Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2449-2464    DOI: 10.1016/j.jia.2024.07.037
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Mechanism of mitigating on Deoxynivalenol-induced intestinal toxicity in swine and its dietary regulation strategy
Ting Pan1, Ruiting Guo1, Weiwei Wang2, XingLiu3, Bing Xia1, Linshu Jiang1, Ming Liu1#
1College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China 2Academy of National Food and Strategic Reserves Administration, Beijing 100037, China 3Shaanxi Pucheng Shiyang Feed Co., Ltd., Weinan 715500, China
 Highlights 
Deoxynivalenol (DON) disrupts intestinal barrier integrity, immune responses, and microbiota balance in swine through pathways involving MAPKs, NF-κB, and oxidative stress, leading to growth retardation and systemic health impairment.
Microbial additives, enzymes, amino acids, and plant extracts mitigate DON toxicity by enhancing antioxidant defenses, modulating signaling pathways, restoring microbiota balance, and repairing intestinal morphology.
The proposed strategy uncovers additive-specific pathways and emphasizes the role of gut microbiota in the biotransformation of DON.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

霉菌毒素是食品和动物饲料中最常见的污染物,严重威胁人类和动物的健康。脱氧雪腐镰刀菌烯醇(Deoxynivalenol, DON)是镰刀菌属(Fusariums spp.)产生的次级代谢产物,广泛存在于小麦、玉米、大麦等食品加工原材料中,给畜牧业生产带来了极大经济损失。猪对DON非常敏感,给猪饲喂DON污染日粮会导致采食量减少、增重下降和免疫功能受损等不良反应,严重时或导致死亡。肠道的屏障功能是防御外源性有毒有害物质损伤机体的重要途径。在此,我们探讨了DON对肠道屏障的损害,包括肠道组织形态学、上皮屏障功能、肠道免疫系统、微生物菌群和肠道中短链脂肪酸的产生等方面。目前DON脱毒方法主要有物理脱毒法、化学脱毒法和生物脱毒法,其中生物脱毒法具有安全环保、特异性强、解毒效果显著等优点而备受推崇。许多饲料添加剂在DON解毒方面的潜力已得到证实。这些添加剂可通过调节 Nrf2-Keap1、MAPKs和NF-κB信号通路来减轻DON对猪的毒性作用。此外,微生物的酶降解作用可通过破坏DON的毒性基团,将DON代谢转化为毒性较小甚至无毒的物质,还有某些种类的芽孢杆菌和酵母菌具备降解DON的能力。本文结合近年来国内外相关研究进展,综述了DON对猪肠道的毒性作用及脱毒方法,对利用真菌、细菌和植物进行DON脱毒以及脱毒剂的应用进行了较为详细的阐述,可促进我们对与DON肠道毒性相关的机制的理解,本文还对DON脱毒的研究进展进行了展望,并对各种保护剂的脱毒作用和应用前景进行了探讨,旨在为猪肠道健康保护提供参考,为今后安全有效的饲料添加剂的研究和开发提供新的思路。



Abstract  

Mycotoxins are the most widely existing pollutants in both dietary provisions and livestock feed, and they pose a series of hazards for humans and animals.  Deoxynivalenol (DON) is a prevalent mycotoxin that is primarily produced by Fusarium spp. and commonly found in various cereal products.  Feeding swine diets contaminated with trichothecene DON can lead to major adverse effects, including reduced feed intake, diminished weight gains, and compromised immune function.  Among all animal species, swine are the most sensitive to DON.  Here we explore the disruption of gut health by DON, considering aspects such as intestinal histomorphology, epithelial barrier functions,  immune system, microflora, and short-chain fatty acid production in the intestines.  Numerous additives have been documented for their potential in the detoxification of DON.  These additives can alleviate the toxic effects of DON on pigs by modulating the Nrf2-Keap1, mitogen-activated protein kinases (MAPKs) and Nuclear factor kappa-B (NF-κB) signaling pathways.  Additionally, there are additives capable of mitigating the toxicity of DON through adsorption or biotransformation.  This update has novel potential for advancing our comprehension of the mechanisms linked to DON intestinal toxicity and facilitating the formulation of innovative strategies to mitigate the impact of DON.

Keywords:  Deoxynivalenol       toxicity mechanism        biological detoxification  
Received: 13 December 2023   Online: 25 July 2024   Accepted: 10 June 2024
Fund: 
This research was supported by the National Key Research and Development Program of China (2021YFD1301003), the Beijing University of Agriculture Science and Technology Innovation “Spark Action” Support Program, China (BUA-HHXD2022011), and the key research and development Program of Shaanxi Province, China (2022NY-095).
About author:  Ting Pan, E-mail: 202230312011@bua.edu.cn; #Correspondence Ming Liu, E-mail: liuming@bua.edu.cn

Cite this article: 

Ting Pan, Ruiting Guo, Weiwei Wang, Xing Liu, Bing Xia, Linshu Jiang, Ming Liu. 2025. Mechanism of mitigating on Deoxynivalenol-induced intestinal toxicity in swine and its dietary regulation strategy. Journal of Integrative Agriculture, 24(7): 2449-2464.

Alassane-Kpembi I, Pinton P, Hupe J F, Neves M, Lippi Y, Combes S, Castex M, Oswald I P. 2018. Saccharomyces cerevisiae boulardii reduces the deoxynivalenol-induced alteration of the intestinal transcriptome. Toxins (Basel), 10, 199.

Alcock J, Maley C C, Aktipis C A. 2014. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays, 36, 940–949.

Bai Y, Ma K, Li J, Ren Z, Zhang J, Shan A. 2022. Lactobacillus rhamnosus GG ameliorates DON-induced intestinal damage depending on the enrichment of beneficial bacteria in weaned piglets. Journal of Animal Science and Biotechnology, 13, 90.

Basso K, Gomes F, Bracarense A P. 2013. Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. Toxins (Basel), 5, 2341–2352.

Becker L L, Derouchey J M, Woodworth J C, Tokach M D, Goodband R D, Vidal A, Gougoulias C, Gebhardt J T. 2022. Evaluation of dietary mycotoxin control strategies on nursery pig growth performance and blood measures. Journal of Animal Science, 100, 50.

Bracarense A, Pierron A, Pinton P, Gerez J R, Schatzmayr G, Moll W D, Zhou T, Oswald I P. 2020. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food and Chemical Toxicology, 140, 111241.

Bracarense A P, Lucioli J, Grenier B, Drociunas Pacheco G, Moll W D, Schatzmayr G, Oswald I P. 2012. Chronic ingestion of Deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. British Journal of Nutrition, 107, 1776–1786.

Cani P D. 2016. Interactions between gut microbes and host cells control gut barrier and metabolism. International Journal of Obesity Supplements, 6, S28-S31.

Chillappagari S, Garapati V, Mahavadi P, Naehrlich L, Schmeck B T, Schmitz M L, Guenther A. 2021. Defective BACH1/HO-1 regulatory circuits in cystic fibrosis bronchial epithelial cells. Journal of Cystic Fibrosis, 20, 140–148.

Cortez V, Boyd D F, Crawford J C, Sharp B, Livingston B, Rowe H M, Davis A, Alsallaq R, Robinson C G, Vogel P, Rosch J W, Margolis E, Thomas P G, Schultz-Cherry S. 2020. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nature Communications, 11, 2097.

Dalton B, Campbell I C, Chung R, Breen G, Schmidt U, Himmerich H. 2018. Inflammatory markers in anorexia nervosa: An exploratory study. Nutrients, 10, 1573.

Darwish W S, Chen Z, Li Y, Tan H, Chiba H, Hui S P. 2020. Deoxynivalenol-induced alterations in the redox status of HepG2 cells: Identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc. Mycotoxin Research, 36, 287–299.

Dersjant-Li Y, Verstegen M W, Gerrits W J. 2003. The impact of low concentrations of aflatoxin, Deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutrition Research Reviews, 16, 223–239.

Drayton M, Deisinger J P, Ludwig K C, Raheem N, Muller A, Schneider T, Straus S K. 2021. Host defense peptides: Dual antimicrobial and immunomodulatory action. International Journal of Molecular Sciences, 22, 11172.

Efeyan A, Comb W C, Sabatini D M. 2015. Nutrient-sensing mechanisms and pathways. Nature, 517, 302–310.

Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. 2025. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Critical Reviews in Food Science Nutrition, 65, 1465–1481.

Fischer N, Sechet E, Friedman R, Amiot A, Sobhani I, Nigro G, Sansonetti P J, Sperandio B. 2016. Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proceedings of the National Academy of Sciences of the United States of America, 113, E2993–E3001.

Flannery B M, Clark E S, Pestka J J. 2012. Anorexia induction by the trichothecene Deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicological Science, 130, 289–297.

Garcia G R, Dogi C A, Poloni V L, Fochesato A S, Leblanc A D M D, Cossalter A M, Payros D, Oswald I P, Cavaglieri L R. 2019. Beneficial effects of Saccharomyces cerevisiae RC016 in weaned piglets: In vivo and ex vivo analysis. Beneficial Microbes, 10, 33–42.

García G R, Payros D, Pinton P, Dogi C A, Laffitte J, Neves M, González Pereyra M L, Cavaglieri L R, Oswald I P. 2018. Intestinal toxicity of Deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology, 92, 983–993.

Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. 2021. Aflatoxin detoxification using microorganisms and enzymes. Toxins (Basel), 13, 46.

Guerre P. 2020. Mycotoxin and gut microbiota interactions. Toxins (Basel), 12, 769.

Hand K V, Bruen C M, O’halloran F, Panwar H, Calderwood D, Giblin L, Green B D. 2013. Examining acute and chronic effects of short-and long-chain fatty acids on peptide YY (PYY) gene expression, cellular storage and secretion in STC-1 cells. European Journal of Nutrition, 52, 1303–1313.

He C, Fan Y, Liu G, Zhang H. 2008. Isolation and identification of a strain of Aspergillus tubingensis with Deoxynivalenol biotransformation capability. International Journal of Molecular Sciences, 9, 2366–2375.

He J W, Bondy G S, Zhou T, Caldwell D, Boland G J, Scott P M. 2015. Toxicology of 3-epi-deoxynivalenol, a Deoxynivalenol-transformation product by Devosia mutans 17–2-E-8. Food and Chemical Toxicology, 84, 250–259.

He K, Pan X, Zhou H R, Pestka J J. 2013. Modulation of inflammatory gene expression by the ribotoxin Deoxynivalenol involves coordinate regulation of the transcriptome and translatome. Toxicological Sciences, 131, 153–163.

He W J, Shi M M, Yang P, Huang T, Zhao Y, Wu A B, Dong W B, Li H P, Zhang J B, Liao Y C. 2020. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify Deoxynivalenol in wheat via epimerization in a Devosia strain. Food Chemistry, 321, 126703.

Holanda D M, Kim S W. 2020. Efficacy of mycotoxin detoxifiers on health and growth of newly-weaned pigs under chronic dietary challenge of deoxynivalenol. Toxins (Basel), 12, 311.

Hou Q, Ye L, Liu H, Huang L, Yang Q, Turner J R, Yu Q. 2018. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death and Differentiation, 25, 1657–1670.

Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. 2023. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Critical Reviews in Food Science and Nutrition, 63, 790–812.

Ikunaga Y, Sato I, Grond S, Numaziri N, Yoshida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M, Ito M, Karlovsky P, Tsushima S. 2011. Nocardioides sp. strain WSN05–2, isolated from a wheat field, degrades Deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Applied Microbiology and Biotechnology, 89, 419–427.

Islam M R, Roh Y S, Kim J, Lim C W, Kim B. 2013. Differential immune modulation by Deoxynivalenol (vomitoxin) in mice. Toxicology Letters, 221, 152–163.

Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. 2023. Dietary taurine supplementation counteracts Deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. Ecotoxicology and Environmental Safety, 253, 114705.

Jia B, Lin H, Yu S, Liu N, Yu D, Wu A. 2023. Mycotoxin Deoxynivalenol-induced intestinal flora disorders, dysfunction and organ damage in broilers and pigs. Journal of Hazardous Materials, 451, 131172.

Jia R, Liu W, Zhao L, Cao L, Shen Z. 2020. Low doses of individual and combined Deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicology Letters, 333, 159–169.

Jia R, Sadiq F A, Liu W, Cao L, Shen Z. 2021. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed Deoxynivalenol contaminated diets. Food and Chemical Toxicology, 148, 111962.

Johansson M E, Phillipson M, Petersson J, Velcich A, Holm L, Hansson G C. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105, 15064–15069.

Jpestka J. 2008. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Animals Breeding and Feed, 137, 283–298.

Kang R, Li R, Dai P, Li Z, Li Y, Li C. 2019. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environmental Pollution, 251, 689–698.

Kullik K, Brosig B, Kersten S, Valenta H, Diesing A K, Panther P, Reinhardt N, Kluess J, Rothkötter H J, Breves G, Dänicke S. 2013. Interactions between the Fusarium toxin Deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food and Chemical Toxicology, 57, 11–20.

Lessard M, Savard C, Deschene K, Lauzon K, Pinilla V A, Gagnon C A, Lapointe J, Guay F, Chorfi Y. 2015. Impact of Deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food and Chemical Toxicology, 80, 7–16.

Li E, Horn N, Ajuwon K M. 2021. Mechanisms of Deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Archives of Toxicology, 95, 2065–2079.

Li F, Xu D, Hou K, Gou X, Lv N, Fang W, Li Y. 2021. Pretreatment of indobufen and aspirin and their combinations with clopidogrel or ticagrelor alleviates inflammasome mediated pyroptosis via inhibiting NF-kappaB/NLRP3 pathway in ischemic stroke. Journal of Neuroimmune Pharmacology, 16, 835–853.

Li R, Li Y, Su Y, Shen D, Dai P, Li C. 2018. Short-term ingestion of Deoxynivalenol in naturally contaminated feed alters piglet performance and gut hormone secretion. Animal Science Journal, 89, 1134–1143.

Li X Z, Zhu C, De Lange C F, Zhou T, He J, Yu H, Gong J, Young J C. 2011. Efficacy of detoxification of Deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Additves and Contaminants Part A (Chemistry Analysis Control Exposure & Risk Assessment), 28, 894–901.

Liang S J, Li X G, Wang X Q. 2019. Notch signaling in mammalian intestinal stem cells: Determining cell fate and maintaining homeostasis. Current Stem Cell Research & Therapy, 14, 583–590.

Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. 2020. Baicalin alleviates Deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food and Chemical Toxicology, 140, 111326.

Liao Y, Peng Z, Chen L, Nussler A K, Liu L, Yang W. 2018. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food and Chemical Toxicology, 112, 342–354.

Lin R, Sun Y, Mu P, Zheng T, Mu H, Deng F, Deng Y, Wen J. 2020. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against Deoxynivalenol exposure in nude mice. Biochemical Pharmacology, 175, 113868.

Liu D, Wang Q, He W, Ge L, Huang K. 2022. Deoxynivalenol aggravates the immunosuppression in piglets and PAMs under the condition of PEDV infection through inhibiting TLR4/NLRP3 signaling pathway. Ecotoxicology and Environmental Safety, 231, 113209.

Long H, Xin Z, Zhang F, Zhai Z, Ni X, Chen J, Yang K, Liao P, Zhang L, Xiao Z, Sindaye D, Deng B. 2021. The cytoprotective effects of dihydromyricetin and associated metabolic pathway changes on Deoxynivalenol treated IPEC-J2 cells. Food Chemistry, 338, 128116.

Luna R A, Foster J A. 2015. Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Current Opin Biotechnol, 32, 35–41.

Ma T Y, Nighot P, Al-Sadi R.2018. Tight junctions and the intestinal barrier. Physiology of the Gastrointestinal Tract, 25, 587–639.

Maidana L G, Gerez J, Hohmann M N S, Verri W A, Jr., Bracarense A. 2021. Lactobacillus plantarum metabolites reduce Deoxynivalenol toxicity on jejunal explants of piglets. Toxicon, 203, 12–21.

Marin S, Ramos A J, Cano-Sancho G, Sanchis V. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218–237.

Marreiro D D, Cruz K J, Morais J B, Beserra J B, Severo J S, De Oliveira A R. 2017. Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel), 6, 24.

Martinez G, Dieguez S N, Fernandez Paggi M B, Riccio M B, Perez Gaudio D S, Rodriguez E, Amanto F A, Tapia M O, Soraci A L. 2019. Effect of fosfomycin, Cynara scolymus extract, Deoxynivalenol and their combinations on intestinal health of weaned piglets. Animal Nutrition, 5, 386–395.

Martinez-Guryn K, Leone V, Chang E B. 2019. Regional diversity of the gastrointestinal microbiome. Cell Host & Microbe, 26, 314–324.

Meng X, Yu W, Duan N, Wang Z, Shen Y, Wu S. 2022. Protective effects of ferulic acid on deoxynivalenol-induced toxicity in IPEC-J2 cells. Toxins (Basel), 14, 275.

Mishra S, Dwivedi P D, Pandey H P, Das M. 2014. Role of oxidative stress in Deoxynivalenol induced toxicity. Food and Chemical Toxicology, 72, 20–29.

Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. 2020. Global occurrence of Deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey. Critical Reviews in Food Science and Nutrition, 60, 1346–1374.

Morrison D J, Preston T. 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7, 189–200.

Namikawa T, Fukudome I, Kitagawa H, Okabayashi T, Kobayashi M, Hanazaki K. 2012. Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology, 82, 147–152.

Park S H, Kim J, Kim D, Moon Y. 2017. Mycotoxin detoxifiers attenuate Deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction. Toxicology in Vitro, 38, 108–116.

Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald I P. 2016. Toxicology of Deoxynivalenol and its acetylated and modified forms. Archives of Toxicology, 90, 2931–2957.

Payros D, Menard S, Laffitte J, Neves M, Tremblay-Franco M, Luo S, Fouche E, Snini S P, Theodorou V, Pinton P, Oswald I P. 2020. The food contaminant, Deoxynivalenol, modulates the Thelper/Treg balance and increases inflammatory bowel diseases. Archives 

[1] Jia Chen, Xinran Zhang, Ziqi He, Dongwei Xiong, Miao Long. Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: A review[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2507-2524.
[2] WANG Yan, YAN Hao, WANG Qi, ZHENG Ran, XIA Kai, LIU Yang. Regulation of the phytotoxic response of Arabidopsis thaliana to the Fusarium mycotoxin deoxynivalenol[J]. >Journal of Integrative Agriculture, 2020, 19(3): 759-767.
[3] ZHAO Xiu-mei, LI Rong-jia, ZHOU Chuang, ZHANG Jie, HE Cheng-hua, ZHENG Ya-ting, WU Wen-da. Separation and purification of deoxynivalenol (DON) mycotoxin from wheat culture using a simple two-step silica gel column chromatography[J]. >Journal of Integrative Agriculture, 2016, 15(3): 694-701.
[4] MA Xin, DU Xu-ye, LIU Guo-juan, YANG Zai-dong, HOU Wen-qian, WANG Hong-wei, FENG De-shun. Cloning and characterization of a novel UDP-glycosyltransferase gene induced by DON from wheat[J]. >Journal of Integrative Agriculture, 2015, 14(5): 830-838.
[5] DENG Xian-bai, DIN Huan-zhong, HUANG Xian-hui, MA Yong-jiang, FAN Xiao-long, YAN Hai-kuo, LU Pei-cheng, LI Wei-cheng, ZENG Zhen-ling. Tissue distribution of deoxynivalenol in piglets following intravenous administration[J]. >Journal of Integrative Agriculture, 2015, 14(10): 2058-2064.
No Suggested Reading articles found!