Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (12): 1933-1939    DOI: 10.1016/S1671-2927(00)8729
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.)
 DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren
1.Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/Fujian Agricultural and Forestry University,Fuzhou 350002, P.R.China
2.Fujian Provincial Key Laboratory of Marker-Assisted Breeding of Rice/Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  A mutant was isolated from the M2 of 60Co-g ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as esp1 (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA3 did not rescue the panicle enclosure. Using an F2 and a BC1 population of the cross between esp1 and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of ~260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.

Abstract  A mutant was isolated from the M2 of 60Co-g ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as esp1 (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA3 did not rescue the panicle enclosure. Using an F2 and a BC1 population of the cross between esp1 and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of ~260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.
Keywords:  rice      panicle enclosure      esp1      genetic analysis      fine mapping  
Received: 24 March 2011   Accepted:
Fund: 

This work was supported by the National Transgenic Projects of China (2009ZX-08009-109B), the Natural Science Foundation of Fujian Province, China (2012J01091) and the New Century Excellent Talents in University of Fujian Province, China (KY0010057).

Corresponding Authors:  Correspondence WU Wei-ren, Tel: +86-591-83789176, E-mail: wuwr@fjau.edu.cn     E-mail:  wuwr@fjau.edu.cn
About author:  DUAN Yuan-lin, Tel: +86-591-83789338, E-mail: ylduan863@163.com

Cite this article: 

DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren. 2012. Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.). Journal of Integrative Agriculture, 12(12): 1933-1939.

[1]Duan Y L, Wu W R, Zhang D F, Liu H Q, Zhou Y C, Pan RS, Lin L H, Chen Z W, Guan H Z, Mao D M, et al. 2003.Genetic analysis and gene mapping of leafy head (lhd),a mutant blocking the differentiation of rachis brandiesin rice (Oryza sativa L.). Chinese Science Bulletin, 48,2201-2205.

[2]Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, ZhuangL J, Qi W M, Pan R S, Mao D M, Zhou Y C, et al. 2011.Genetic analysis and fine mapping of an enclosedpanicle mutant esp2 in rice (Oryza sativa L.). ChineseScience Bulletin, 56, 1476-1480.

[3]Goff S A, Ricke D, Lan T H, Presting G, Wang R L, Dunn M,Glazebrook J, Sessions A, Oeller P, Varma H, et al002E 2002.A draft sequence of the rice genome (Oryza sativa L.ssp. japonica). Science, 296, 92-100.

[4]Heu M H, Shretha G. 1986. Genetic analysis of sheathedpanicle in a Nepalese rice cultivar gamadi. In: RiceGenetics Symposium. IRRI, Manila, Philippines. pp. 317-322.

[5]Hidehiko S, Hikaru S, Yasuo N. 2003. Mutations in panicledevelopment affect culm elongation in rice. BreedingScience, 53, 109-117.

[6]Kinoshita T. 1990. Report of the committee on genesymbolization, nomenclature and linkage groups. RiceGenetics Newsletter, 7, 16-50.

[7]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J,Linclon S E, Newburg L. 1987. MAPMAKER: Aninteractive computer package for constructing primarygenetic linkage maps of experimental and naturalpopulations. Genomics, 1, 174-181.

[8]Li A X, Li Z H, Ding K X, Yan G H. 1995. Measures forpreventing and controlling kernel smut in hybrid riceseed production. Jiangsu Agriculture Science, 4, 34-36. (in Chinese)

[9]Liu Z, Luo L J. 2006. Anatomical studies on the stem of riceof dwarf and sheathed panicle. Chinese AgricultureScience Bulletin, 22, 409-412.

[10](in Chinese)Lu Z M, Hong D L. 1999. Advances in hybrid rice seedproduction techniques. In: Amarjit S, Basra, eds.,Heterosis and Hybrid Seed Production in AgronomicCrops. Food Products Press-an Imprint of the HaworthPress, Incorporated, New York. pp. 65-79.

[11]Ma H L, Zhang S B, Ji L, Zhu H B, Yang S L, Fang X J, YangR C. 2006. Fine mapping and in silico isolation of theEUI1 gene controlling upper internode elongation inrice. Plant Molecular Biology, 60, 87-94.

[12]Maekawa M. 1986. Allelism test for the genes responsible forsheathed panicle. Rice Genetics Newsletter, 3, 62-63.

[13]Maekawa M, Inukai T. 1992. Genes linked with d-2 in rice.Japanese Journal of Breeding, 42, 212-213.

[14]Michelmore RW, Paran I, Kesseli R V. 1991. Identification ofmarkers linked to disease-resistance genes by bulkedsegregant analysis: a rapid method to detect markers inspecific genomic regions by using segregatingpopulations. Proceeding of the National Academy ofSciences of the United States of America, 88, 9828-9832.

[15]Shen Z T, Yang C D, He Z H. 1987. Studies on eliminatingpanicle enclosure in WAType MS line of rice (Oryzasativa subsp. indica). Journal of Chinese Rice Science,1, 95-99.

[16](in Chinese)Shrestha G L. 1984. Gene location for “Gamadiness” in rice(Oryza sativa L.). Korean Journal of Crop Science(Korea R.), 29, 128-135.

[17]Virmani S S, Dalmacio R D, Lopez M T. 1988. EUI gene forelongated uppermost internode transferred to indicarice. International Rice Research Newsletter, 13, 6-9.

[18]Wang W P, Zhu F Z, Tang L, Chen L Y, Wu X J. 2008.Discovery and preliminary analysis of a rice mutantwith fully sheathed panicle. Chinese AgriculturalScience Bulletin, 24, 212-216. (in Chinese)

[19]Wu K. 2009. Genetic analysis and mapping of a dwarf andsheathed panicle mutant dsp1 in rice (Oryza sativa L.),MSc thesis, Yangzhou University, Jiangsu. (in Chinese)Xiao H H, ZhongWH, LiangM Z, XuM L, Chen L B. 2005.Effect of temperature on the eui gene expression ofTGMS rice. Scientia Agricultura Sinica, 38, 222-227.(in Chinese)

[20]Yang R C, Zhang S B, Huang R H, Yang S R, Zhang Q Q.2002. Breeding technology of eui-hybrids of rice.Scientia Agricultura Sinica, 4, 359-363. (in Chinese)

[21]Zhu H B. 2003. Fine mapping and cloning of rice EUI2(t)gene controlling upper most internode elongation. Ph Dthesis, Fujian Agriculture and Forestry University,Fujian. (in Chinese)

[22]Zhu K M. 2006. Genetic analysis and mapping of SHP6gene in rice. MSc thesis, Yangzhou University, Jiangsu.(in Chinese)

[23]Zhu L, Hu J, Zhu K, Fang Y, Gao Z, He Y, Zhang G, Guo L,Zeng D, Dong G, et al. 2011. Identification andcharacterization of SHORTENED UPPERMOSTINTERNODE 1, a gene negatively regulating uppermostinternode elongation in rice. Plant Molecular Biology,77, 475-487.
[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[3] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[4] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[5] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[6] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[7] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[8] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[9] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[10] Gulzhan N. YESSEMBEKOVA, XIAO Shuang, Assem ABENOV, Talgat KARIBAEV, Alexandr SHEVTSOV, Amirgazin ASYLULAN, Yersyn Y. MUKHANBETKALIYEV, SHUAI Lei, BU Zhi-gao, Sarsenbay K. ABDRAKHMANOV. Molecular epidemiological study of animal rabies in Kazakhstan[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1266-1275.
[11] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[12] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[13] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[14] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[15] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
No Suggested Reading articles found!