Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 56-67    DOI: 10.1016/j.jia.2024.07.006
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide characterization and expression analysis of the cultivated peanut AhPR10 gene family mediating resistance to Aspergillus flavus

Qi Zhao1, 2*, Mengjie Cui1, 3*, Tengda Guo1, Lei Shi1, 3, Feiyan Qi1, 3, Ziqi Sun1, 3, Pei Du1, 3, Hua Liu1, 3, Yu Zhang1, Zheng Zheng1, 3, Bingyan Huang1, 3, Wenzhao Dong1, 3, Suoyi Han1, 3#, Xinyou Zhang1, 3#

1 Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Postgraduate T&R Base of Zhengzhou University/The Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China

2 School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450066, China

3  National Centre for Plant Breeding, Xinxiang 453500, China

 Highlights 
Comprehensive identification of 54 AhPR10 genes in cultivated peanut, phylogenetically classified into eight distinct subgroups with supported gene structure and motif conservation.
Segmental duplication was identified as the primary driver for the expansion of the AhPR10 gene family, as revealed by chromosomal distribution and synteny analysis.
The recombinant AhPR10-33 protein demonstrated significant antifungal activity by inhibiting Aspergillus flavus mycelial growth in vitro, highlighting its potential role in pathogen resistance.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
病程相关蛋白PR10在植物生长、发育及胁迫响应中发挥重要作用。本研究对栽培花生AhPR10基因家族进行了全基因组水平的系统鉴定,并对其系统进化关系、保守基序、基因结构、共线性等进行分析。共鉴定出54个AhPR10基因,系统进化树将其分为八组,该结果已在基因结构和保守基序的特征分析中得到了证实。对其在染色体上的分布和共线性分析表明,片段复制事件是AhPR10基因家族扩展的关键。此外,AhPR10基因具有组成型和诱导型两种表达模式。值得注意的是,AhPR10-7AhPR10-33AhPR10-41基因可能在花生抵御黄曲霉菌的侵染过程中发挥关键作用。体外抑菌实验表明AhPR10-33融合蛋白能有效抑制黄曲霉菌丝生长。本研究为深入剖析和明确AhPR10在花生黄曲霉抗性中的作用奠定分子信息基础。


Abstract  

The pathogenesis-related protein PR10 plays a vital role in plant growth, development, and stress responses.  This study systematically identified and analyzed PR10 genes in cultivated peanut (Arachis hypogaea L.), examining their phylogenetic relationships, conserved motifs, gene structures, and syntenic relationships.  The analysis identified 54 AhPR10 genes, which were classified into eight groups based on phylogenetic relationships, supported by gene structure and conserved motif characterization.  Analysis of chromosomal distribution and synteny demonstrated that segmental duplications played a crucial role in the expansion of the AhPR10 gene family.  The identified AhPR10 genes exhibited both constitutive and inducible expression patterns.  Significantly, AhPR10-7, AhPR10-33, and AhPR10-41 demonstrated potential importance in peanut resistance to Aspergillus flavus.  In vitro fungistatic experiments demonstrated that recombinant AhPR10-33 effectively inhibited Aflavus mycelial growth.  These findings provide valuable insights for future investigations into AhPR10 functions in protecting peanut from Aflavus infection.


Keywords:  cultivated peanut       PR10        phylogenetic analysis        expression pattern        Aspergillus flavus  
Received: 11 March 2024   Accepted: 21 May 2024 Online: 04 July 2024  
Fund: This work was supported by the National Key R&D Program of China (2022YFD1200400) and the National Natural Science Foundation of China (32301851).
About author:  #Correspondence Xinyou Zhang, E-mail: haasxinyou@163.com; Suoyi Han, E-mail: suoyi_han@126.com * These authors contributed equally to this study.

Cite this article: 

Qi Zhao, Mengjie Cui, Tengda Guo, Lei Shi, Feiyan Qi, Ziqi Sun, Pei Du, Hua Liu, Yu Zhang, Zheng Zheng, Bingyan Huang, Wenzhao Dong, Suoyi Han, Xinyou Zhang. 2026. Genome-wide characterization and expression analysis of the cultivated peanut AhPR10 gene family mediating resistance to Aspergillus flavus. Journal of Integrative Agriculture, 25(1): 56-67.

Agarwal P, Agarwal P K. 2014. Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Molecular Biology Reports41, 599–611.

Agarwal P, Bhatt V, Singh R, Das M, Sopory S K, Chikara J. 2013. Pathogenesis-related gene, JcPR-10a from Jatropha curcas exhibit RNase and antifungal activity. Molecular Biotechnology54, 412–425.

Arcos-Ortega G F, Chan-Kuuk R A, González-Kantún W A, Souza-Perera R A, Nakazawa-Ueji Y E, Avilés-Berzunza E, Godoy-Hernández G, Lawton M A, Aguilar J J. 2010. Agrobacterium tumefaciens-transient genetic transformation of Habanero pepper (Capsicum chinense Jacq.) leaf explants. Electronic Journal of Biotechnology13, 7–8.

Bahramnejad B, Goodwin P H, Zhang J, Atnaseo C, Erickson L R. 2010. A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules. Plant Cell Reports29, 1235–1250.

Bailey T L, Johnson J, Grant C E, Noble W S. 2015. The MEME suite. Nucleic Acids Research43, W39–W49.

Brand Y, Hovav R. 2010. Identification of suitable internal control genes for quantitative real-time PCR expression analyses in peanut (Arachis hypogaea). Peanut Science37, 12–19.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics48, 438–446.

Cannon S B, Mitra A, Baumgarten A, Young N D, May G. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thalianaBMC Plant Biology4, 10–30.

Chadha P, Das R H. 2006. A pathogenesis related protein, AhPR10 from peanut: An insight of its mode of antifungal activity. Planta225, 213–222.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen R, He H, Yang Y, Qu Y, Ge F, Liu D Q. 2017. Functional characterization of a pathogenesis-related protein family 10 gene, LrPR10-5, from Lilium regale Wilson. Australasian Plant Pathology46, 251–259.

Chen Z Y, Brown R L, Rajasekaran K, Damann K E, Cleveland T E. 2006. Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathology96, 87–95.

Cheng P, Jiang Y, Jin L, Wu J, Wang J, Xu P, Zhang S. 2013. Advances on Class 10 pathogenesis-related proteins. Soybean Science32, 415–419. (in Chinese)

Chou K C, Shen H B. 2008. Cell-PLoc: A package of web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols3, 153–162.

Christensen A B, Cho B H, Næsby M, Gregersen P L, Brandt J, Madriz-Ordeñana K, Collinge D B, Thordal-Christensen H. 2002. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology3, 135–144.

Crowell D N, John M E, Russell D, Amasino R M. 1992. Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Molecular Biology18, 459–466.

Cui M, Han S, Wang D, Haider M S, Guo J, Zhao Q, Du P, Sun Z, Qi F, Zheng Z, Huang B, Dong W, Li P, Zhang X. 2022. Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus L. in cultivated peanut (Arachis hypogaea L.). Frontiers in Plant Science13, 899177–899194.

Cui M, Haider M S, Chai P, Guo J, Du P, Li H, Dong W, Huang B, Zheng Z, Shi L, Zhang X, Han S. 2021. Genome-wide identification and expression analysis of AP2/ERF transcription factor related to drought stress in cultivated peanut (Arachis hypogaea L.). Frontiers in Genetics12, 750761–750777.

El-Banna A, Hajirezaei M R, Wissing J, Ali Z, Vaas L, Heine-Dobbernack E, Jacobsen H J, Schumacher H M, Kiesecker H. 2010. Over-expression of PR-10a leads to increased salt and osmotic tolerance in potato cell cultures. Journal of Biotechnology150, 277–287.

Finn R D, Clements J, Eddy S R. 2011. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research39, W29–W37.

Gao G, Zhang X, Zhao K, Zhao K, Cao D, Ma Q, Zhu S, Qu C, Ma Y, Gong F, Li Z, Ren R, Ma X L, Yin D. 2021. Genome wide identification and expression analysis of patatin-like protein family members in peanut (Arachis hypogaea L.). Reproduction and Breeding1, 48–54.

Gao Z, van de Weg W E, Schaart J G, Schouten H J, Tran D H, Kodde L P, van der Meer I M, van der Geest A H, Kodde J, Breiteneder H, Hoffmann-Sommergruber K, Bosch D, Gilissen L J. 2005. Genomic cloning and linkage mapping of the Mal d 1 (PR-10) gene family in apple (Malus domestica). Theoretical and Applied Genetics111, 171–183.

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D, Bairoch A. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research31, 3784–3788.

Guo B, Chen X, Dang P, Scully BT, Liang X, Holbrook C C, Yu J, Culbreath A K. 2008. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Developmental Biology8, 12–27.

Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T. 2004. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant and Cell Physiology45, 550–559.

He H, Chen C, Han Q, Zhang N, Ge F, Liu D. 2014. Cloning and expression analysis of a pathogenesis-related protein 10 gene from Juglans sigillataPlant Science Journal32, 612–619.

He M, Xu Y, Cao J, Zhu Z, Jiao Y, Wang Y, Guan X, Yang Y, Xu W, Fu Z. 2012. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma250, 129–140.

He Z, Zhang H, Gao S, Lercher M J, Chen W, Hu S. 2016. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research44, W236–W241.

Hoffmann-Sommergruber K, Vanek-Krebitz M, Radauer C, Wen J, Ferreira F, Scheiner O, Breiteneder H. 1997. Genomic characterization of members of the Bet v 1 family: Genes coding for allergens and pathogenesis-related proteins share intron positions. Gene197, 91–100.

Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics31, 1296–1297.

Huang J, Chang F, Wang C. 1997. Characterization of a lily tapetal transcript that shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins. Plant Molecular Biology34, 681–686.

Huang W Y, Cai Y Z, Zhang Y. 2010. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutrition and Cancer62, 1–20.

Hwang S H, Lee I A, Yie S W, Hwang D J. 2008. Identification of an OsPR10a promoter region responsive to salicylic acid. Planta227, 1141–1150.

Jain S, Kumar D, Jain M, Chaudhary P, Deswal R, Sarin N B. 2012. Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell Tissue and Organ Culture109, 19–31.

Kim S T, Yu S, Kang Y H, Kim S G, Kim J Y, Kim S H, Kang K Y. 2008. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Reports, 27, 593–603.

Krishnaswamy S, Baral P K, James M N G, Kav N N V. 2011. Site-directed mutagenesis of histidine 69 and glutamic acid 148 alters the ribonuclease activity of pea ABR17 (PR10.4). Plant Physiology and Biochemistry49, 958–962.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Lebel S, Schellenbaum P, Walter B, Maillot P. 2010. Characterization of the Vitis vinifera PR10 multigene family. BMC Plant Biology10, 184–196.

Lee O R, Pulla R K, Kim Y J, Balusamy S R, Yang D C. 2012. Expression and stress tolerance of PR10 genes from Panax ginseng C. A. Meyer. Molecular Biology Reports39, 2365–2374.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research30, 325–327.

Liu D, Han Q, Shah T, Chen C, Wang Q, Tang B, Ge F. 2018. A hybrid proline-rich cell-wall protein gene JsPRP1 from Juglans sigillata Dode confers both biotic and abiotic stresses in transgenic tobacco plants. Trees32, 1199–1209.

Liu J, Dou H, Zhao G, Geng Z, Han S, An Z, Zhang H, Wang Y. 2022. Cloning and drought stress function analysis of pathogenesis-related proteins GbPR10 gene in sea-island cotton (Gossypium barbadense). Journal of Agricultural Biotechnology30, 272–283.

Liu J, Ekramoddoullah A K. 2006. The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology68, 3–13.

Liu J, Ekramoddoullah A K, Piggott N, Zamani A. 2005. Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta221, 159–169.

Liu X, Huang B, Lin J, Fei J, Chen Z, Pang Y, Sun X, Tang K. 2006. A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress-and pathogen-inducible. Journal of Plant Physiology163, 546–556.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods25, 402–408.

Lo S C, Hipskind J D, Nicholson R L. 1999. cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolumMolecular Plant12, 479–489.

Loon L C V, Pierpoint W S, Boller T, Conejero V. 1994. Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter12, 245–264.

Loon L C V, Rep M, Pieterse C M J. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology44, 135–162.

Luo M, Dang P, Guo B, He G. 2005. Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Science45, 346–353.

Matton D P, Brisson N. 1989. Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. Molecular Plant2, 325–331.

Mcgee J D, Hamer J E, Hodges T K. 2001. Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe griseaMolecular Plant14, 877–886.

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research49, D412–D419.

Park C J, Kim K J, Shin R, Park J M, Shin Y C, Paek K H. 2004. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal37, 186–198.

Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. 2018. HMMER web server: 2018 update. Nucleic Acids Research46, W200–W204.

Samac D A, Penuela S, Schnurr J A, Hunt E N, Foster-Hartnett D, Vandenbosch K A, Gantt J S. 2011. Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatulaMolecular Plant Pathology12, 786–798.

Somssich I E, Schmelzer E, Kawalleck P, Hahlbrock K. 1988. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Molecular Genetics and Genomics213, 93–98.

Su H, Jiao Y T, Wang F F, Liu Y E, Niu W L, Liu G T, Xu Y. 2018. Overexpression of VpPR10.1 by an efficient transformation method enhances downy mildew resistance in VviniferaPlant Cell Reports37, 819–832.

Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research22, 4673–4680.

Vision T J, Brown D G, Tanksley S D. 2000. The origins of genomic duplications in ArabidopsisScience290, 2114–2117.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity93, 77–78.

Wang L, Sun Y, Li Y, Sun X, Wu Q, Cao D, Huang G, Xue J. 2021. Research progress of plant major latex protein. Journal of Anhui Agricultural Sciences49, 12–14. (in Chinese)

Wang Z, Yan L, Wan L, Huai D, Kang Y, Shi L, Jiang H, Lei Y, Liao B. 2019. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics20, 51–64.

Wu F, Yan M, Li Y, Chang S, Song X, Zhou Z, Gong W. 2003. cDNA cloning, expression, and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosusBiochemical and Biophysical Research Communications312, 761–766.

Xie C, Liang X, Li L, Liu H. 2009. Cloning and prokaryotic expression of ARAhPR10 gene with resistance to Aspergillus flavus in peanut. Genomics and Applied Biology28, 237–244. (in Chinese)

Xie C, Liu H, Li L, Liang X. 2008. Advances on class 10 pathogenesis-related proteins. Molecular Plant Breeding6, 949–953. (in Chinese)

Xie Y, Chen Z, Browm R L, Bhatnagar D. 2010. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea maysJournal of Plant Physiology167, 121–130.

Xu P, Jiang L, Wu J, Li W, Fan S, Zhang S. 2014. Isolation and characterization of a pathogenesis-related protein 10 gene (gmpr10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojaeMolecular Biology Reports41, 4899–4909.

Xu X, Guo S, Chen K, Song H, Liu J, Guo L, Qian Q, Wang H. 2010. A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Biotechnology Letters32, 1533–1539.

Zandvakili N, Zamani M R, Motallebi M, Moghaddassi Jahromi Z. 2017. Cloning, overexpression and in vitro antifungal activity of Zea mays PR10 protein. Iranian Journal of Biotechnology15, 42–49.

Zhang J, Xiong A, Erickson L R. 2011. Isolation and characterization of a harvest-inducible gene hi11 and its promoter from alfalfa. Molecular Biology Reports38, 23–29.

Zhao L, Ma L, Wang Z, Chen M, Shen Y, Huang L. 2015. Molecular cloning and characterization of a pathogenesis-related protein SmPR10-1 from Salvia miltiorrhizaActa Physiologiae Plantarum37, 1–8.

Zhou X, Lu S, Xu Y, Wang J, Chen X. 2002. A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Science162, 629–636.

Zhu X, Leng X, Sun X, Mu Q, Wang B, Li X, Wang C, Fang J. 2015. Discovery of conservation and diversification of miR171 genes by phylogenetic analysis based on global genomes. Plant Genome8, 1–11.

Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics51, 865–876.

[1] Ke Fang, Yi Liu, Zhiquan Wang, Xiang Zhang, Xuexiao Zou, Feng Liu, Zhongyi Wang. Genome-wide analysis of the CaYABBY family in pepper and functional identification of CaYABBY5 in the regulation of floral determinacy and fruit morphogenesis[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3024-3039.
[2] HAN Li-jie, SONG Xiao-fei, WANG Zhong-yi, LIU Xiao-feng, YAN Li-ying, HAN De-guo, ZHOU Zhao-yang, ZHANG Xiao-lan. Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1321-1331.
No Suggested Reading articles found!