Alassane-Kpembi I, Pinton P, Hupe J F, Neves M, Lippi Y, Combes S, Castex M, Oswald I P. 2018. Saccharomyces cerevisiae boulardii reduces the deoxynivalenol-induced alteration of the intestinal transcriptome. Toxins (Basel), 10, 199.
Alcock J, Maley C C, Aktipis C A. 2014. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays, 36, 940–949.
Bai Y, Ma K, Li J, Ren Z, Zhang J, Shan A. 2022. Lactobacillus rhamnosus GG ameliorates DON-induced intestinal damage depending on the enrichment of beneficial bacteria in weaned piglets. Journal of Animal Science and Biotechnology, 13, 90.
Basso K, Gomes F, Bracarense A P. 2013. Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. Toxins (Basel), 5, 2341–2352.
Becker L L, Derouchey J M, Woodworth J C, Tokach M D, Goodband R D, Vidal A, Gougoulias C, Gebhardt J T. 2022. Evaluation of dietary mycotoxin control strategies on nursery pig growth performance and blood measures. Journal of Animal Science, 100, 50.
Bracarense A, Pierron A, Pinton P, Gerez J R, Schatzmayr G, Moll W D, Zhou T, Oswald I P. 2020. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food and Chemical Toxicology, 140, 111241.
Bracarense A P, Lucioli J, Grenier B, Drociunas Pacheco G, Moll W D, Schatzmayr G, Oswald I P. 2012. Chronic ingestion of Deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. British Journal of Nutrition, 107, 1776–1786.
Cani P D. 2016. Interactions between gut microbes and host cells control gut barrier and metabolism. International Journal of Obesity Supplements, 6, S28-S31.
Chillappagari S, Garapati V, Mahavadi P, Naehrlich L, Schmeck B T, Schmitz M L, Guenther A. 2021. Defective BACH1/HO-1 regulatory circuits in cystic fibrosis bronchial epithelial cells. Journal of Cystic Fibrosis, 20, 140–148.
Cortez V, Boyd D F, Crawford J C, Sharp B, Livingston B, Rowe H M, Davis A, Alsallaq R, Robinson C G, Vogel P, Rosch J W, Margolis E, Thomas P G, Schultz-Cherry S. 2020. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nature Communications, 11, 2097.
Dalton B, Campbell I C, Chung R, Breen G, Schmidt U, Himmerich H. 2018. Inflammatory markers in anorexia nervosa: An exploratory study. Nutrients, 10, 1573.
Darwish W S, Chen Z, Li Y, Tan H, Chiba H, Hui S P. 2020. Deoxynivalenol-induced alterations in the redox status of HepG2 cells: Identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc. Mycotoxin Research, 36, 287–299.
Dersjant-Li Y, Verstegen M W, Gerrits W J. 2003. The impact of low concentrations of aflatoxin, Deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutrition Research Reviews, 16, 223–239.
Drayton M, Deisinger J P, Ludwig K C, Raheem N, Muller A, Schneider T, Straus S K. 2021. Host defense peptides: Dual antimicrobial and immunomodulatory action. International Journal of Molecular Sciences, 22, 11172.
Efeyan A, Comb W C, Sabatini D M. 2015. Nutrient-sensing mechanisms and pathways. Nature, 517, 302–310.
Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. 2025. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Critical Reviews in Food Science Nutrition, 65, 1465–1481.
Fischer N, Sechet E, Friedman R, Amiot A, Sobhani I, Nigro G, Sansonetti P J, Sperandio B. 2016. Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proceedings of the National Academy of Sciences of the United States of America, 113, E2993–E3001.
Flannery B M, Clark E S, Pestka J J. 2012. Anorexia induction by the trichothecene Deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicological Science, 130, 289–297.
Garcia G R, Dogi C A, Poloni V L, Fochesato A S, Leblanc A D M D, Cossalter A M, Payros D, Oswald I P, Cavaglieri L R. 2019. Beneficial effects of Saccharomyces cerevisiae RC016 in weaned piglets: In vivo and ex vivo analysis. Beneficial Microbes, 10, 33–42.
García G R, Payros D, Pinton P, Dogi C A, Laffitte J, Neves M, González Pereyra M L, Cavaglieri L R, Oswald I P. 2018. Intestinal toxicity of Deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology, 92, 983–993.
Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. 2021. Aflatoxin detoxification using microorganisms and enzymes. Toxins (Basel), 13, 46.
Guerre P. 2020. Mycotoxin and gut microbiota interactions. Toxins (Basel), 12, 769.
Hand K V, Bruen C M, O’halloran F, Panwar H, Calderwood D, Giblin L, Green B D. 2013. Examining acute and chronic effects of short-and long-chain fatty acids on peptide YY (PYY) gene expression, cellular storage and secretion in STC-1 cells. European Journal of Nutrition, 52, 1303–1313.
He C, Fan Y, Liu G, Zhang H. 2008. Isolation and identification of a strain of Aspergillus tubingensis with Deoxynivalenol biotransformation capability. International Journal of Molecular Sciences, 9, 2366–2375.
He J W, Bondy G S, Zhou T, Caldwell D, Boland G J, Scott P M. 2015. Toxicology of 3-epi-deoxynivalenol, a Deoxynivalenol-transformation product by Devosia mutans 17–2-E-8. Food and Chemical Toxicology, 84, 250–259.
He K, Pan X, Zhou H R, Pestka J J. 2013. Modulation of inflammatory gene expression by the ribotoxin Deoxynivalenol involves coordinate regulation of the transcriptome and translatome. Toxicological Sciences, 131, 153–163.
He W J, Shi M M, Yang P, Huang T, Zhao Y, Wu A B, Dong W B, Li H P, Zhang J B, Liao Y C. 2020. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify Deoxynivalenol in wheat via epimerization in a Devosia strain. Food Chemistry, 321, 126703.
Holanda D M, Kim S W. 2020. Efficacy of mycotoxin detoxifiers on health and growth of newly-weaned pigs under chronic dietary challenge of deoxynivalenol. Toxins (Basel), 12, 311.
Hou Q, Ye L, Liu H, Huang L, Yang Q, Turner J R, Yu Q. 2018. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death and Differentiation, 25, 1657–1670.
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. 2023. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Critical Reviews in Food Science and Nutrition, 63, 790–812.
Ikunaga Y, Sato I, Grond S, Numaziri N, Yoshida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M, Ito M, Karlovsky P, Tsushima S. 2011. Nocardioides sp. strain WSN05–2, isolated from a wheat field, degrades Deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Applied Microbiology and Biotechnology, 89, 419–427.
Islam M R, Roh Y S, Kim J, Lim C W, Kim B. 2013. Differential immune modulation by Deoxynivalenol (vomitoxin) in mice. Toxicology Letters, 221, 152–163.
Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. 2023. Dietary taurine supplementation counteracts Deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. Ecotoxicology and Environmental Safety, 253, 114705.
Jia B, Lin H, Yu S, Liu N, Yu D, Wu A. 2023. Mycotoxin Deoxynivalenol-induced intestinal flora disorders, dysfunction and organ damage in broilers and pigs. Journal of Hazardous Materials, 451, 131172.
Jia R, Liu W, Zhao L, Cao L, Shen Z. 2020. Low doses of individual and combined Deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicology Letters, 333, 159–169.
Jia R, Sadiq F A, Liu W, Cao L, Shen Z. 2021. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed Deoxynivalenol contaminated diets. Food and Chemical Toxicology, 148, 111962.
Johansson M E, Phillipson M, Petersson J, Velcich A, Holm L, Hansson G C. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105, 15064–15069.
Jpestka J. 2008. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Animals Breeding and Feed, 137, 283–298.
Kang R, Li R, Dai P, Li Z, Li Y, Li C. 2019. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environmental Pollution, 251, 689–698.
Kullik K, Brosig B, Kersten S, Valenta H, Diesing A K, Panther P, Reinhardt N, Kluess J, Rothkötter H J, Breves G, Dänicke S. 2013. Interactions between the Fusarium toxin Deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food and Chemical Toxicology, 57, 11–20.
Lessard M, Savard C, Deschene K, Lauzon K, Pinilla V A, Gagnon C A, Lapointe J, Guay F, Chorfi Y. 2015. Impact of Deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food and Chemical Toxicology, 80, 7–16.
Li E, Horn N, Ajuwon K M. 2021. Mechanisms of Deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Archives of Toxicology, 95, 2065–2079.
Li F, Xu D, Hou K, Gou X, Lv N, Fang W, Li Y. 2021. Pretreatment of indobufen and aspirin and their combinations with clopidogrel or ticagrelor alleviates inflammasome mediated pyroptosis via inhibiting NF-kappaB/NLRP3 pathway in ischemic stroke. Journal of Neuroimmune Pharmacology, 16, 835–853.
Li R, Li Y, Su Y, Shen D, Dai P, Li C. 2018. Short-term ingestion of Deoxynivalenol in naturally contaminated feed alters piglet performance and gut hormone secretion. Animal Science Journal, 89, 1134–1143.
Li X Z, Zhu C, De Lange C F, Zhou T, He J, Yu H, Gong J, Young J C. 2011. Efficacy of detoxification of Deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Additves and Contaminants Part A (Chemistry Analysis Control Exposure & Risk Assessment), 28, 894–901.
Liang S J, Li X G, Wang X Q. 2019. Notch signaling in mammalian intestinal stem cells: Determining cell fate and maintaining homeostasis. Current Stem Cell Research & Therapy, 14, 583–590.
Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. 2020. Baicalin alleviates Deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food and Chemical Toxicology, 140, 111326.
Liao Y, Peng Z, Chen L, Nussler A K, Liu L, Yang W. 2018. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food and Chemical Toxicology, 112, 342–354.
Lin R, Sun Y, Mu P, Zheng T, Mu H, Deng F, Deng Y, Wen J. 2020. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against Deoxynivalenol exposure in nude mice. Biochemical Pharmacology, 175, 113868.
Liu D, Wang Q, He W, Ge L, Huang K. 2022. Deoxynivalenol aggravates the immunosuppression in piglets and PAMs under the condition of PEDV infection through inhibiting TLR4/NLRP3 signaling pathway. Ecotoxicology and Environmental Safety, 231, 113209.
Long H, Xin Z, Zhang F, Zhai Z, Ni X, Chen J, Yang K, Liao P, Zhang L, Xiao Z, Sindaye D, Deng B. 2021. The cytoprotective effects of dihydromyricetin and associated metabolic pathway changes on Deoxynivalenol treated IPEC-J2 cells. Food Chemistry, 338, 128116.
Luna R A, Foster J A. 2015. Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Current Opin Biotechnol, 32, 35–41.
Ma T Y, Nighot P, Al-Sadi R.2018. Tight junctions and the intestinal barrier. Physiology of the Gastrointestinal Tract, 25, 587–639.
Maidana L G, Gerez J, Hohmann M N S, Verri W A, Jr., Bracarense A. 2021. Lactobacillus plantarum metabolites reduce Deoxynivalenol toxicity on jejunal explants of piglets. Toxicon, 203, 12–21.
Marin S, Ramos A J, Cano-Sancho G, Sanchis V. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218–237.
Marreiro D D, Cruz K J, Morais J B, Beserra J B, Severo J S, De Oliveira A R. 2017. Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel), 6, 24.
Martinez G, Dieguez S N, Fernandez Paggi M B, Riccio M B, Perez Gaudio D S, Rodriguez E, Amanto F A, Tapia M O, Soraci A L. 2019. Effect of fosfomycin, Cynara scolymus extract, Deoxynivalenol and their combinations on intestinal health of weaned piglets. Animal Nutrition, 5, 386–395.
Martinez-Guryn K, Leone V, Chang E B. 2019. Regional diversity of the gastrointestinal microbiome. Cell Host & Microbe, 26, 314–324.
Meng X, Yu W, Duan N, Wang Z, Shen Y, Wu S. 2022. Protective effects of ferulic acid on deoxynivalenol-induced toxicity in IPEC-J2 cells. Toxins (Basel), 14, 275.
Mishra S, Dwivedi P D, Pandey H P, Das M. 2014. Role of oxidative stress in Deoxynivalenol induced toxicity. Food and Chemical Toxicology, 72, 20–29.
Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. 2020. Global occurrence of Deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey. Critical Reviews in Food Science and Nutrition, 60, 1346–1374.
Morrison D J, Preston T. 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7, 189–200.
Namikawa T, Fukudome I, Kitagawa H, Okabayashi T, Kobayashi M, Hanazaki K. 2012. Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology, 82, 147–152.
Park S H, Kim J, Kim D, Moon Y. 2017. Mycotoxin detoxifiers attenuate Deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction. Toxicology in Vitro, 38, 108–116.
Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald I P. 2016. Toxicology of Deoxynivalenol and its acetylated and modified forms. Archives of Toxicology, 90, 2931–2957.
Payros D, Menard S, Laffitte J, Neves M, Tremblay-Franco M, Luo S, Fouche E, Snini S P, Theodorou V, Pinton P, Oswald I P. 2020. The food contaminant, Deoxynivalenol, modulates the Thelper/Treg balance and increases inflammatory bowel diseases. Archives
|