|
Alexander N J, Proctor R H, McCormick S P. 2009. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Reviews, 28, 198–215.
Alexander P, Brown C, Arneth A, Finnigan J, Moran D, Rounsevell M D A. 2017. Losses, inefficiencies and waste in the global food system. Agricultural Systems, 153, 190–200.
Bai G, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 42, 135–161.
Bai G H, Desjardins A E, Plattner R D. 2002. Deoxynivalenol nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia, 153, 91–98.
Bai G H, Plattner R, Desjardins A, Kolb F, McIntosh R A. 2001. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breeding, 120, 1–6.
Boenisch M J, Schäfer W. 2011. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology, 11, 1–14.
Bonnighausen J, Schauer N, Schafer W, Bormann J. 2019. Metabolic profiling of wheat rachis node infection by Fusarium graminearum-decoding deoxynivalenol-dependent susceptibility. New Phytologist, 221, 459–469.
Brown N A, Evans J, Mead A, Hammond-Kosack K E. 2017. A spatial temporal analysis of the Fusarium graminearum transcriptome during symptomless and symptomatic wheat infection. Molecular Plant Pathology, 18, 1295–1312.
Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. 2021. The CHY-type zinc finger protein FgChy1 regulates polarized growth, pathogenicity, and microtubule assembly in Fusarium graminearum. Molecular Plant-Microbe Interactions, 34, 362–375.
Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising H B, Kumlehn J, Schweizer P. 2016. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. Journal of Experimental Botany, 67, 4979–4991.
Chen Y, Kistler H C, Ma Z. 2019. Fusarium graminearum Trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology, 57, 15–39.
Cheng W, Song X S, Li H P, Cao L H, Sun K, Qiu X L, Y B, Yang P, Huang T, Zhang J B, Qu B, Liao Y C. 2015. Host‐induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnology Journal, 13, 1335–1345.
Dean R, Kan J A L, Pretorius Z A, Hammond-kosack K E, Pietro A D, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.
Desjardins A E, Bai G H, Plattner R D, Proctor R H. 2000. Analysis of aberrant virulence of Gibberella zeae following transformation-mediated complementation of a trichothecene-deficient (Tri5) mutant. Microbiology, 146, 2059–2068.
El-Baky N A, Amara A A A F. 2021. Recent approaches towards control of fungal diseases in plants: An updated review. Journal of Fungi, 7, 900.
Fisher M C, Hawkins N J, Sanglard D, Gurr S J. 2018. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 360, 739–742.
Gu Q, Chen Y, Liu Y, Zhang C, Ma Z. 2015. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. New Phytologist, 206, 315–328.
Gunupuru L R, Patel J S, Sumarah M W, Renaud J B, Mantin E G, Prithiviraj B. 2019. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS ONE, 14, e0220562.
He F, Zhang R, Zhao J, Qi T, Kang Z, Guo J. 2019. Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight. Frontiers in Plant Science, 10, 1362.
Hu S, Zhou X, Gu X, Cao S, Wang C, Xu J. 2014. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Molecular Plant-Microbe Interactions, 27, 557–566.
Ishida Y, Tsunashima M, Hiei Y, Komari T. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods in Molecular Biology, 1223, 189–198.
Jansen C, von Wettstein D, Schäfer W, Kogel K H, Felk A, Maier F J. 2005. Infection patterns in barley and wheat spikes inoculated with wild type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America, 102, 16892–16897.
Jiang C, Cao S, Wang Z, Xu H, Liang J, Liu H, Wang G, Ding M, Wang Q, Gong C, Feng C, Hao C, Xu J. 2019. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection. Nature Microbiology, 4, 1582–1591.
Jiang C, Zhang X, Liu H, Xu J. 2018. Mitogen-activated protein kinase signaling in plant pathogenic fungi. Plos Pathogens, 14, e1006875.
John E, Singh K B, Oliver R P, Tan K C. 2021. Transcription factor control of virulence in phytopathogenic fungi. Molecular Plant Pathology, 22, 858–881.
Kage U, Yogendra K N, Kushalappa A C. 2017. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Scientific Reports, 7, 42596.
Keulemans W, Bylemans D, De Coninck B. 2019. Farming without Plant Protection. EPRS European Parliamentary Research Service, Brussels, Belgium.
Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. 2007. Molecular and genetic studies of Fusarium trichothecene biosynthesis: Pathways, genes, and evolution. Bioscience Biotechnology and Biochemistry, 71, 2105–2123.
Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathogens, 12, e1005901.
Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K H. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14 alphademethylase- encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the United States of America, 110, 19324–19329.
Liu C, Francis C O. 2015. Resistance to Fusarium crown rot in wheat and barley: A review. Plant Breeding, 134, 365–372.
Liu Y, Yang X, Ma J, Wei Y, Zheng Y, Ma H, Yao J, Yan G, Wang Y, Manners J, Liu C. 2010. Plant height affects Fusarium crown rot severity in wheat. Phytopathology, 100, 1276–1281.
Liu Z, Jian Y, Chen Y, Kistler H C, He P, Ma Z, Yin Y. 2019. A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum. Nature Communications, 10, 1228.
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 133, 1541–1568.
Maier F J, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W. 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology, 7, 449–461.
Mata J, Nurse P. 1997. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell, 89, 939–949.
Mentges M, Glasenapp A, Boenisch M, Malz S, Henrissat B, Frandsen R J N, Güldener U, Münsterkötter M, Bormann J, Lebrun M, Schäfer W, Martinez‐Rocha A. 2020. Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. Molecular Plant Pathology, 21, 1070–1087.
Panwar V, Jordan M, McCallum B, Bakkeren G. 2018. Host induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnology Journal, 16, 1013–1023.
Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J. 2019. Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley. International Journal of Molecular Sciences, 20, 206.
Qu Y, Cao H, Huang P, Wang J, Liu X, Lu J, Lin F C. 2022. A kelch domain cell end protein, PoTea1, mediates cell polarization during appressorium morphogenesis in Pyricularia oryzae. Microbiological Research, 259, 126999.
Rajam M V, Chauhan S. 2021. Host-induced gene silencing (HIGS): An emerging strategy for the control of fungal plant diseases. In: Sarmah B K, Borah B K, eds., Genome Engineering for Crop Improvement. Concepts and Strategies in Plant Sciences. Springer, Cham.
Ramamoorthy V, Zhao X, Snyder A K, Xu J, Shah D M. 2007. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cellular Microbiology, 9, 1491–1506.
Rogers A M, Taylor R, Egan M J. 2024. The cell-end protein Tea4 spatially regulates hyphal branch initiation and appressorium remodeling in the blast fungus Magnaporthe oryzae. Molecular Biology of the Cell, 35, br2.
Rudd J J, Keon J, Hammond-Kosack K E. 2008. The wheat Mitogen-activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with Mycosphaerella graminicola. Plant Physiology, 147, 802–815.
Sakaguchi A, Miyaji T, Tsuji G, Kubo Y. 2010. A Kelch repeat protein, Cokel1p, associates with microtubules and is involved in appressorium development in Colletotrichum orbiculare. Molecular Plant-Microbe Interactions, 23, 103–111.
Sang H, Hulvey J P, Green R, Xu H, Im J, Chang T, Jung G. 2018a. A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. mBio, 9, e00457-18.
Sang H, Jacobs J L, Wang J, Mukankusi C, Chilvers M I. 2018b. First report of Fusarium cuneirostrum from common bean (Phaseolus vulgaris) in Uganda. Plant Disease, 102, 2639.
Sang H, Kim J I. 2020. Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnology Reports, 14, 1–8.
Sang H, Popko J, Jung G. 2019. Evaluation of a Sclerotinia homoeocarpa population with multiple fungicide resistance phenotypes under differing selection pressures. Plant Disease, 103, 685–690.
Schnitkey G. 2018. Historic fertilizer, seed, and chemical costs with 2019 projections. Farmdoc Daily, 8, 102.
Seong K, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu J, Kistler H. 2009. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology, 72, 354–367.
Takeshita N, Higashitsuji Y, Konzack S, Fischer R. 2008. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Molecular Biology of the Cell, 19, 339–351.
Takeshita N, Mania D, Herrero S, Ishitsuka Y, Nienhaus G U, Podolski M, Howard J, Fischer R. 2013. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. Journal of Cell Science, 126, 5400–5411.
Tiwari I M, Jesuraj A, Kamboj R, Devanna B, Botella J R, Sharma T. 2017. Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Scientific Reports, 7, 1–14.
Urban M, Mott E, Farley T, Hammond-Kosack K. 2003. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology, 4, 347–359.
Wang J, Sang H, Jacobs J L, Oudman K, Hanson L E, Chilvers M I. 2019. Soybean sudden death syndrome caused by Fusarium brasiliense in Michigan. Plant Disease, 103, 1234–1243.
Wang M, Jin H. 2017. Spray-induced gene silencing: A powerful innovative strategy for crop protection. Trends in Microbiology, 25, 4–6.
Wang M, Wu L, Mei Y, Zhao Y, Ma Z, Zhang X, Chen Y. 2020. Host‐induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat. Plant Biotechnology Journal, 18, 2373.
Xia X, Zhang X, Zhang Y, Wang L, An Q, Tu Q, Wu L, Jiang P, Zhang P, Yu L, Li G, He Y. 2022. Characterization of the WAK gene family reveals genes for FHB resistance in bread wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 23, 7157.
Xu M, Wang Q, Wang G, Zhang X, Liu H, Jiang C. 2022. Combatting Fusarium head blight: Advances in molecular interactions between Fusarium graminearum and wheat. Phytopathology Research, 4, 37.
Zhu X, Qi T, Yang Q, He F, Tan C, Ma W, Voegele R T, Kang Z, Guo J. 2017. Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiology, 175, 1853–1863.
Zhu Z, Hao Y, Mergoum M, Bai G, Humphreys G, Cloutier S, Xia X, He Z. 2019. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. The Crop Journal, 7, 730–738.
|