Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1051-1063    DOI: 10.1016/j.jia.2024.04.026
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight

Jie Shuai1, 2*, Qiang Tu1, 2*, Yicong Zhang1, 2, Xiaobo Xia3, Yuhua Wang3, Shulin Cao2, Yifan Dong3, Xinli Zhou1, Xu Zhang2, Zhengguang Zhang3, Yi He2#, Gang Li3#

1 School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 629000, China

2 Zhongshan Biological Breeding Laboratory, CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

3 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China 

 Highlights 
Targeting five key fungal genes through both SIGS and HIGS enhanced wheat resistance to Fusarium head blight.
HIGS transgenic lines delivered strong FHB resistance without compromising plant growth or yield.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
小麦赤霉病(Fusarium head blight, FHB)是一种主要由禾谷镰刀菌(Fusarium graminearum)引起的全球性真菌病害,不仅影响产量,病原菌产生的脱氧雪腐镰刀菌烯醇(DON)等真菌毒素,还会降低籽粒品质,严重威胁人畜健康。RNA干扰(RNAi)是由双链RNA(dsRNA)诱发的基因沉默,通过RNAi的方式来沉默病原微生物特定基因的表达是一种绿色有效的病虫害防控技术。本研究针对小麦禾谷镰刀菌中的蛋白激酶基因Gpmk1、锌指蛋白基因FgChy1、转录因子FgSR、DON合成基因TRI5和细胞末端标记蛋白基因FgTeaA 五个致病关键基因,采用喷雾诱导基因沉默(SIGS)和宿主诱导基因沉默(HIGS)两种方法,验证能否通过沉默特定病菌靶标基因以实现防控小麦赤霉病的目的。我们通过喷洒单个或多个siRNA组合,发现SIGS可显著降低靶标基因的表达,并能抑制禾谷镰刀菌在小麦叶片中的扩展,其中,喷施五种siRNA的组合表现出最强的抗性。接下来,我们构建了同时干扰沉默这五个靶基因的RNAi植物表达载体,并获得了稳定表达的RNAi转基因小麦植株。进一步对两个独立的株系进行分析,发现对赤霉病和茎基腐病均表现出较强的抗性,并且降低了小麦中DON的积累。此外,转基因植株没有对小麦生长和产量性状产生不利影响。总之,我们的研究结果表明,利用SIGS和HIGS可有效沉默关键致病基因表达,增强作物的抗病能力,为其在植物防控真菌病害中的应用提供了重要的理论依据和技术支撑。


Abstract  

Fusarium head blight (FHB), mainly caused by fungus Fusarium graminearum, is a devastating wheat disease worldwide, leading to reduced yield production and compromised grain quality due to contamination by mycotoxins, such as deoxynivalenol (DON).  Manipulating the specific gene expression in microorganisms through RNA interference (RNAi) presents an opportunity for new-generation double-stranded RNA (dsRNA)-based formulations to combat a large number of plant diseases.  Here, we applied both spray-induced gene silencing (SIGS) and host-induced gene silencing (HIGS) to target five virulence-related and DON-synthesized genes in Fgraminearum, including protein kinase gene Gpmk1, zinc finger protein gene FgChy1, transcription factor FgSR, DON synthesis gene TRI5 and the cell-end marker protein gene FgTeaA, aiming to effectively control FHB in wheat.  Direct spraying of individual or combined small interfering RNA (siRNAs) from the fungus showed reduced expression of target genes and suppressed pathogenic symptoms during Fgraminearum infection in wheat leaves, with the combination of all five siRNAs demonstrating superior resistance.  Furthermore, we generated transgenic wheat lines expressing chimeric RNAi cassettes targeting these five genes, and two independent lines exhibited strong resistance to FHB and Fusarium crown rot, and the reduced DON accumulation.  Notably, the HIGS transgenic lines did not adversely impact plant growth and yield traits.  Collectively, our findings support that SIGS and HIGS represent effective strategies targeting key pathogenic genes for bolstering disease resistance in crops.

Keywords:  Fusarium graminearum        FHB        resistance        HIGS        SIGS        gene expression        wheat  
Received: 07 January 2024   Accepted: 01 March 2024 Online: 23 May 2024  
Fund: This work was financially supported by the National Key R&D Program of China (2022YFD1400105), the Jiangsu Agricultural Science and Technology Innovation Fund (CX(22)2005), the Jiangsu Key R & D Plan (Modern Agriculture), China (BE2022346), the China Agricultural Research System Program (CARS-03), the National Science Fund for Excellent Young Scholars (Overseas), China, and the Start-Up Grant from Nanjing Agricultural University, China.
About author:  Jie Shuai, E-mail: shuaijie0519@163.com; Qiang Tu, E-mail: qiangtuswust@sina.com; #Correspondence Yi He, E-mail: heyi_yihe@163.com; Gang Li, E-mail: gang.li@njau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. 2026. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight. Journal of Integrative Agriculture, 25(3): 1051-1063.

Alexander N J, Proctor R H, McCormick S P. 2009. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Reviews28, 198–215.

Alexander P, Brown C, Arneth A, Finnigan J, Moran D, Rounsevell M D A. 2017. Losses, inefficiencies and waste in the global food system. Agricultural Systems153, 190–200.

Bai G, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology42, 135–161.

Bai G H, Desjardins A E, Plattner R D. 2002. Deoxynivalenol nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia153, 91–98.

Bai G H, Plattner R, Desjardins A, Kolb F, McIntosh R A. 2001. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breeding120, 1–6.

Boenisch M J, Schäfer W. 2011. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology11, 1–14.

Bonnighausen J, Schauer N, Schafer W, Bormann J. 2019. Metabolic profiling of wheat rachis node infection by Fusarium graminearum-decoding deoxynivalenol-dependent susceptibility. New Phytologist221, 459–469.

Brown N A, Evans J, Mead A, Hammond-Kosack K E. 2017. A spatial temporal analysis of the Fusarium graminearum transcriptome during symptomless and symptomatic wheat infection. Molecular Plant Pathology18, 1295–1312.

Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. 2021. The CHY-type zinc finger protein FgChy1 regulates polarized growth, pathogenicity, and microtubule assembly in Fusarium graminearumMolecular Plant-Microbe Interactions34, 362–375.

Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising H B, Kumlehn J, Schweizer P. 2016. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. Journal of Experimental Botany67, 4979–4991.

Chen Y, Kistler H C, Ma Z. 2019. Fusarium graminearum Trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology57, 15–39.

Cheng W, Song X S, Li H P, Cao L H, Sun K, Qiu X L, Y B, Yang P, Huang T, Zhang J B, Qu B, Liao Y C. 2015. Hostinduced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnology Journal13, 1335–1345.

Dean R, Kan J A L, Pretorius Z A, Hammond-kosack K E, Pietro A D, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology13, 414–430.

Desjardins A E, Bai G H, Plattner R D, Proctor R H. 2000. Analysis of aberrant virulence of Gibberella zeae following transformation-mediated complementation of a trichothecene-deficient (Tri5) mutant. Microbiology146, 2059–2068.

El-Baky N A, Amara A A A F. 2021. Recent approaches towards control of fungal diseases in plants: An updated review. Journal of Fungi7, 900.

Fisher M C, Hawkins N J, Sanglard D, Gurr S J. 2018. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science360, 739–742.

Gu Q, Chen Y, Liu Y, Zhang C, Ma Z. 2015. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearumNew Phytologist206, 315–328.

Gunupuru L R, Patel J S, Sumarah M W, Renaud J B, Mantin E G, Prithiviraj B. 2019. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS ONE14, e0220562.

He F, Zhang R, Zhao J, Qi T, Kang Z, Guo J. 2019. Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight. Frontiers in Plant Science10, 1362.

Hu S, Zhou X, Gu X, Cao S, Wang C, Xu J. 2014. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearumMolecular Plant-Microbe Interactions27, 557–566.

Ishida Y, Tsunashima M, Hiei Y, Komari T. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods in Molecular Biology1223, 189–198.

Jansen C, von Wettstein D, Schäfer W, Kogel K H, Felk A, Maier F J. 2005. Infection patterns in barley and wheat spikes inoculated with wild type and trichodiene synthase gene disrupted Fusarium graminearumProceedings of the National Academy of Sciences of the United States of America102, 16892–16897.

Jiang C, Cao S, Wang Z, Xu H, Liang J, Liu H, Wang G, Ding M, Wang Q, Gong C, Feng C, Hao C, Xu J. 2019. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection. Nature Microbiology4, 1582–1591.

Jiang C, Zhang X, Liu H, Xu J. 2018. Mitogen-activated protein kinase signaling in plant pathogenic fungi. Plos Pathogens14, e1006875.

John E, Singh K B, Oliver R P, Tan K C. 2021. Transcription factor control of virulence in phytopathogenic fungi. Molecular Plant Pathology22, 858–881.

Kage U, Yogendra K N, Kushalappa A C. 2017. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Scientific Reports7, 42596.

Keulemans W, Bylemans D, De Coninck B. 2019. Farming without Plant Protection. EPRS European Parliamentary Research Service, Brussels, Belgium.

Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. 2007. Molecular and genetic studies of Fusarium trichothecene biosynthesis: Pathways, genes, and evolution. Bioscience Biotechnology and Biochemistry71, 2105–2123.

Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathogens12, e1005901.

Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K H. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14 alphademethylase- encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the United States of America110, 19324–19329.

Liu C, Francis C O. 2015. Resistance to Fusarium crown rot in wheat and barley: A review. Plant Breeding134, 365–372.

Liu Y, Yang X, Ma J, Wei Y, Zheng Y, Ma H, Yao J, Yan G, Wang Y, Manners J, Liu C. 2010. Plant height affects Fusarium crown rot severity in wheat. Phytopathology100, 1276–1281.

Liu Z, Jian Y, Chen Y, Kistler H C, He P, Ma Z, Yin Y. 2019. A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearumNature Communications10, 1228.

Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics133, 1541–1568.

Maier F J, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W. 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology7, 449–461.

Mata J, Nurse P. 1997. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell89, 939–949.

Mentges M, Glasenapp A, Boenisch M, Malz S, Henrissat B, Frandsen R J N, Güldener U, Münsterkötter M, Bormann J, Lebrun M, Schäfer W, MartinezRocha A. 2020. Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. Molecular Plant Pathology21, 1070–1087.

Panwar V, Jordan M, McCallum B, Bakkeren G. 2018. Host induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnology Journal16, 1013–1023.

Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J. 2019. Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley. International Journal of Molecular Sciences20, 206.

Qu Y, Cao H, Huang P, Wang J, Liu X, Lu J, Lin F C. 2022. A kelch domain cell end protein, PoTea1, mediates cell polarization during appressorium morphogenesis in Pyricularia oryzaeMicrobiological Research259, 126999.

Rajam M V, Chauhan S. 2021. Host-induced gene silencing (HIGS): An emerging strategy for the control of fungal plant diseases. In: Sarmah B K, Borah B K, eds., Genome Engineering for Crop Improvement. Concepts and Strategies in Plant Sciences. Springer, Cham.

Ramamoorthy V, Zhao X, Snyder A K, Xu J, Shah D M. 2007. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearumCellular Microbiology9, 1491–1506.

Rogers A M, Taylor R, Egan M J. 2024. The cell-end protein Tea4 spatially regulates hyphal branch initiation and appressorium remodeling in the blast fungus Magnaporthe oryzaeMolecular Biology of the Cell35, br2.

Rudd J J, Keon J, Hammond-Kosack K E. 2008. The wheat Mitogen-activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with Mycosphaerella graminicolaPlant Physiology147, 802–815.

Sakaguchi A, Miyaji T, Tsuji G, Kubo Y. 2010. A Kelch repeat protein, Cokel1p, associates with microtubules and is involved in appressorium development in Colletotrichum orbiculareMolecular Plant-Microbe Interactions23, 103–111.

Sang H, Hulvey J P, Green R, Xu H, Im J, Chang T, Jung G. 2018a. A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. mBio9, e00457-18.

Sang H, Jacobs J L, Wang J, Mukankusi C, Chilvers M I. 2018b. First report of Fusarium cuneirostrum from common bean (Phaseolus vulgaris) in Uganda. Plant Disease102, 2639.

Sang H, Kim J I. 2020. Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnology Reports14, 1–8.

Sang H, Popko J, Jung G. 2019. Evaluation of a Sclerotinia homoeocarpa population with multiple fungicide resistance phenotypes under differing selection pressures. Plant Disease103, 685–690.

Schnitkey G. 2018. Historic fertilizer, seed, and chemical costs with 2019 projections. Farmdoc Daily8, 102.

Seong K, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu J, Kistler H. 2009. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology72, 354–367.

Takeshita N, Higashitsuji Y, Konzack S, Fischer R. 2008. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulansMolecular Biology of the Cell19, 339–351.

Takeshita N, Mania D, Herrero S, Ishitsuka Y, Nienhaus G U, Podolski M, Howard J, Fischer R. 2013. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. Journal of Cell Science126, 5400–5411.

Tiwari I M, Jesuraj A, Kamboj R, Devanna B, Botella J R, Sharma T. 2017. Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Scientific Reports7, 1–14.

Urban M, Mott E, Farley T, Hammond-Kosack K. 2003. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology4, 347–359.

Wang J, Sang H, Jacobs J L, Oudman K, Hanson L E, Chilvers M I. 2019. Soybean sudden death syndrome caused by Fusarium brasiliense in Michigan. Plant Disease103, 1234–1243.

Wang M, Jin H. 2017. Spray-induced gene silencing: A powerful innovative strategy for crop protection. Trends in Microbiology25, 4–6.

Wang M, Wu L, Mei Y, Zhao Y, Ma Z, Zhang X, Chen Y. 2020. Hostinduced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat. Plant Biotechnology Journal18, 2373.

Xia X, Zhang X, Zhang Y, Wang L, An Q, Tu Q, Wu L, Jiang P, Zhang P, Yu L, Li G, He Y. 2022. Characterization of the WAK gene family reveals genes for FHB resistance in bread wheat (Triticum aestivum L.). International Journal of Molecular Sciences23, 7157.

Xu M, Wang Q, Wang G, Zhang X, Liu H, Jiang C. 2022. Combatting Fusarium head blight: Advances in molecular interactions between Fusarium graminearum and wheat. Phytopathology Research4, 37.

Zhu X, Qi T, Yang Q, He F, Tan C, Ma W, Voegele R T, Kang Z, Guo J. 2017. Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiology175, 1853–1863.

Zhu Z, Hao Y, Mergoum M, Bai G, Humphreys G, Cloutier S, Xia X, He Z. 2019. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. The Crop Journal7, 730–738.

[1] Zhongxian Xu, Tao Wang, Wei Zhu, Maosen Yang, Dong Leng, Ziyu Li, Jiaman Zhang, Pengliang Liu, Zhoulin Wu, Mengnan He, Yan Li, Hua Kui, Xue Bai, Bo Zeng, Yao Zhang, Qing Zhu, Xiaoling Zhao, Mingzhou Li, Diyan Li. 3D genomic alterations during development of skeletal muscle in chicken[J]. >Journal of Integrative Agriculture, 2026, 25(1): 207-226.
[2] Jie Zhang, Han Gao, Fuhao Ren, Zehua Zhou, Huan Wu, Huahua Zhao, Lu Zhang, Mingguo Zhou, Yabing Duan. The stress regulator FgWhi2 and phosphatase FgPsr1 play crucial roles in the regulation of secondary metabolite biosynthesis and the response to fungicides in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3095-3111.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Luoyu Wu, Furong Chen, Pengwei Wang, Chongjing Xu, Weidong Wen, Matthias Hahn, Mingguo Zhou, Yiping Hou. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2285-2298.
[5] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
[6] Shuting Yu, Tianshu Wang, Li Wang, Shuihong Yao, Bin Zhang. Preceding crop rotation systems shape the selection process of wheat root-associated bacterial communities[J]. >Journal of Integrative Agriculture, 2025, 24(2): 739-753.
[7] Zimeng Liang, Xidan Cao, Rong Gao, Nian Guo, Yangyang Tang, Vinay Nangia, Yang Liu. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes[J]. >Journal of Integrative Agriculture, 2025, 24(2): 497-516.
[8] Kaixin Gu, Ran Wei, Yidan Sun, Xiaoxin Duan, Jing Gao, Jianxin Wang, Yiping Hou, Mingguo Zhou, Xiushi Song. Point mutations of Dicer2 conferred Fusarium asiaticum resistance to RNAi-related biopesticide[J]. >Journal of Integrative Agriculture, 2025, 24(2): 623-637.
[9] Guohui Li, Yan Zhang, Jiwei Xu, Changjin Zhu, Qiuqian Hu, Ke Xu. Nitrogen uptake and carbon–nitrogen synergistic translocation improve yield and nitrogen use efficiency in the dep1 rice line[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4787-4809.
[10] Kai Zhao, Yanzhe Li, Zhan Li, Zenghui Cao, Xingli Ma, Rui Ren, Kuopeng Wang, Lin Meng, Yang Yang, Miaomiao Yao, Yang Yang, Xiaoxuan Wang, Jinzhi Wang, Sasa Hu, Yaoyao Li, Qian Ma, Di Cao, Kunkun Zhao, Ding Qiu, Fangping Gong, Zhongfeng Li, Xingguo Zhang, Dongmei Yin. Genome-wide analysis of AhCN genes reveals that AhCN34 is involved in bacterial wilt resistance in peanut[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3757-3771.
[11] Lijiao Ge, Weihao Miao, Kuolin Duan, Tong Sun, Xinyan Fang, Zhiyong Guan, Jiafu Jiang, Sumei Chen, Weimin Fang, Fadi Chen, Shuang Zhao. Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum[J]. >Journal of Integrative Agriculture, 2025, 24(1): 176-195.
[12] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[13] Junming Liu, Zhuanyun Si, Shuang Li, Lifeng Wu, Yingying Zhang, Xiaolei Wu, Hui Cao, Yang Gao, Aiwang Duan. Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4018-4031.
[14] Zhenchao Fu, Huiqian Zhuang, Vincent Ninkuu, Jianpei Yan, Guangyue Li, Xiufen Yang, Hongmei Zeng. A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3774-3787.
[15] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

No Suggested Reading articles found!