Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (12): 1933-1939    DOI: 10.1016/S1671-2927(00)8729
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.)
 DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren
1.Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/Fujian Agricultural and Forestry University,Fuzhou 350002, P.R.China
2.Fujian Provincial Key Laboratory of Marker-Assisted Breeding of Rice/Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  A mutant was isolated from the M2 of 60Co-g ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as esp1 (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA3 did not rescue the panicle enclosure. Using an F2 and a BC1 population of the cross between esp1 and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of ~260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.

Abstract  A mutant was isolated from the M2 of 60Co-g ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as esp1 (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA3 did not rescue the panicle enclosure. Using an F2 and a BC1 population of the cross between esp1 and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of ~260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.
Keywords:  rice      panicle enclosure      esp1      genetic analysis      fine mapping  
Received: 24 March 2011   Accepted:
Fund: 

This work was supported by the National Transgenic Projects of China (2009ZX-08009-109B), the Natural Science Foundation of Fujian Province, China (2012J01091) and the New Century Excellent Talents in University of Fujian Province, China (KY0010057).

Corresponding Authors:  Correspondence WU Wei-ren, Tel: +86-591-83789176, E-mail: wuwr@fjau.edu.cn     E-mail:  wuwr@fjau.edu.cn
About author:  DUAN Yuan-lin, Tel: +86-591-83789338, E-mail: ylduan863@163.com

Cite this article: 

DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren. 2012. Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.). Journal of Integrative Agriculture, 12(12): 1933-1939.

[1]Duan Y L, Wu W R, Zhang D F, Liu H Q, Zhou Y C, Pan RS, Lin L H, Chen Z W, Guan H Z, Mao D M, et al. 2003.Genetic analysis and gene mapping of leafy head (lhd),a mutant blocking the differentiation of rachis brandiesin rice (Oryza sativa L.). Chinese Science Bulletin, 48,2201-2205.

[2]Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, ZhuangL J, Qi W M, Pan R S, Mao D M, Zhou Y C, et al. 2011.Genetic analysis and fine mapping of an enclosedpanicle mutant esp2 in rice (Oryza sativa L.). ChineseScience Bulletin, 56, 1476-1480.

[3]Goff S A, Ricke D, Lan T H, Presting G, Wang R L, Dunn M,Glazebrook J, Sessions A, Oeller P, Varma H, et al002E 2002.A draft sequence of the rice genome (Oryza sativa L.ssp. japonica). Science, 296, 92-100.

[4]Heu M H, Shretha G. 1986. Genetic analysis of sheathedpanicle in a Nepalese rice cultivar gamadi. In: RiceGenetics Symposium. IRRI, Manila, Philippines. pp. 317-322.

[5]Hidehiko S, Hikaru S, Yasuo N. 2003. Mutations in panicledevelopment affect culm elongation in rice. BreedingScience, 53, 109-117.

[6]Kinoshita T. 1990. Report of the committee on genesymbolization, nomenclature and linkage groups. RiceGenetics Newsletter, 7, 16-50.

[7]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J,Linclon S E, Newburg L. 1987. MAPMAKER: Aninteractive computer package for constructing primarygenetic linkage maps of experimental and naturalpopulations. Genomics, 1, 174-181.

[8]Li A X, Li Z H, Ding K X, Yan G H. 1995. Measures forpreventing and controlling kernel smut in hybrid riceseed production. Jiangsu Agriculture Science, 4, 34-36. (in Chinese)

[9]Liu Z, Luo L J. 2006. Anatomical studies on the stem of riceof dwarf and sheathed panicle. Chinese AgricultureScience Bulletin, 22, 409-412.

[10](in Chinese)Lu Z M, Hong D L. 1999. Advances in hybrid rice seedproduction techniques. In: Amarjit S, Basra, eds.,Heterosis and Hybrid Seed Production in AgronomicCrops. Food Products Press-an Imprint of the HaworthPress, Incorporated, New York. pp. 65-79.

[11]Ma H L, Zhang S B, Ji L, Zhu H B, Yang S L, Fang X J, YangR C. 2006. Fine mapping and in silico isolation of theEUI1 gene controlling upper internode elongation inrice. Plant Molecular Biology, 60, 87-94.

[12]Maekawa M. 1986. Allelism test for the genes responsible forsheathed panicle. Rice Genetics Newsletter, 3, 62-63.

[13]Maekawa M, Inukai T. 1992. Genes linked with d-2 in rice.Japanese Journal of Breeding, 42, 212-213.

[14]Michelmore RW, Paran I, Kesseli R V. 1991. Identification ofmarkers linked to disease-resistance genes by bulkedsegregant analysis: a rapid method to detect markers inspecific genomic regions by using segregatingpopulations. Proceeding of the National Academy ofSciences of the United States of America, 88, 9828-9832.

[15]Shen Z T, Yang C D, He Z H. 1987. Studies on eliminatingpanicle enclosure in WAType MS line of rice (Oryzasativa subsp. indica). Journal of Chinese Rice Science,1, 95-99.

[16](in Chinese)Shrestha G L. 1984. Gene location for “Gamadiness” in rice(Oryza sativa L.). Korean Journal of Crop Science(Korea R.), 29, 128-135.

[17]Virmani S S, Dalmacio R D, Lopez M T. 1988. EUI gene forelongated uppermost internode transferred to indicarice. International Rice Research Newsletter, 13, 6-9.

[18]Wang W P, Zhu F Z, Tang L, Chen L Y, Wu X J. 2008.Discovery and preliminary analysis of a rice mutantwith fully sheathed panicle. Chinese AgriculturalScience Bulletin, 24, 212-216. (in Chinese)

[19]Wu K. 2009. Genetic analysis and mapping of a dwarf andsheathed panicle mutant dsp1 in rice (Oryza sativa L.),MSc thesis, Yangzhou University, Jiangsu. (in Chinese)Xiao H H, ZhongWH, LiangM Z, XuM L, Chen L B. 2005.Effect of temperature on the eui gene expression ofTGMS rice. Scientia Agricultura Sinica, 38, 222-227.(in Chinese)

[20]Yang R C, Zhang S B, Huang R H, Yang S R, Zhang Q Q.2002. Breeding technology of eui-hybrids of rice.Scientia Agricultura Sinica, 4, 359-363. (in Chinese)

[21]Zhu H B. 2003. Fine mapping and cloning of rice EUI2(t)gene controlling upper most internode elongation. Ph Dthesis, Fujian Agriculture and Forestry University,Fujian. (in Chinese)

[22]Zhu K M. 2006. Genetic analysis and mapping of SHP6gene in rice. MSc thesis, Yangzhou University, Jiangsu.(in Chinese)

[23]Zhu L, Hu J, Zhu K, Fang Y, Gao Z, He Y, Zhang G, Guo L,Zeng D, Dong G, et al. 2011. Identification andcharacterization of SHORTENED UPPERMOSTINTERNODE 1, a gene negatively regulating uppermostinternode elongation in rice. Plant Molecular Biology,77, 475-487.
[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[4] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[5] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[6] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[7] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[8] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[9] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[10] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[11] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[12] Liping Song, Xia Li, Liguang Tang, Chuying Yu, Bincai Wang, Changbin Gao, Yanfeng Xie, Xueli Zhang, Junliang Wang, Chufa Lin, Aihua Wang.

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis) [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1195-1204.

[13] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[14] Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding [J]. >Journal of Integrative Agriculture, 2024, 23(3): 769-780.

[15] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

No Suggested Reading articles found!