Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1035-1050    DOI: 10.1016/j.jia.2025.06.023
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
AcMYB12 and AcMYB29 promote flavonol biosynthesis through transcriptional regulation in onion (Allium cepa L.)

Qingwei Jia1, 2, Shuting Gai1, 2, Yiren Wang1, 2, Zhihui Zhang1, 2, Xiong Wu3, Wenhui Wu1, 2, Yumeng Pang1, 2, Xiaonan Zhang1, 2, Lei Qin1, 2#, Yong Wang1, 2#

1 College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

2 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China

3 Henan Kanglong Hi-tech Seed Co., Ltd., Jiyuan 459000, China

 Highlights 
AcMYB12 and AcMYB29 exhibit both functional redundancy and distinct roles in regulating flavonol biosynthesis.
The differential binding activity of AcMYB12 and AcMYB29 with cis-elements results in distinct regulatory functions.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

黄酮醇具有很高的药用价值,不但在植物抗逆性具有重要作用而且也是洋葱营养价值的关键组成部分,尤其是在可食用部分。虽然黄酮醇的生物合成途径已经得到了很好的研究,但在洋葱中的调控作用尚不完全清楚。本研究通过分析“SA1”不同发育阶段的转录组学和代谢组学数据,筛选到了黄酮醇生物合成和调控基因。其中,鉴定了两个R2R3-MYB转录因子AcMYB12AcMYB29洋葱黄酮醇生物合成的正调控因子。转录激活实验表明,它们都能激活黄酮醇生物合成途径基因AcCHSAcF3’HAcFLS的转录,而酵母单杂交实验证实它们直接结合这些基因的启动子。过表达洋葱愈伤组织和拟南芥中黄酮醇途径基因的表达量和黄酮醇含量显著高于对照,进一步证实AcMYB29AcMYB12在黄酮醇调控中的作用。瞬时沉默试验显示两者之间存在部分功能冗余。有趣的是,他们的调节能力也存在显著差异。AcMYB12主要调控黄酮醇积累,而AcMYB29主要调控槲皮素的合成。进一步研究了它们之间的差异调控的分子机制,结果表明,这些差异可能是由于黄酮醇生物合成途径基因启动子中顺式元件的多样性以及转录因子和顺式元件之间结合活性的差异。



Abstract  

Flavonols possess significant medical value and are essential for plant stress resistance.  These compounds constitute primary components of the nutritional value in onions, particularly in edible portions.  While the flavonol biosynthetic pathway has been extensively studied, its regulatory mechanisms in onions remain incompletely understood.  This investigation identified flavonol biosynthesis and regulatory genes through analysis of transcriptome and metabolomics data from different developmental stages of ‘SA1’.  Two R2R3-MYB transcription factors, AcMYB12 and AcMYB29, were identified as positive regulators of onion flavonol biosynthesis.  Transcriptional activation assays demonstrated that both could activate AcCHS, AcF3´H, and AcFLS.  Yeast one-hybrid assays confirmed their direct binding to these gene promoters.  The expression levels of flavonol pathway genes and flavonol contents in AcMYB12/AcMYB29-overexpressing onion calli and Arabidopsis plants were significantly higher than those in the control group.  Transient silencing assays revealed partial functional redundancy between these two transcription factors.  Notably, their regulatory capabilities exhibited significant differences.  AcMYB12 predominantly regulates flavonol accumulation, while AcMYB29 specifically influences quercetin.  Further investigation of the molecular mechanisms underlying differential regulation indicated variations in cis-elements within flavonol pathway gene promoters and differences in binding activity between transcription factors and cis-elements.

Keywords:  onion       flavonols        AcMYB12       AcMYB29       cis-element       flavonol pathway genes  
Received: 18 June 2024   Accepted: 11 November 2024 Online: 24 June 2025  
Fund: 

This work was supported by the Key R&D Projects in Heilongjiang Province, China (GA21B012); the Collaborative Innovation Achievement Project of University in Heilongjiang Province, China (LJGXCG2022-040).

About author:  Qingwei Jia, E-mail: 465872232@qq.com; #Correspondence Lei Qin, Tel: +86-451-55191261, E-mail: qinlei@neau.edu.cn; Yong Wang, Tel: +86-451-55190243, E-mail: yongwang@neau.edu.cn

Cite this article: 

Qingwei Jia, Shuting Gai, Yiren Wang, Zhihui Zhang, Xiong Wu, Wenhui Wu, Yumeng Pang, Xiaonan Zhang, Lei Qin, Yong Wang. 2026. AcMYB12 and AcMYB29 promote flavonol biosynthesis through transcriptional regulation in onion (Allium cepa L.). Journal of Integrative Agriculture, 25(3): 1035-1050.

Bhatia C, Pandey A, Gaddam S R, Hoecker U, Trivedi P K. 2018. Low temperature-enhanced flavonol synthesis requires light-associated regulatory components in Arabidopsis thalianaPlant & Cell Physiology59, 2099–2112.

Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris N N, Walker A R, Robinson P, Bogs J. 2009. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology151, 1513–1530.

Jia Q W, Yin Y Q, Gai S T, Tian L, Zhu Z H, Qin L, Wang Y. 2024. Onion cryptochrome 1 (AcCRY1) regulates photomorphogenesis and photoperiod flowering in Arabidopsis and exploration of its functional mechanisms under blue light. Plant Physiology and Biochemistry, 206, 108300.

Kim B, Cho Y, Kim S. 2017. Identification of a novel DFR-A mutant allele determining the bulb color difference between red and yellow onions (Allium cepa L.). Plant Breeding and Biotechnology5, 45–53.

Kim S, Yoo K S, Pike L M. 2005. The basic color factor, the c locus, encodes a regulatory gene controlling transcription of chalcone synthase genes in onions (Allium cepa L.). Euphytica142, 273–282.

Ko E Y, Nile S H, Sharma K, Li G H, Park S W. 2015. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.). Saudi Journal of Biological Sciences22, 398–403.

Lee R, Baldwin S, Kenel F, McCallum J, Macknight R. 2013. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nature Communications4, 2884.

Li X J, Cao L J, Jiao B B, Yang H F, Ma C S, Liang Y. 2022. The bHLH transcription factor AcB2 regulates anthocyanin biosynthesis in onion (Allium cepa L.). Horticulture Research9, uhac128.

Li Y P, Shi Y T, Li M Z, Fu D Y, Wu S F, Li J G, Gong Z Z, Liu H T, Yang S H. 2021. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. The Plant Cell33, 3555–3573.

Li Y, Kim J I, Pysh L, Chapple C. 2015. Four isoforms of Arabidopsis 4-Coumarate:CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology169, 2409–2421.

Liang T, Shi C, Peng Y, Tan H J, Xin P Y, Yang Y, Wang F, Li X, Chu J F, Huang J R, Yin Y H, Liu H T. 2020. Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. The Plant Cell32, 3224–3239.

Liu H N, Su J, Zhu Y F, Yao G F, Allan A C, Ampomah-Dwamena C, Shu Q, Wang K L, Zhang S L, Wu J. 2019. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research6, 134.

Ma D W, Constabel C P. 2019. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science, 24, 275–289.

Masuzaki S, Shigyo M, Yamauchi N. 2006. Direct comparison between genomic constitution and flavonoid contents in allium multiple alien addition lines reveals chromosomal locations of genes related to biosynthesis from dihydrokaempferol to quercetin glucosides in scaly leaf of shallot (Allium cepa L.). Theoretical & Applied Genetics112, 607–617.

Meng X Y, Li Y Q , Zhou T T, Sun W, Shan X T, Gao X, Wang L. 2019. Functional differentiation of duplicated flavonoid 3-O-glycosyltransferases in the flavonol and anthocyanin biosynthesis of Freesia hybridaFrontiers in Plant Science10, 1330.

Park S, Kim D H, Lee J Y, Ha S H, Lim S H. 2017. Comparative analysis of two flavonol synthases from different-colored onions provides insight into flavonoid biosynthesis. Journal of Agricultural and Food Chemistry, 65, 5287–5298.

Park S, Kim D H, Yang J H, Lee J Y, Lim S H. 2020. Increased flavonol levels in tobacco expressing AcFLS affect flower color and root growth. International Journal of Molecular Sciences21, 1011.

Perez-Gregorio M R, Regueiro J, Simal-Gándara J, Rodrigues A S, Almeida D P F. 2014. Increasing the added-value of onions as a source of antioxidant flavonoids: A critical review. Critical Reviews in Food Science & Nutrition, 54, 1050–1062.

Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A. 2013. Plant flavonoids - biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences14, 14950–14973.

Qin L, Ma H L, Zhang X, Zhang Z H, Zhang X, Wang Y. 2023. Metabolomics and transcriptomics analyses provides insights into S-alk(en)yl cysteine sulfoxides (CSOs) accumulation in onion (Allium cepa). Scientia Horticulturae310, 111727.

Ramaroson M L, Koutouan C, Helesbeux J J, Le Clerc V, Hamama L, Geoffriau E, Briard M. 2022. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules (Basel, Switzerland), 27, 8371.

Rodrigues A S, Pérez-Gregorio M R, García-Falcón M S, Simal-Gándara J, Almeida D P F. 2011. Effect of meteorological conditions on antioxidant flavonoids in portuguese cultivars of white and red onions. Food Chemistry124, 303–308.

Schwinn K E, Ngo H, Kenel F, Brummell D A, Albert N W, McCallum J A, Pither-Joyce M, Crowhurst R N, Eady C, Davies K M. 2016. The onion (Allium cepa L.) R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis. Frontiers in Plant Science, 7, 1865.

Shan X T, Li Y Q, Yang S, Yang Z Z, Qiu M, Gao R F, Han T T, Meng X Y, Xu Z Y, Wang L, Gao X. 2020. The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybridaThe New Phytologist228, 1864–1879.

Shen, N, Wang T F, Gan Q, Liu S, Wang L, Jin B. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry383, 132531.

Slimestad R, Fossen T, Vagen I M. 2007. Onions: a source of unique dietary flavonoids. Journal of Agricultural and Food Chemistry55, 10067–10080.

Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal50, 660–677.

Sun W, Cao Z Y, Li Y, Zhao Y X, Zhang H. 2007. A simple and effective method for protein subcellular localization using agrobacterium-mediated transformation of onion epidermal cells. Biologia62, 529–532.

Takahashi R, Githiri S M, Hatayama K, Dubouzet E G, Shimada N, Aoki T, Ayabe S, Iwashina T, Toda K, Matsumura H. 2007. A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. Plant Molecular Biology63,125–135.

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal54, 733–749.

Todesco M, Bercovich N, Kim A, Imerovski I, Owens G L, Dorado Ruiz Ó, Holalu S V, Madilao L L, Jahani M, Légaré J S, Blackman B K, Rieseberg L H. 2022. Genetic basis and dual adaptive role of floral pigmentation in sunflowers. eLife11, e72072.

Wang S L, Chu Z H, Jia R, Dan F, Shen X L, Li Y, Ding X H. 2018a. SlMYB12 regulates flavonol synthesis in three different cherry tomato varieties. Scientific Reports, 8, 1582.

Wang Z L, Wang S, Kuang Y, Hu Z M, Qiao X, Ye M. 2018b. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensisPharmaceutical Biology56, 465–484.

Williams J S, Thomas M, Clarke D J. 2005. The gene stla encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in photorhabdus luminescens tt01Microbiology151, 2543–2550.

Xie Z P, Sundström J F, Jin Y K, Liu C L, Jansson C, Sun C X. 2014. A selection strategy in plant transformation based on antisense oligodeoxynucleotide inhibition. The Plant Journal77, 954–961.

Yao P F, Huang Y J, Dong Q X, Wan M, Wang A H, Chen Y W, Li C L, Wu Q, Chen H, Zhao H X. 2020. FtMYB6, a light-induced SG7 R2R3-MYB transcription factor, promotes flavonol biosynthesis in tartary buckwheat (Fagopyrum tataricum). Journal of Agricultural and Food Chemistry68, 13685–13696.

Yoo K S, Lee E J, Patil B S. 2013. Changes in quercetin glucoside concentrations of onion bulbs by scales, during storage, and in sprouting leaves exposed to UV. Postharvest Biology & Technology83 , 65–71.

Zhai R, Zhao Y X, Wu M, Yang J, Li X Y, Liu H T, Wu T, Liang F F, Yang C Q, Wang Z G, Ma F W, Xu L F. 2019. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biology19, 85.

Zhang X B, Abrahan C, Colquhoun T A, Liu C J. 2017. Proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. The Plant Cell29, 1157–1174.

Zhang Y, He Y, Zhao H Y, Wang Y, Wu C L, Zhao Y Z, Xue H N, Zhu Q D, Zhang J L, Ou X Q. 2024. The 14-3-3 protein BdGF14a increases the transcriptional regulation activity of BdbZIP62 to confer drought and salt resistance in tobacco. Plants (Basel, Switzerland), 13, 245.

Zhao X C, Zeng X S, Lin N, Yu S W, Fernie A R, Zhao J. 2021. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. Horticulture Research8, 110.

[1] ZHANG Shi-lin, DENG Peng, XU Yu-chao, Lü Shan-wu, WANG Jian-jun. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2175-2181.
No Suggested Reading articles found!