu J. 2022. Side deep fertilizing of machine-transplanted rice to guarantee rice yield in conservation tillage. Agriculture12, 528.

Xia L, Cao L, Yang Y, Ti C, Liu Y, Smith P, van Groenigen K, Lehmann J, Lal R, Butterbach-Bahl K, Kiese R, Zhuang M, Lu X, Yan X. 2023. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food4, 236–246.

Xia L, Li X, Ma Q, Lam S, Wolf B, Kiese R, Butterbach-Bahl K, Chen D, Li Z, Yan X. 2020. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different n fertilization regimes. Global Change Biology26, 2292–2303.

Xie T, Gu W, Liguo Z, Li C. 2018. Exogenous DCPTA ameliorates the soil drought effect on nitrogen metabolism in maize during the pre-female inflorescence emergence stage. Biorxiv, doi: 10.1186/s12870-019-1710-5.

Xu R, Tian H, Pan S, Prior S, Feng Y, Batchelor W, Chen J, Yang J. 2019. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Global Change Biology25, 314–326.

Xue X, Xu X, Zhang Z, Zhang B, Song S, Li Z, Hong T, Huang H. 2019. Variable rate liquid fertilizer applicator for deep-fertilization in precision farming based on ZigBee technology. IFAC-PapersOnLine52, 43–50.

Yamulki S, Jarvis S. 2002. Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland. Biology and Fertility of Soils36, 224–231.

Yang Y, Ni X, Zhou Z, Yu L, Liu B, Yang Y, Wu Y. 2017. Performance of matrix-based slow-release urea in reducing nitrogen loss and improving maize yields and profits. Field Crops Research212, 73–81.

Yang Y, Zhang M, Zheng L, Cheng D, Liu M, Geng Y, Chen J. 2013. Controlled-release urea for rice production and its environmental implications. Journal of Plant Nutrition36, 781–794.

Yao Y, Zhang M, Tian Y, Zhao M, Zhang B, Zeng K, Zhao M, Yin B. 2018a. Urea deep placement in combination with azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Research218, 141–149.

Yao Y, Zhang M, Tian Y, Zhao M, Zhang B, Zhao M, Zeng K, Yin B. 2018b. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crops Research218, 254–266.

El Zahar Haichar F, Heulin T, Guyonnet J, Achouak W. 2016. Stable isotope probing of carbon flow in the plant holobiont. Current Opinion in Biotechnology41, 9–13.

Zaman M, Blennerhassett J. 2010. Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. AgricultureEcosystems & Environment136, 236–246.

Zeng X, Han B, Xu F, Huang J, Cai H, Shi L. 2012. Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crops Research137, 203–212.

Zhang C, Gu B, Liang X, Lam S, Zhou Y, Chen D. 2024. The role of nitrogen management in achieving global sustainable development goals. Resources, Conservation & Recycling201, 107304.

Zhang D, Li W, Xin C, Tang W, Eneji A, Dong H. 2012. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crops Research138, 63–70.

Zhang F, Cui Z, Chen X, Ju X, Shen J, Chen Q, Liu X, Zhang W, Mi G, Fan M. 2012. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy116, 1–40.

Zhang G, Zhao D, Liu S, Liao Y, Han J. 2022. Can controlled-release urea replace the split application of normal urea in China? A meta-analysis based on crop grain yield and nitrogen use efficiency. Field Crops Research275, 108343.

Zhang M, Yao Y, Zhao M, Zhang B, Tian Y, Yin B, Zhu Z. 2017. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. AgricultureEcosystems & Environment247, 236–245.

Zhang R, Yang H, Fan X, Zhang H, Liu B, Liu J. 2018. Effects of phosphorus application depths on its uptake and utilization in spring maize under subsoiling tillage. Journal of Plant Nutrition and Fertilizers24, 880–887.

Zhang X, Rengel Z. 2002. Temporal dynamics of gradients of phosphorus, ammonium, pH, and electrical conductivity between a di-ammonium phosphate band and wheat roots. Australian Journal of Agricultural Research53, 985–992.

Zhang Z, Guo L, Liu T, Li C, Cao C. 2015. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice–wheat cropping systems in central China. Atmospheric Environment122, 636–644.

Zhao X, Zhou Y, Min J, Wang S, Shi W, Xing G. 2012. Nitrogen runoff dominates water nitrogen pollution from rice–wheat rotation in the Taihu Lake region of China. AgricultureEcosystems & Environment156, 1–11.

Zheng W, Zhang M, Liu Z, Zhou H, Lu H, Zhang W, Yang Y, Li C, Chen B. 2016. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat–maize double cropping system. Field Crops Research197, 52–62.

Zhong X, Peng J, Kang X, Wu Y, Luo G, Hu W, Zhou X. 2021. Optimizing agronomic traits and increasing economic returns of machine-transplanted rice with side-deep fertilization of double-cropping rice system in southern China. Field Crops Research270, 108191.

Zhu C, Xiang J, Zhang Y, Zhang Y, Zhu D, Chen H. 2019. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in eastern China. Scientific Reports9, 5653.

Zhu Z, Cai G, Simpson J, Zhang S, Chen D, Jackson A, Freney J. 1988. Processes of nitrogen loss from fertilizers applied to flooded rice fields on a calcareous soil in north-central China. Fertilizer Research18, 101–115.

[1] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[2] Jinwen Pang, Zhonghong Tian, Mengjie Zhang, Yuhao Wang, Tianxiang Qi, Qilin Zhang, Enke Liu, Weijun Zhang, Xiaolong Ren, Zhikuan Jia, Kadambot H. M. Siddique, Peng Zhang. Enhancing carbon sequestration and greenhouse gas mitigation in semiarid farmland: The promising role of biochar application with biodegradable film mulching[J]. >Journal of Integrative Agriculture, 2025, 24(2): 517-526.
[3] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[4] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[5] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
[6] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
No Suggested Reading articles found!