Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 42-55    DOI: 10.1016/j.jia.2024.05.010
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
ZmCals12 impacts maize growth and development by regulating symplastic transport
Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo Yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao#

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China

 Highlights 
ZmCals12 is mainly expressed in the vascular transport system, regulating callose deposition and symplastic transport.
ZmCals12 regulates maize growth and development by affecting sugar transport.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
碳水化合物从源到库组织的分配对于植物的生长和发育至关重要。然而,在玉米中,胼胝质合成酶基因调节碳水化合物分配的分子机制鲜有报道。本研究发现玉米胼胝质合成酶12(ZmCals12)的突变引起碳水化合物在光合叶片中过度积累,但在库组织中的积累显著减少,从而引起植株矮化和雄性不育。研究结果表明基因ZmCals12主要在维管运输系统中表达,参与调控胼胝质在维管束胞间连丝和韧皮部细胞周围的沉积。ZmCals12功能的缺失会引起光合细胞胞间连丝渗透性和叶脉运输能力降低,共质体运输减弱。此外,基因ZmCals12的突变会引起叶片维管细胞的发育受阻。这些异常共同阻碍了糖从源叶到库组织的运输,最终导致突变表型的产生。我们还发现Zmcals12突变体中受损的糖运输会抑制生长素的生物合成和信号传导,进而阻碍节间的伸长。该研究为更好的认识ZmCals12通过介导胼胝质沉积和共质体运输来调控玉米的生长和发育过程提供了新见解。


Abstract  

Carbohydrate partitioning from source to sink tissues is essential for plant growth and development.  However, in maize (Zea mays L.), the molecular mechanisms by which callose synthase genes regulate this process remain largely unexplored.  This study demonstrates that mutation of maize callose synthase12 (ZmCals12) results in increased carbohydrate accumulation in photosynthetic leaves but decreased carbohydrate content in sink tissues, leading to plant dwarfing and male sterility.  Histochemical β-glucuronidase (GUS) activity assay and mRNA in situ hybridization (ISH) revealed that ZmCals12 expression mainly occurs in the vascular transport system.  ZmCals12 loss-of-function decreased callose synthase activity and callose deposition in plasmodesmatas (PDs) and surrounding phloem cells (PCs) of the vascular bundle.  The drop-and-see (DANS) assay indicated reduced PD permeability in photosynthetic cells and diminished transport competence of leaf veins in Zmcals12 mutants, resulting in decreased symplastic transport.  Paraffin section analysis revealed that less-developed vascular cells (VCs) in Zmcals12 mutants likely disrupted sugar transport, contributing to the pleiotropic phenotype.  Furthermore, impaired sugar transport inhibited internode development by suppressing auxin (IAA) biosynthesis and signaling in Zmcals12 mutant.  These findings elucidate the mechanism by which ZmCals12-mediated callose deposition and symplastic transport regulate maize growth and development

Keywords:  maize       ZmCals12        plasmodesmata (PD) permeability        symplastic transport        less-developed vascular cells (VCs)        auxin (IAA) biosynthesis and signaling  
Received: 30 December 2023   Accepted: 01 April 2024 Online: 13 May 2024  
Fund: This study was supported by grants from the National Natural Science Foundation of China (31771876), the Biological Breeding Program of State Key Laboratory of Sichuan Agricultural University, China (SKL-ZY202234) and the Sichuan Province Science and Technology Program, China (2021YFYZ0011 and 2021YFYZ0017).
About author:  Ziwen Shi, E-mail: ziwen_shi@163.com; #Correspondence Moju Cao, Tel: +86-28-86290916, E-mail: caomj@sicau.edu.cn

Cite this article: 

Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. 2026. ZmCals12 impacts maize growth and development by regulating symplastic transport. Journal of Integrative Agriculture, 25(1): 42-55.

Aguilera-Alvarado G P, Sanchez-Nieto S. 2017. Plant hexokinases are multifaceted proteins. Plant and Cell Physiology58, 1151–1160.

Amsbury S, Kirk P, Benitez-Alfonso Y. 2017. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. Journal of Experimental Botany69, 105–115.

Baker R F, Braun D M. 2007. Tie-dyed1 functions non-cell autonomously to control carbohydrate accumulation in maize leaves. Plant Physiology144, 867–878.

Baker R F, Braun D M. 2008. Tie-dyed2 functions with Tie-dyed1 to promote carbohydrate export from maize leaves. Plant Physiology146, 1085–1097.

Baker R F, Leach K A, Boyer N R, Swyers M J, Benitez-Alfonso Y, Skopelitis T, Luo A, Sylvester A, Jackson D, Braun D M. 2016. Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading. Plant Physiology172, 1876–1898.

Baker R F, Slewinski T L, Braun D M. 2013. The tie-dyed pathway promotes symplastic trafficking in the phloem. Plant Signaling and Behavior8, e24540.

Barratt D H, Kölling K, Graf A, Pike M, Calder G, Findlay K, Zeeman S C, Smith A M. 2011. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in ArabidopsisPlant Physiology155, 328–341.

van Bel A J, Knoblauch M. 2000. Sieve element and companion cell: The story of the comatose patient and the hyperactive nurse. Functional Plant Biology27, 477–487.

Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A. 2013. Symplastic intercellular connectivity regulates lateral root patterning. Developmental Cell26, 136–147.

Bezrutczyk M, Hartwig T, Horschman M, Char S N, Yang J, Yang B, Frommer W B, Sosso D. 2018. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea maysNew Phytologist218, 594–603.

Bezrutczyk M, Zöllner N R, Kruse C P S, Hartwig T, Lautwein T, Köhrer K, Frommer W B, Kim J Y. 2021. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. The Plant Cell33, 531–547.

Botha C E J, Cross R H M, van Bel A J E, Peter C I. 2000. Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface. Protoplasma214, 65–72.

Braun D M, Slewinski T L. 2009. Genetic control of carbon partitioning in grasses: Roles of Sucrose Transporters and Tie-dyed loci in phloem loading. Plant Physiology149, 71–81.

Braun D M, Wang L, Ruan Y L. 2014. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. Journal of Experimental Botany65, 1713–1735.

Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. 2021. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology13, a039867.

Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, Li S, Chen H B, Jin W W. 2017. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiology173, 307–325.

Chourey P S, Li Q B, Kumar D. 2010. Sugar-hormone cross-talk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize. Molecular Plant3, 1026–1036.

Cui W, Lee J Y. 2016. Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nature Plants2, 16034.

Del P J, Boniotti M B, Gutierrez C. 2002. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light. The Plant Cell14, 3057–3071.

Dewitte W, Murray J A. 2003. The plant cell cycle. Annual Review of Plant Biology54, 235–264.

Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology25, 53–62.

Esau K. 1977. Anatomy of Seed Plants. John Wiley and Sons, New York.

Evert R F. 1982. Sieve-tube structure in relation to function. Bioscience32, 789–795.

Evert R F, Eschrich W, Heyser W. 1978. Leaf structure in relation to solute transport and phloem loading in Zea mays L. Planta138, 279–294.

Gallei M, Luschnig C, Friml J. 2020. Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology53, 43–49.

Han X, Hyun T K, Zhang M, Kumar R, Koh E J, Kang B H, Lucas W J, Kim J Y. 2014. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Developmental Cell28, 132–146.

Hu X, Cheng X, Jiang H, Zhu S, Cheng B, Xiang Y. 2010. Genome-wide analysis of cyclins in maize (Zea mays). Genetics and Molecular Research9, 1490–1503.

Inzé D, De Veylder L. 2006. Cell cycle regulation in plant development. Annual Review of Genetics40, 77–105.

Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M. 2017. Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology58, 1442–1460.

Julius B T, McCubbin T J, Mertz R A, Baert N, Knoblauch J, Grant D G, Conner K, Bihmidine S, Chomet P, Wagner R, Woessner J, Grote K, Peevers J, Slewinski T L, McCann M C, Carpita N C, Knoblauch M, Braun D M. 2021. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. The Plant Cell33, 3348–3366.

Julius B T, Slewinski T L, Baker R F, Tzin V, Zhou S, Bihmidine S, Jander G, Braun D M. 2018. Maize Carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function. Journal of Experimental Botany69, 3917–3931.

Kamal K Y, Khodaeiaminjan M, Yahya G, El-Tantawy A A, Abdel El-Moneim D, El-Esawi M A, Abd-Elaziz M A A, Nassrallah A A. 2021. Modulation of cell cycle progression and chromatin dynamic as tolerance mechanisms to salinity and drought stress in maize. Physiologia Plantarum172, 684–695.

Kitagawa M, Jackson D. 2017. Plasmodesmata-mediated cell-to-cell communication in the shoot apical meristem: How stem cells talk. Plants (Basel), 6, 12.

Korasick D A, Enders T A, Strader L C. 2013. Auxin biosynthesis and storage forms. Journal of Experimental Botany64, 2541–2555.

Lalonde S, Tegeder M, Throne-Holst M, Frommer W B, Patrick J W. 2003. Phloem loading and unloading of sugars and amino acids. Plant Celland Environment26, 37–56.

Leach K A, Braun D M. 2016. Soluble sugar and starch extraction and quantification from maize (Zea mays) leaves. Current Protocols in Plant Biology1, 139–161.

Leach K A, Tran T M, Slewinski T L, Meeley R B, Braun D M. 2017. Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology59, 390–408.

Lee J Y, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V. 2011. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in ArabidopsisThe Plant Cell23, 3353–3373.

Liao S, Wang L, Li J, Ruan Y L. 2020. Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon nutrients. Plant Physiology183, 1126–1144.

Liu H, Li X, Xiao J, Wang S. 2012. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: Application in study of rice–bacterium interaction. Plant Methods8, 2.

Liu M Y, Peng D L, Su W, Xiang C, Jian J Z, Zhao J, Peng H, Liu S M, Kong L A, Dai L Y, Huang W K, Liu J. 2022. Potassium sulphate induces resistance of rice against the root-knot nematode Meloidogyne graminicolaJournal of Integrative Agriculture21, 3263–3277.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Ma Y, Baker R F, Magallanes-Lundback M, DellaPenna D, Braun D M. 2008. Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves. Planta227, 527–538.

Ma Y, Slewinski T L, Baker R F, Braun D M. 2009. Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning. Plant Physiology149, 181–194.

Menges M, de Jager S M, Gruissem W, Murray J A. 2005. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. The Plant Journal41, 546–566.

Niu Q K, Shi Z W, Zhang P, Su S, Jiang B, Liu X W, Zhao Z F, Zhang S Z, Huang Q, Li C, Yu T, Yi H Y, Rong T Z, Cao M J. 2023. ZmMS39 encodes a callose synthase essential for male fertility in maize (Zea mays L.). The Crop Journal11, 394–404.

Provencher L M, Miao L, Sinha N, Lucas W J. 2001. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. The Plant Cell13, 1127–1141.

Qin Y, Xiao Z Y, Zhao H L, Wang J, Wang Y R, Qiu F Z. 2022. Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize. Journal of Integrative Plant Biology64, 1755–1769.

Roberts A G, Oparka K J. 2003. Plasmodesmata and the control of symplastic transport. Plant Celland Environment26, 103–124.

Russin W A, Evert R F, Vanderveer P J, Sharkey T D, Briggs S P. 1996. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. The Plant Cell8, 645–658.

Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. 2015. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant and Cell Physiology56, 497–509.

Shi X, Wu J X, Zhou H T, Yang X H, Li T L, Zhang X J, Yang C, Han X. 2016. Defective callose walls and cell plates during abnormal meiosis cause male-sterility in the oat mutant zbs1Journal of Integrative Agriculture15, 241–248.

Shimotohno A, Umeda-Hara C, Bisova K, Uchimiya H, Umeda M. 2004. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in ArabidopsisThe Plant Cell16, 2954–2966.

Slewinski T L, Baker R F, Stubert A, Braun D M. 2012. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiology160, 1540–1550.

Slewinski T L, Braun D M. 2010. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Science178, 341–349.

Slewinski T L, Garg A, Johal G S, Braun D M. 2010. Maize SUT1 functions in phloem loading. Plant Signaling and Behavior5, 687–690.

Slewinski T L, Ma Y, Baker R F, Huang M, Meeley R, Braun D M. 2008. Determining the role of Tie-dyed1 in starch metabolism: Epistasis analysis with a maize ADP-glucose pyrophosphorylase mutant lacking leaf starch. Journal of Heredity99, 661–666.

Slewinski T L, Meeley R, Braun D M. 2009. Sucrose transporter1 functions in phloem loading in maize leaves. Journal of Experimental Botany60, 881–892.

Song L Z, Wang R C, Zhang L, Wang Y M, Yao S G. 2016. CRR1 encoding callose synthase functions in ovary expansion by affecting vascular cell patterning in rice. The Plant Journal88, 620–632.

Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics47, 1489–1493.

De Storme N, Geelen D. 2014. Callose homeostasis at plasmodesmata: Molecular regulators and developmental relevance. Frontiers in Plant Science5, 138.

Thomas C L, Bayer E M, Ritzenthaler C, Fernandez-Calvino L, Maule A J. 2008. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biology6, e7.

Tran T M, McCubbin T J, Bihmidine S, Julius B T, Baker R F, Schauflinger M, Weil C, Springer N, Chomet P, Wagner R, Woessner J, Grote K, Peevers J, Slewinski T L, Braun D M. 2019. Maize Carbohydrate Partitioning Defective33 encodes an MCTP protein and functions in sucrose export from leaves. Molecular Plant12, 1278–1293.

Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D. 2002. Genome-wide analysis of core cell cycle genes in ArabidopsisThe Plant Cell14, 903–916.

Vatén A, Dettmer J, Wu S, Stierhof Y D, Miyashima S, Yadav S R, Roberts C J, Campilho A, Bulone V, Lichtenberger R, Lehesranta S, Mähönen A P, Kim J Y, Jokitalo E, Sauer N, Scheres B, Nakajima K, Carlsbecker A, Gallagher K L, Helariutta Y. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Developmental Cell21, 1144–1155.

Verma D P, Hong Z. 2001. Plant callose synthase complexes. Plant Molecular Biology47, 693–701.

Wang Y, Sun J, Deng C, Teng S, Chen G, Chen Z, Cui X, Brutnell T P, Han X, Zhang Z, Lu T. 2022. Plasma membrane-localized SEM1 protein mediates sugar movement to sink rice tissues. The Plant Journal109, 523–540.

Wang Z, Wei K, Xiong M, Wang J D, Zhang C Q, Fan X L, Huang L C, Zhao D S, Liu Q Q, Li Q F. 2021. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. Plant Biotechnology Journal19, 2606–2618.

Wu S W, Kumar R, Iswanto A, Kim J Y. 2018. Callose balancing at plasmodesmata. Journal of Experimental Botany69, 5325–5339.

Xie B, Wang X M, Zhu M S, Zhang Z M, Hong Z L. 2011. CalS7 encodes a callose synthase responsible for callose deposition in the phloem. The Plant Journal65, 1–14.

Xu M, Cho E, Burch-Smith T M, Zambryski P C. 2012. Plasmodesmata formation and cell-to-cell transport are reduced in decreased size exclusion limit 1 during embryogenesis in ArabidopsisProceedings of the National Academy of Sciences of the United States of America109, 5098–5103.

Yadav U P, Ayre B G, Bush D R. 2015. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: Assessing the potential to improve crop yields and nutritional quality. Frontiers in Plant Science6, 275.

Yang B, Wang J, Yu M, Zhang M, Zhong Y, Wang T, Liu P, Song W, Zhao H, Fastner A, Suter M, Rentsch D, Ludewig U, Jin W, Geiger D, Hedrich R, Braun D M, Koch K E, McCarty D R, Wu W H, et al. 2022. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. The Plant Cell34, 4232–4254.

Zambryski P, Crawford K. 2000. Plasmodesmata: Gatekeepers for cell-to-cell transport of developmental signals in plants. Annual Review of Cell and Developmental Biology16, 393–421.

Zhao Y. 2018. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annual Review of Plant Biology69, 417–435.

Zhong W S, Zheng C, Dong L, Kang L, Yang F. 2023. The maize callose synthase SLM1 is critical for a normal growth by controlling the vascular development. Molecular Breeding43, 2.

Zhu Y H, Shi Z W, Li S Z, Liu H Y, Liu F X, Niu Q K, Li C, Wang J, Rong T Z, Yi H Y, Cao M J. 2018. Fine mapping of the novel male-sterile mutant gene ms39 in maize originated from outer space flight. Molecular Breeding38, 125.

[1] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[2] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[3] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[4] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[5] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[6] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[7] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[8] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[9] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[10] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[11] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[12] Xinglong Wang, Fan Liu, Nan Zhao, Xia Du, Pijiang Yin, Tongliang Li, Tianqiong Lan, Dongju Feng, Fanlei Kong, Jichao Yuan. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4573-4587.
[13] Guanghao Li, Qijian Zhang, Weiping Lu, Dalei Lu. Response of nutrient accumulation, remobilization and yield to combined application of nitrogen and potassium in waxy maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4561-4572.
[14] Xiuling Wang, Li Niu, Huaipan Liu, Xucun Jia, Yulong Zhao, Qun Wang, Yali Zhao, Pengfei Dong, Moubiao Zhang, Hongping Li, Panpan An, Zhi Li, Xiaohuan Mu, Yongen Zhang, Chaohai Li. Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4546-4560.
[15] Jienan Han, Ran Li, Ze Zhang, Shiyuan Liu, Qianqian Liu, Zhennan Xu, Zhiqiang Zhou, Xin Lu, Xiaochuan Shangguan, Tingfang Zhou, Jianfeng Weng, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jingyu Xu, Mingshun Li, Xinhai Li. Genome-wide association and co-expression uncovered ZmMYB71 controls kernel starch content in maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4496-4514.
No Suggested Reading articles found!