Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2465-2474    DOI: 10.1016/j.jia.2024.04.033
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Fine mapping and candidate gene analysis of a major QTL for grain length on chromosome 5BS in bread wheat

Jianqi Zeng1, 2*, Dehui Zhao1, 3*, Li Yang1, 4, Yufeng Yang5, Dan Liu1, Yubing Tian1, 2, Fengju Wang1, Shuanghe Cao1, Xianchun Xia1, Zhonghu He1, 6, Yong Zhang1, 2, 7#

1 State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China

2 Zhongyuan Research Center, CAAS, Xinxiang 453519, China

3 College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471000, China

4 Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471022, China

5 College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

6 CIMMYT-China Office, c/o CAAS, Beijing 100081, China

7 The Suihuang Laboratory, Henan Province, Shangqiu 476000, China

 Highlights 
QGl.caas-5BS was delimited into an interval of approximately 2.2 Mb by phenotyping and genotyping a secondary mapping populations.  
Five genes were predicted as candidates of QGl.caas-5BS based on sequence polymorphism and differential expression analyses, with TraesCS5B02G026800 as the causal gene.  
A gene-specific marker Kasp_5B_Gl for TraesCS5B02G026800 were validated in a panel of 166 cultivars.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
大籽粒小麦品种的库容较大,有助于进一步提高产量潜力。前期在中麦871和其姊妹系中麦895重组自交系群体中定位到一个稳定的粒长QTL QGl.caas-5BS,本研究在此基础上,从ZM871/ZM895//ZM871重组自交系BC1F6中筛选到一个剩余杂合系,对其自交后代BC1F7群体中的6株杂合重组单株及其自交衍生次生群体进行了基因型和表型分析,将QGl.caas-5BS位点进一步定位到Kasp_5B33Kasp_5B2 (25.3 Mb ~ 27.5 Mb)标记间的2.2Mb物理区间内。序列多态性和差异表达分析在该区间预测到6个候选基因。突变体表型数据进一步分析表明,TraesCS5B02G026800可能是QGl.caas-5BS位点的候选基因。进一步开发了TraesCS5B02G026800基因的高通量特异性KASP标记Kasp_5B_Gl,并在166份自然群体中对其遗传效应进行了验证。本研究结果为QGl.caas-5BS基因的图位克隆和粒长分子标记辅助选择高产育种工作奠定了良好的基础。


Abstract  

Large grain is a favorable trait for appearance quality and a large sink potential in wheat breeding.  The stable QTL QGl.caas-5BS for grain length was previously identified in a recombinant inbred line population from the cross of Zhongmai 871 (ZM871) and its sister line Zhongmai 895 (ZM895).  Here, a BC1F6 residual heterozygous line was selected from the cross of a ZM871/ZM895//ZM871 population, and six heterozygous recombinant plants were identified in the BC1F7 population from self-pollination of the heterozygous line.  QGl.caas-5BS was delimited into an interval of approximately 2.2 Mb flanked by markers Kasp_5B33 and Kasp_5B2 (25.3–27.5 Mb) by phenotyping and genotyping the secondary mapping populations derived from these heterozygous recombinant plants.  Five genes were predicted as candidates of QGl.caas-5BS based on sequence polymorphism and differential expression analyses.  Further mutation analysis showed that TraesCS5B02G026800 is likely the causal gene of QGl.caas-5BS.  The gene-specific marker Kasp_5B_Gl for TraesCS5B02G026800 was developed, and a significant genetic effect of QGl.caas-5BS on grain length was identified in a validation population of 166 cultivars using this marker.  These findings lay a good foundation for map-based cloning of QGl.caas-5BS and provide a breeding-applicable marker for the improvement of grain length in wheat.

Keywords:  breeding-friendly marker       candidate gene prediction       fine mapping       grain length       Triticum aestivum L.  
Received: 28 August 2023   Online: 30 April 2024   Accepted: 24 October 2023
Fund: 
This work was funded by the National Natural Science Foundation of China (31961143007), the Key Research and Development Program of Xinjiang Uygur Autonomous Region, China (2023B02006), the Core Research Budget of the Non-profit Governmental Research Institutions, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (S2021ZD04 and S2022ZD04) and the Natural Science Foundation of Hebei Province, China (C2021205013).
About author:  #Correspondence Yong Zhang, Tel: +86-10-82108745, E-mail: zhangyong05@caas.cn * These authors contributed equally to this study.

Cite this article: 

Jianqi Zeng, Dehui Zhao, Li Yang, Yufeng Yang, Dan Liu, Yubing Tian, Fengju Wang, Shuanghe Cao, Xianchun Xia, Zhonghu He, Yong Zhang. 2025. Fine mapping and candidate gene analysis of a major QTL for grain length on chromosome 5BS in bread wheat. Journal of Integrative Agriculture, 24(7): 2465-2474.

Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C. 2017. Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytologist, 215, 1026–1038.

Brinton J, Simmonds J, Uauy C. 2018. Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biology, 18, 22.

Chen Y, Xu Y Y, Luo W, Li W X, Chen N, Zhang D J, Chong K. 2013. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiology, 163, 1673–1685.

Chen Z Y, Cheng X J, Chai L L, Wang Z H, Bian R L, Li J, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. 2020. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 149–162.

Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 127, 659–675.

Dong L L, Wang F M, Liu T, Dong Z Y, Li A L, Jing R L, Mao L, Li Y W, Liu X, Zhang K P, Wang D W. 2014. Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Molecular Breeding, 34, 937–947.

Fischer R A T, Edmeades G O. 2010. Breeding and cereal yield progress. Crop Science, 50, 85–98.

Gao F M, Ma D Y, Yin G H, Rasheed A, Dong Y, Xiao Y G, Xia X C, Wu X X, He Z H. 2017. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of Southern Yellow and Huai Valley since 1950. Crop Science, 57, 760–773.

Guo Y, Sun J J, Zhang G Z, Wang Y Y, Kong F M, Zhao Y, Li S S. 2013. Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1a in wheat. Field Crops Research, 154, 119–125.

Guo Z F, Chen D J, Schnurbusch T. 2015. Variance components, heritability and correlation analysis of anther and ovary size during the floral development of bread wheat. Journal of Experimental Botany, 66, 3099–3111.

Hu M J, Zhang H P, Cao J J, Zhu X F, Wang S X, Jiang H, Wu Z Y, Lu J, Chang C, Sun G L, Ma C X. 2016. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Molecular Breeding, 36, 25.

Kuchel H, Williams K J, Langridge P, Eagles H A, Jefferies S P. 2007. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theoretical and Applied Genetics, 115, 1029–1041.

Langridge P. 2013. Wheat genomics and the ambitious targets for future wheat production. Genome, 56, 545–547.

Li F J, Wen W E, Liu J D, Zhang Y, Cao S H, He Z H, Rasheed A, Jin H, Zhang C, Yan J, Zhang P Z, Wan Y X, Xia X C. 2019. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 19, 168.

Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An DG, Li T, Zhang X Y. 2020. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal, 18, 1330–1342.

Ma L, Li T, Hao C Y, Wang Y Q, Chen X H, Zhang X Y. 2016. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 14, 1269–1280.

Prashant R, Kadoo N, Desale C, Kore P, Dhaliwal H S, Chhuneja P, Gupta V. 2012. Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL×QTL and genotype×environment interactions. Journal of Cereal Science, 56, 432–439.

Sharma E, Bhatnagar A, Bhaskar A, Majee S M, Kieffer M, Kepinski S, Khurana P, Khurana J P. 2023. Stress-induced F-Box protein-coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice. Plant, Cell & Environment, 46, 1207–1231.

Simmonds J, Scott P, Brinton J, Mestre T C, Bush M, Del Blanco A, Dubcovsky J, Uauy C. 2016. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theoretical and Applied Genetics, 129, 1099–1112.

Simmonds J, Scott P, Leverington-Waite M, Turner A, Brinton J, Korzun V, Snape J, Uauy C. 2014. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biology, 14, 191.

Su Q N, Zhang X L, Zhang W, Zhang N, Song L Q, Liu L, Xue X, Liu G T, Liu J J, Meng D Y, Zhi L Y, Ji J, Zhao X Q, Yang C L, Tong YP, Liu Z Y, Li J M. 2018. QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 9, 1484.

Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 122, 211–223.

Sun C W, Zhang F Y, Yan X F, Zhang X F, Dong Z D, Cui D Q, Chen F. 2017. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China, Plant Biotechnology Journal, 15, 953–969.

Walkowiak S, Gao L, Monat C, Haberer G, Kassa M T, Brinton J, Ramirez-Gonzalez R H, Kolodziej M C, Delorean E, Thambugala D. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature, 588, 277–283.

Wang D, Li Y, Wang H, Xu Y, Yang Y, Zhou Y, Chen Z, Zhou Y, Gui L, Guo Y, Zhou C, Tang W, Zheng S. 2023. Boosting wheat functional genomics via an indexed EMS mutant library of KN9204. Plant Communications, 4, 100593.

Wang S S, Yan X F, Wang Y Y, Liu H M, Cui D Q, Chen F. 2016. Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Frontiers in Plant Science, 7, 783.

Wang S S, Zhang X F, Chen F, Cui D Q. 2015. A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Frontiers in Plant Science, 6, 1166.

Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D, Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817×Beinong 6. PLoS ONE, 10, e0118144.

Xie Q, Mayes S, Sparkes D L. 2015. Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany, 66, 6715–6730.

Yang J, Zhou Y J, Wu Q H, Chen Y X, Zhang P P, Zhang Y E, Hu W G, Wang X C, Zhao H, Dong L L, Han J, Liu Z Y, Cao T J. 2019. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 132, 1799–1814.

Yang L, Zhao D H, Meng Z L, Xu K J, Yan J, Xia X C, Cao S H, Tian Y B, He Z H, Zhang Y. 2020. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theoretical and Applied Genetics, 133, 857–872.

Zhai H J, Feng Z Y, Du X F, Song Y N, Liu X Y, Qi Z Q, Song L, Li J, Li L H, Peng H R, Hu Z Y, Yao Y Y, Xin M M, Xiao SH, Sun Q X, Ni Z F. 2018. A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 131, 539–553.

Zhang Y J, Liu J D, Xia X C, He Z H. 2014. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 34, 1097–1107.

Zhang Z G, Lv G D, Li B, Wang J J, Zhao Y, Kong F M, Guo Y, Li S S. 2017. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS ONE, 12, e0174425.

Zhao D H, Yang L, Liu D, Zeng J Q, Cao S H, Xia X C, Yan J, Song X Y, He Z H, Zhang Y. 2021. Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theoretical and Applied Genetics, 134, 3731–3741.

[1] Huanting Shi, Chuang Lou, Jinfeng Wang, Dianqi Dong, Longfei Yang, Gezi Li, Zhiqiang Tian, Qiaoxia Han, Pengfei Wang, Guozhang Kang. Identification of Pi-efficient elite allele of the TaPHT1;6 gene and development of its functional marker in common wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1646-1655.
[2] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[3] Liping Song, Xia Li, Liguang Tang, Chuying Yu, Bincai Wang, Changbin Gao, Yanfeng Xie, Xueli Zhang, Junliang Wang, Chufa Lin, Aihua Wang.

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis) [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1195-1204.

[4] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
[5] LIU Sang-lin, CHENG Yan-bo, MA Qi-bin, LI Mu JIANG Ze, XIA Qiu-ju, NIAN Hai. Fine mapping and genetic analysis of resistance genes, Rsc18, against soybean mosaic virus[J]. >Journal of Integrative Agriculture, 2022, 21(3): 644-653.
[6] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[7] MA Fu-ying, DU Jie, WANG Da-chuan, WANG Hui, ZHAO Bing-bing, HE Guang-hua, YANG Zheng-lin, ZHANG Ting, WU Ren-hong, ZHAO Fang-ming. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1163-1169.
[8] GONG Hong-bing, ZENG Sheng-yuan, XUE Xiang, ZHANG Ya-fang, CHEN Zong-xiang, ZUO Shi-min, LI Chuang, LIN Tian-zi, JING De-dao, YU Bo, QIAN Hua-fei, PAN Xue-biao, SHENG Sheng-lan . Fine mapping of a novel wax crystal-sparse leaf3 gene in rice[J]. >Journal of Integrative Agriculture, 2017, 16(02): 497-502.
[9] LIU Zhong-xian, CUI Yu, WANG Zhong-wei, XIE Yuan-hua, SANG Xian-chun, YANG Zheng-lin, ZHANG Chang-wei, ZHAO Fang-ming, HE Guang-hua, LING Ying-hua. Phenotypic characterization and fine mapping of mps1, a premature leaf senescence mutant in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1944-1954.
[10] PAN Yu, CHEN Xu-qing, XIE Hua, DENG Lei, LI Xiang-long, ZHANG Xiao-dong, HAN Li-xin, YANG Feng-ping, XUE Jing, ZHANG Li-quan. A maize bundle sheath defective mutation mapped on chromosome 1 between SSR markers umc1395 and umc1603[J]. >Journal of Integrative Agriculture, 2015, 14(10): 1949-1957.
[11] Zheng gui-jie, Yang Yong-qing, Ma Ying, Yang Xiao-feng, Chen Shan-yu, Ren Rui, Wang Da-gang, Yang Zhong-lu , ZhI hai-jian. Fine Mapping and Candidate Gene Analysis of Resistance Gene RSC3Q to Soybean mosaic virus in Qihuang 1[J]. >Journal of Integrative Agriculture, 2014, 13(12): 2608-2615.
[12] LIU Rui, SUN Dong-xiao, WANG Ya-chun, YU Ying, ZHANG Yi, CHEN Hui-yong, ZHANG Qin, ZHANG Sheng-li , ZHANG Yuan. Fine Mapping QTLs Affecting Milk Production Traits on BTA6 in Chinese Holstein with SNP Markers[J]. >Journal of Integrative Agriculture, 2013, 12(1): 110-117.
[13] DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren. Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2012, 12(12): 1933-1939.
No Suggested Reading articles found!